• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型Zn2+基金屬有機(jī)框架結(jié)構(gòu)的溫度依賴的導(dǎo)電、發(fā)光性能及理論計(jì)算

    2017-03-13 09:53:16高義粉莊桂林柏家奇王建國(guó)
    物理化學(xué)學(xué)報(bào) 2017年1期
    關(guān)鍵詞:浙江工業(yè)大學(xué)王建國(guó)導(dǎo)電性

    高義粉 莊桂林 柏家奇 鐘 興 王建國(guó)

    (浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,杭州310032)

    新型Zn2+基金屬有機(jī)框架結(jié)構(gòu)的溫度依賴的導(dǎo)電、發(fā)光性能及理論計(jì)算

    高義粉 莊桂林*柏家奇 鐘 興 王建國(guó)*

    (浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,杭州310032)

    通過(guò)Zn2+和1,3,5-三苯甲酸(H3BTB)配體反應(yīng)獲得一種新型的四重互穿的金屬有機(jī)框架結(jié)構(gòu)(MOF)1。單晶體結(jié)構(gòu)分析表明這是一種由中性N,N-二甲基甲酰胺(DMF)分子和H2NMe2+陽(yáng)離子沿b軸密封于通道的三維(10,3)網(wǎng)狀陰離子框架結(jié)構(gòu)。交流阻抗測(cè)試顯示該結(jié)構(gòu)的導(dǎo)電性能具有特殊溫度依賴性。其電導(dǎo)值在20oC下為0.36×10-6S·cm-1,隨著溫度升高導(dǎo)電能力迅速增大,160°C達(dá)到最大值2.24×10-5S·cm-1,繼續(xù)升高溫度,導(dǎo)電能力開始下降。分子動(dòng)力學(xué)(MD)模擬和介電性質(zhì)測(cè)量表明,這種特殊溫度依賴的導(dǎo)電性能是來(lái)自于隨溫度升高H2NMe2+陽(yáng)離子遷移增強(qiáng)以及DMF揮發(fā)的協(xié)同效應(yīng)。0.20 V的傳輸能壘接近于質(zhì)子導(dǎo)電性能。研究表明:MOFs孔對(duì)H2NMe2+的限制作用是獲得電子材料的一種潛在理想方法。同時(shí),在1中發(fā)現(xiàn)一種有趣的熒光現(xiàn)象,發(fā)射峰位置比在H3BTB配體中更加藍(lán)移。密度泛函理論(DFT)計(jì)算揭示這是由于在1中,配體BTB3-的離域π鍵結(jié)構(gòu)破壞,禁帶寬度增大所致。

    MOFs;密度泛函理論計(jì)算;導(dǎo)電性;冷發(fā)光

    Key Words:MOFs;Density functional theory calculation;Conductivity;Luminescence

    1 Introduction

    Metal-organic frameworks(MOFs)1have been currently attracting enormous attentions owing to regular porous structure and potential applications,such as adsorption2,separation3,catalysis4, luminescence4c,5,magnetism6and etc.Generally,these special properties can be derived from not only the electronic structure of metal ions or ligand,but also the nanosize porous characteristic and encapsulated guest molecules or ions.Within this context, confined species often endow the material unique physical properties.Recently,it was found that these porous solids also exhibit good proton conductivity through confining small molecules or ions into the channel7,where the species serve as the role of charge carrier.These studies provide some help to understand the transport mechanism of charge carriers.However,they usually involve the conducting property of single component in the channel.And the transporting mechanisms with respect to the multi-components coexisting(e.g.neutral molecules and charged ions)conductivity are unclear.

    Moreover,electronic structural changes of ligands also affect the physical properties of MOFs,e.g.luminescence.The fluorescent MOFs with tuneable electronic transition energy will be promising candidates of inorganic-organic hybrid organic light emitting diode(OLED)materials8.Their emission properties are mainly derived from metal ions,organic linker and charge transfer between them9.The conformation change of rigid ligands usually induce the transformation of electronic structure and results in the displacement of emission peaks or quantum yield9d.From the experimental view,previous studies only give some reasonable explanations on distinct phenomenon.Combined with the experiment and theory usually produces profound comprehensions on theoretical mechanisms.However,as far as our knowledge, corresponding studies are very rare.

    In this study,one new Zn(II)-based MOF,which indicates threedimensional(10,3)net and confines dimethyl formamide(DMF) and H2NMe2+cation into the channel,was synthesized and characterized.Especially,it is found that the MOFs show temperaturedependent conductivity and blue-shift luminescence.The mechanisms of ionic conductivity and luminescence were further investigated by means of combination of density functional theory (DFT)and molecular dynamics(MD)calculations.

    2 Experimental and computational section

    DMF(99.0%),adenine(98%)were purchased from Aladdin, Zn(CH3COO)2·4H2O(98%)were obtained from Alfa Aescar, H3BTB ligand were acquired from Aladdin.All solvents were commercially available and used without further purification.

    2.1 Synthesis of[Zn(BTB)(DMF)](H2NMe2)(DMF)(1)

    0.219 g(0.50 mmol)benzene-1,3,5-tribenzoate(H3BTB)ligand, 0.280 g(0.75 mmol)Zn(CH3COO)24H2O and 0.117 g(0.50 mmol)adenine were dissolved into the mixed solvent of DMFH2O(1:1,volume ratio).The mixture was subsequently transferred and sealed in 25 mL Teflon-lined stainless steel container. The container was heated to 120°C at the rate of 30°C·h-1and hold at that temperature for 2880 min,and then cooled to room temperature at the rate of 3°C·h-1.Colorness block crystals of 1 were obtained in yield of 45.6%(based on H3BTB ligand).Anal. calcd(found)(%)for C35H37N3O8Zn(1):C,60.65(60.32);H,5.38 (6.01);N,6.06(5.89).IR spectra for 1(KBr),v/cm-1:476.6(w), 668.4(w),707.2(w),780.6(m),858.0(w),1017.2(w),1106.4(w), 1152.7(w),1385.9(s),1550.2(w),1605.5(s),1656.7(m).

    2.2 Measurement details

    H3BTB ligand was of commercial origin without further purification.The C,H,and N element analyses were performed by use of a CE instruments EA1110 elemental analyzer.The infrared spectra was measured on a Nicolet AVATAR FT-IR360 Spectrophotometer with pressed KBr pellets.The X-ray powder diffractometry(XRPD)study was performed on Panalytical X-Pert pro diffractometer with Cu-Kαradiation.Thermogravimetric analyzer(TGA)curve was recorded on a SDT Q600 instrument.UVVis diffuse-reflection adsorption was recorded on Cary 5000 Ultraviolet Visible-Near Infrared(UV-Vis-NIR)spectrophotometer,where the powder sample was put into cone-shape container.Fluorescent spectra were recorded by F7000 fluorescence spectrophotometer,respectively.Both alternating current (ac)impedance and dielectric properties measurements were performed by use of 2-wire mode on the WAYNE KERR 6500 High Frequency LCR Meter.The powdered sample was compressed to pellet with the size of 5.09 mm2×1.26 mm.Two test lines were fixed on the tabletting via electric glue and connected with the apparatus.The temperature-controlled apparatus is Sigma/ Delta instrument.Single crystals having suitable dimensions for compound 1 was used for data collection using a CrysAlis CCD diffractometer(Xcalibur,Eos,Gemini ultra)at 298 K equipped with enhance(Mo)X-ray source(λ=0.071073 nm).Integration and cell refinement were carried out using CrysAlis RED.The absorption correction was performed by multiscan method using SCALE3 ABSPACK scaling algorithm.All corrections were made for Lorentz and polarization effects.The molecular structures were solved by direct methods(SHELXL-86/SHELXL-97)and refined by full-matrix least-squares on F2(SHELXS-97).Crystal data of compound 1 are given in Table S1(Supporting Information).

    2.3 Computational details

    Geometrical optimization and electronic structure were performed by using of density functional theory in the DMol3module of Material Studio software10.Exchange-correlation(XC)effects between electrons and ions were treated by the generalized gradient approximation(GGA)11with Perdew Burke Ernzerhof (PBE)12formalism.The double numerical basis set plus polarization functional(DNP)12,which has a computational precision being comparable to the split-valence basis set 6-31g**,was applied in the expanded electronic wave function.For Zn element, the inner core was treated by the approach of effective core po-tential(ECP)13and 3d electrons were explicitly seen as valence electrons.For other elements,all electrons were treated in the same manner as valence electrons.For 1,the Brillouin zone integration adopted K-points of 1×2×1,which is enough to describe the whole zone.For all the calculations,the optimization convergence in energy and force were set to be 1.0×10-5Ha and 2.0×10-2Ha·nm-1,and the SCF convergence was set to be 1.0×10-6.Based on previous optimized structure,We further conducted partial density of states(PDOS)calculation,where 20 empty bands and 1×1×1 K-ponts were adopted.Molecular dynamic calculation was carried out at specific temperature of 433 K in the NVT ensemble by using of GULP14module in Material Studio software.The simulation time is 200 ps at atime step of 1 fs.An universal force field of UFF4MOF15was applied to describe interaction between atoms or functional groups.

    Fig.1 Coordination environment of Zn(II)in 1(a),three-dimensional structure(b)and topology sketch(c)of 1

    Fig.2 (a-c)Nyquist plots of the ac impedance of 1 over the temperature range of 20-200°C at the interval of 20°C; (d)plot of obtained conductance σ vs T

    3 Results and discussion

    Compound 1,[Zn(BTB)(DMF)](H2NMe2)(DMF),crystalizes in the space group of P2(1)/n of monoclinic system.Crystal structure measure reveals that the asymmetric unit contains one Zn2+ion,one BTB3-ligand,two DMF molecules and one H2NMe2+cation.As shown in Fig.1(a),the coordination geometry of Zn2+can be well described as an octahedron,featuring the contributions by six oxygen atoms.These coordinating atoms are derived from five carboxylate oxygen atoms of three BTB3-ligands and one oxygen atom of DMF molecule,respectively.The resulting Zn―O bond length is 0.1946(3)-0.2032(3)nm,which is in good agreement with those reported previously16.Via three BTB3-ligand,each Zn(II)ion links with adjacent ones and generates threedimensional(10,3)-net framework.Herein,each Zn(II)ion acts as one node,where each BTB3-ligand serves as three-connecting bridge.Four fold interpenetrations among these(10,3)-net layers along b axis are found in three stacked structure(see Fig.S2, Supporting Information),resulting in one-dimensional channels in the direction of b axis.Neutral DMF molecules and cationic H2NMe2+are sealed in this channel,as shown in Fig.1(b).The whole framework of 1 is anionic framework,as seen in Fig.1(c). Also,H2NMe2+cations are derived from the dissociation of partial DMF molecules.

    Fig.3 Thermogravimetric(TG)curve(a)andArrhenius plot of the conductivity of 1(b)

    As an organic alkali,adenine plays an important role in the reaction of 1.Without adenine,1 had never been obtained in same synthetic conditions.If instead of adenine by other N-containing moieties(such as 4,4-bipyridyl),it is found that the resultant white product was not pure by the identification of PXRD.Herein,it must be mentioned that the topology of 1 is similar with Cd(II)-based MOFs reported by Kitagawa et al.16.However,the larger difference between them is that in this Cd(II)-based counterpart, H3BTB ligand only lost two protons and thereby led to the absence of H2NMe2+cation.

    Fig.4 (a)Fluorescence spectra of 1 and H3BTB ligand; (b)band structure and partial and total DOS of 1

    In order to study the electrical property of 1,alternating current impedance measurements with the frequency from 20 Hz to 10 MHz were performed by use of the powder tablet of single crystals.Fig.2 displays Nyquist plots of 1 at different temperatures.At low frequency,Nyquist plots feature semicircle shape.It is interestingly found that the radius firstly becomes smaller until 160°C and then rapidly reduces.Further,it can be simply fitted by the equation of RC equivalent circuit,as shown in Fig.2(a-c). The obtained conductance at 20°C is 0.36×10-6S·cm-1.With an increase of the temperature,the conductance value increases and reaches the maximum of 2.24×10-5S·cm-1at 160°C.Subsequently,the conductance value sharply reduces until the value of 1.14×10-5S·cm-1at 200°C,as displayed in Fig.2(d).

    What is charge carrier in 1?In the channel,there are two different species,DMF molecule and H2NMe2+cation.Thermogravimetric analysis result shows that the guest DMF molecules are completely removed at about 160°C with weight loss of 9.5%(theoretically calcd 10.5%),and the coordinated DMF molecules fully lose at 400°C(see Fig.3(a)).As shown in Figs.S2-S3 (Supporting Information),a powder X-ray diffraction at different temperature indicates that the while structure may partially decompose at 160°C.It is mentioned that the difference of peak intensity at different temperature may be resulted from the thermal swell of sample under the test.However,the main framework is still stable,being confirmed by the result of MD simulation,as shown in Fig.S5(a)(Supporting Information).Normally,neutral DMF molecules have no capacity of acting as carrier of ionic current.It is therefore that the decrease of guest DMF molecules has never apparently affected the conducted property.Instead, H2NMe2+cations play an important role.As the increase of temperature,the crystal-boundary resistance of powder sample improves,while the mobility of H2NMe2+cations is also enhanced and thereby reduces the inner resistance of polycrystals.Obviously,the latter effects can effectively counteract the crystal-boundary effects.After 160°C,the decrease of conductance value can be attributed to the fact that structural collapsing of 1 leads to the deficiency of ionic channel.Moreover,Fig.3(b)shows the curve of conductivities,σ(log scale),as functions of 1000/T.Arrhenius plots[lnσ vs 1000/T]exhibited a linear relationship with an activation energy(Ea)of 0.20 eV over the temperature range 20-160°C.This value of Eais in good agreement with those of the reported proton conductive system13.Thus,it is observed that the confinement of H2NMe2+in the pores of MOFs may be one promising synthetic method of electrical material.

    Furthermore,dielectric properties under different temperatures were conducted,as shown in Fig.S5(b)(Supporting Information). As the temperature increase,dielectric constant firstly rises before 80°C,suggesting that some DMF molecules may be polarized so as to improve the amount of carrier.Subsequently,it fell into decline until about 140°C,which may be attributed to the removal of DMF molecule and an increase of disorder of H2NMe2+with the increase of temperature.Nonetheless,dielectric loss firstly decreases before 80°C and then increases until the maximum at 140°C.The critical temperature of 140°C may be less than that of conductivity,owing to synthetic effect of the removal of guest DMF molecules and the increase of disorder of H2NMe2+cations. With the frequency increasing,the dielectric constant decreases, while dielectric loss rises.It was observed that the magnitude of the dielectric constant at the temperatures higher than 80°C at f= 1 kHz was at least two times larger than that at 140°C,suggesting a slow ionic motion rather than fast electronic motion11.Therefore, the origin of electrical property in 1 is derived from transfer of H2NMe2+cation.

    Fig.5HOMO-2(a),HOMO-1(b),HOMO(c),LUMO(d),LUMO+1(e)and LUMO+2(f)of 1

    Fluorescent spectra of 1 and H3BTB ligand were measured in solid state at room temperature.As shown in Fig.4(a),two emission peaks of 361 nm for 1 and 396 nm for H3BTB ligand were found,respectively.Interestingly,the wavelength of emission peak in 1 is less than that of H3BTB.In order to explain the mechanism,DFT calculations were performed.Geometric optimization of 1 was divided into two steps:non-hydrogen atoms restricted optimization was firstly carried out,and subsequentlythe obtained structure was further fully relaxed.The final optimized geometry was in good agreement with that derived from single crystal diffraction.Band structure and local density of states were also examined,as shown in Fig.4(b).Band curves in the vicinity of Fermi level are not well dispersed across different region,hinting that the conjugated degree of H3BTB ligand is destroyed after the formation of MOFs.The band gap of 3.3 eV coincides well with the solid UV adsorption peak of 398 nm(see Fig.S6,Supporting Information).Inspecting the PDOS of 1,we can find that the contribution of conduction band are mainly attributed to 2p state of C atoms in the BTB3-ligand.And the tiny role is played by the 3d state of Zn(II)ions.The first empty bands at the position of 3.3 eV are completely resulted from the 2p state of C atoms in the BTB3-ligand.Thus,the observed emission peak can be essentially attributed to the mixed transition of LLCT and MLCT.For the case of H3BTB ligand,geometric optimization was performed,and the obtained configuration was further confirmed by frequency analysis.Scrutinizing the finial structure shows that four phenyl group lie on the same plane,leading to stronger rigidity.The 3.02 eV between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital (LUMO)of 3.02 eV(ca 409 nm)is in good agreement with the emission wavelength of 396 nm.

    Moreover,frontier orbitals of 1 at Gamma point and H3BTB ligand were identified,as shown in Fig.5 and Fig.6.HOMO and HOMO-1 are degenerative orbitals.LUMO and LUMO+1 are also degenerative orbitals.HOMO,HOMO-1 and HOMO-2 are contributed mainly by p-type dangling orbits of carboxylate oxygen atoms in BTB3-ligand and 3d orbits of Zn(II)ions,while LUMO,LUMO+1 and LUMO+2 mainly arise from p-type dangling orbits of carboxylate oxygen atoms in BTB3-ligand.For the case of H3BTB ligand,HOMO is delocalized π-type bonding orbital,while LUMO is localized π-type anti-bonding orbital.In comparison with frontier orbitals of H3BTB ligand,it is observed that the coordination of Zn(II)ion makes the delocalized π-type bonds of 1 destroyed so as to increase the band gap.That is the reason why the position of emission peak occurs to more blue shift than that of H3BTB ligand.

    4 Conclusions

    In summary,we have reported one new four interpenetrated MOFs with H3BTB ligand.Crystal structure studies reveal that neutral DMF molecules and cationic H2NMe2+are enveloped in the channel along b axis.Fluorescent measurement shows the position of emission peak at 361 nm in 1 occurs to more blue shift than that of H3BTB ligand(396 nm),due to destroyed delocalized π-type bonds of 1.Further,an interesting temperature-dependent conductive property was also identified.The obtained conductance at 20°C is 0.36×10-6S·cm-1at 20°C.As the temperature increases, the conductance value increases and reaches the maximum of 2.24×10-5S·cm-1at 160°C.However,after then,the conductance value sharply reduces until the value of 1.14×10-5S·cm-1at 200°C.That can be attributed to the transport of H2NMe2+ions in the channel of MOFs.

    Acknowledgment:We also very thank Prof.LONG La-Sheng and Dr.ZHAO Hai-Xia of Xiamen University for technological supports and kind discussion.

    Supporting Information:Crystal date,selective bond length and bond angle,PXRD and UV-Vis result have been included.This information is available free of charge via the internet at http:// www.whxb.pku.edu.cn.CCDC-1043835(for 1)contains the supplementary crystallographic data for this paper.These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

    (1)(a)Long,J.R.;Yaghi,O.M.Chem.Soc.Rev.2009,38(5), 1213.doi:10.1039/b903811f (b)Eddaoudi,M.;Kim,J.;Rosi,N.;Vodak,D.;Wachter,J.; O′Keeffe,M.;Yaghi,O.M.Science 2002,295(5554),469. doi:10.1126/science.1067208

    (2)(a)Li,J.R.;Sculley,J.;Zhou,H.C.Chem.Rev.2012,112(2), 869.doi:10.1021/cr200190s (b)Zlotea,C.;Phanon,D.;Mazaj,M.;Heurtaux,D.;Guillerm, V.;Serre,C.;Horcajada,P.;Devic,T.;Magnier,E.;Cuevas,F.; Ferey,G.;Llewellyn,P.L.;Latroche,M.Dalton Trans.2011, 40(18),4879.doi:10.1039/c1dt10115c (c)Haldoupis,E.;Nair,S.;Sholl,D.S.J.Am.Chem.Soc.2012, 134(9),4313.doi:10.1021/ja2108239 (d)Nijem,N.;Wu,H.H.;Canepa,P.;Marti,A.;Balkus,K.J.; Thonhauser,T.;Li,J.;Chabal,Y.J.J.Am.Chem.Soc.2012, 134(37),15201.doi:10.1021/ja305754f (e)Zeng,M.H.;Yin,Z.;Tan,Y.X.;Zhang,W.X.;He,Y.P.; Kurmoo,M.J.Am.Chem.Soc.2014,136(12),4680. doi:10.1021/ja500191r

    (3)(a)Hwang,Y.K.;Hong,D.Y.;Chang,J.S.;Jhung,S.H.;Seo, Y.K.;Kim,J.;Vimont,A.;Daturi,M.;Serre,C.;Ferey,G. Angew.Chem.Int.Ed.2008,47(22),4144.doi:10.1002/ anie.200705998 (b)Stock,N.;Biswas,S.Chem.Rev.2012,112(2),933. doi:10.1021/cr200304e (c)Basdogan,Y.;Keskin,S.CrystEngComm 2015,17(2),261. doi:10.1039/c4ce01711k

    (4)(a)Li,B.Y.;Zhang,Y.M.;Ma,D.X.;Li,L.;Li,G.H.;Li,G. D.;Shi,Z.;Feng,S.H.Chem.Commun.2012,48(49),6151. doi:10.1039/c2cc32384b (b)Lee,J.;Farha,O.K.;Roberts,J.;Scheidt,K.A.;Nguyen,S. T.;Hupp,J.T.Chem.Soc.Rev.2009,38(5),1450.doi:10.1039/ b807080f (c)Ou,S.;Wu,C.D.Inorganic Chemistry Frontiers 2014,1 (10),721.doi:10.1039/C4QI00111G (d)Xamena,F.;Abad,A.;Corma,A.;Garcia,H.J.Catal.2007, 250(2),294.doi:10.1016/j.jcat.2007.06.004

    (5)(a)Jia,L.N.;Hou,L.;Wei,L.;Jing,X.J.;Liu,B.;Wang,Y.Y.; Shi,Q.Z.Cryst.Growth Des.2013,13(4),1570.doi:10.1021/ cg3011310y (b)Burrows,A.D.CrystEngComm 2011,13(11),3623. doi:10.1039/c0ce00568a

    (6)(a)Zheng,Y.Z.;Tong,M.L.;Zhang,W.X.;Chen,X.M. Angew.Chem.Int.Ed.2006,45(38),6310.doi:10.1002/ anie.200601349 (b)Ruan,C.Z.;Wen,R.;Liang,M.X.;Kong,X.J.;Ren,Y.P.; Long,L.S.;Huang,R.B.;Zheng,L.S.Inorg.Chem.2012,51 (14),7587.doi:10.1021/ic3003299 (c)Zeng,M.H.;Wu,M.C.;Liang,H.;Zhou,Y.L.;Chen,X. M.;Ng,S.W.Inorg.Chem.2007,46(18),7241.doi:10.1021/ ic700832w (d)Pinkowicz,D.;Podgajny,R.;Nowicka,B.;Chorazy,S.; Reczynski,M.;Sieklucka,B.Inorg.Chem.Front.2015,2(1), 10.doi:10.1039/C4QI00189C (e)Peng,J.B.;Zhang,Q.C.;Kong,X.J.;Zheng,Y.Z.;Ren,Y. P.;Long,L.S.;Huang,R.B.;Zheng,L.S.;Zheng,Z.P.J.Am. Chem.Soc.2012,134(7),3314.doi:10.1021/ja209752z

    (7)(a)Rogez,G.;Viart,N.;Drillon,M.Angew.Chem.Int.Ed. 2010,49(11),1921.doi:10.1002/anie.200906660 (b)Batten,S.R.;Robson,R.Angew.Chem.Int.Ed.1998,37 (11),1460.doi:10.1002/(sici)1521(19980619)37:11<1460::aidanie1460>3.0.co;2-z (c)Chen,W.X.;Xu,H.R.;Zhuang,G.L.;Long,L.S.;Huang, R.B.;Zheng,L.S.Chem.Commun.2011,47(43),11933. doi:10.1039/c1cc14702a (d)Wu,B.;Lin,X.;Ge,L.;Wu,L.;Xu,T.Chem.Commun. 2013,49(2),143.doi:10.1039/C2CC37045J (e)Bonhote,P.;Dias,A.P.;Papageorgiou,N.; Kalyanasundaram,K.;Gr?tzel,M.Inorg.Chem.1996,35(5), 1168.doi:10.1021/ic951325x (f)Sadakiyo,M.;Oˉkawa,H.;Shigematsu,A.;Ohba,M.; Yamada,T.;Kitagawa,H.J.Am.Chem.Soc.2012,134(12), 5472.doi:10.1021/ja300122r (g)Zeng,M.H.;Wang,Q.X.;Tan,Y.X.;Hu,S.;Zhao,H.X.; Long,L.S.;Kurmoo,M.J.Am.Chem.Soc.2010,132(8), 2561.doi:10.1021/ja908293n (h)Chae,H.K.;Siberio-Perez,D.Y.;Kim,J.;Go,Y.; Eddaoudi,M.;Matzger,A.J.;O'Keeffe,M.;Yaghi,O.M. Nature 2004,427(6974),523.doi:10.1038/nature02311 (i)Akutagawa,T.;Koshinaka,H.;Sato,D.;Takeda,S.;Noro,S. I.;Takahashi,H.;Kumai,R.;Tokura,Y.;Nakamura,T.Nat. Mater.2009,8(4),342.doi:10.1038/nmat2377 (j)Armand,M.;Endres,F.;MacFarlane,D.R.;Ohno,H.; Scrosati,B.Nat.Mater.2009,8(8),621.doi:10.1038/nmat2448 (k)Bureekaew,S.;Horike,S.;Higuchi,M.;Mizuno,M.; Kawamura,T.;Tanaka,D.;Yanai,N.;Kitagawa,S.Nat.Mater. 2009,8(10),831.doi:10.1038/nmat2526

    (8)(a)Liu,Y.;Xuan,W.M.;Cui,Y.Adv.Mater.2010,22(37), 4112.doi:10.1002/adma.201000197 (b)Yang,H.;Sang,R.L.;Xu,X.;Xu,L.Chem.Commun.2013, 49(28),2909.doi:10.1039/c3cc40516h (c)Liu,G.X.;Xu,H.;Zhou,H.;Nishihara,S.;Ren,X.M. CrystEngComm 2012,14(5),1856.doi:10.1039/c1ce05369h

    (9)(a)Chen,B.;Wang,L.;Xiao,Y.;Fronczek,F.R.;Xue,M.;Cui, Y.;Qian,G.Angew.Chem.Int.Ed.2009,48(3),500. doi:10.1002/anie.200805101 (b)Kreno,L.E.;Leong,K.;Farha,O.K.;Allendorf,M.;Van Duyne,R.P.;Hupp,J.T.Chem.Rev.2012,112(2),1105. doi:10.1021/cr200324t (c)Rocha,J.;Carlos,L.D.;Paz,F.A.A.;Ananias,D.Chem. Soc.Rev.2011,40(2),92.doi:10.1039/C0CS00130A (d)Liu,Y.;Pan,M.;Yang,Q.Y.;Fu,L.;Li,K.;Wei,S.C.;Su, C.Y.Chem.Mater.2012,24(10),1954.doi:10.1021/ cm3008254 (e)Jiang,H.L.;Tatsu,Y.;Lu,Z.H.;Xu,Q.J.Am.Chem.Soc. 2010,132(16),5586.doi:10.1021/ja101541s (f)Lee,C.Y.;Farha,O.K.;Hong,B.J.;Sarjeant,A.A.; Nguyen,S.T.;Hupp,J.T.J.Am.Chem.Soc.2011,133(40), 15858.doi:10.1021/ja206029a (g)Wei,Z.W.;Gu,Z.Y.;Arvapally,R.K.;Chen,Y.P.; McDougald,R.N.;Ivy,J.F.;Yakovenko,A.A.;Feng,D.W.; Omary,M.A.;Zhou,H.C.J.Am.Chem.Soc.2014,136(23), 8269.doi:10.1021/ja5006866

    (10)(a)Delley,B.J.Chem.Phys.1990,92(1),508.doi:10.1063/ 1.458452 (b)Delley,B.J.Chem.Phys.1991,94(11),7245.doi:10.1063/ 1.460208 (c)Delley,B.J.Chem.Phys.2000,113(18),7756. doi:10.1063/1.1316015

    (11)Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13(12),5188.

    (12)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77 (18),3865.

    (13)Dolg,M.;Wedig,U.;Stoll,H.;Preuss,H.J.Chem.Phys.1987, 86(2),866.doi:10.1063/1.452288

    (14)Gale,J.D.;Rohl,A.L.Mol.Simul.2003,29(5),291. doi:10.1080/0892702031000104887

    (15)Addicoat,M.A.;Vankova,N.;Akter,I.F.;Heine,T.J.Chem. Theory Comput.2014,10(2),880.doi:10.1021/ct400952t

    (16)Rao,K.P.;Higuchi,M.;Duan,J.;Kitagawa,S.Cryst.Growth Des.2013,13(3),981.doi:10.1021/cg301476p

    Temperature-Dependent Conductivity,Luminescence and Theoretical Calculations of a Novel Zn(II)-Based Metal-Organic Framework

    GAO Yi-Fen ZHUANG Gui-Lin*BAI Jia-Qi ZHONG Xing WANG Jian-Guo*
    (College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310032,P.R.China)

    Anovel four-fold interpenetrating metal-organic framework(MOF)(1)was obtained following reaction between Zn2+and benzene-1,3,5-tribenzoate(H3BTB).Single crystal analysis demonstrated that the framework featured a three-dimensional(10,3)net anionic framework with dimethyl formamide(DMF)and H2NMe2+encapsulated in channels along the b axis.Alternating current impedance measurements revealed an unusual temperature-dependent conductance.As the temperature was increased from 20°C the conductance value increased from 0.36×10-6S·cm-1to a maximum value of 2.24×10-5S·cm-1at 160°C,and then began to decrease.A combination of molecular dynamics(MD)simulations and dielectric property measurements demonstrated that this conductance behavior could be attributed to the synergic effect of the enhanced mobility of thecation and removal of DMF as the temperature was increased.Furthermore,the transporting energy barrier was determined to be 0.20 eV,which confirmed that the conductance was caused by proton conductivity.This work indicated that the confinement ofwithin the pores of MOFs is a promising method to induce electrical conductivity.Interestingly,the emission peak of 1 was blue-shifted when compared with that of H3BTB.Density functional theory(DFT)calculations revealed that this phenomenon was caused by the disruption of delocalized π-bonds within the BTB3-ligand in 1.

    O641

    icle]

    10.3866/PKU.WHXB201610103www.whxb.pku.edu.cn

    Received:July 1,2016;Revised:October 10,2016;Published online:October 10,2016.

    *Corresponding authors.ZHUANG Gui-Lin,Email:glzhuang@zjut.edu.cn;Tel:+86-571-88871037.WANG Jian-Guo,Email:jgw@zjut.edu.cn; Tel:+86-571-88871037.

    The project was supported by the National Key Basic Research Program of China(973)(2013CB733501)and National Natural Science Foundation of China(21176221,21136001,21671172,21306169,91334013).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2013CB733501)和國(guó)家自然科學(xué)基金(21176221,21136001,21671172,21306169,91334013)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    浙江工業(yè)大學(xué)王建國(guó)導(dǎo)電性
    浙江工業(yè)大學(xué)
    例談初中數(shù)學(xué)幾何圖形求證中輔助線的添加與使用
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    浙江工業(yè)大學(xué)
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    城里·城外——王建國(guó)油畫作品展
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    久久久久视频综合| 蜜桃国产av成人99| 欧美黑人精品巨大| 大陆偷拍与自拍| 国产精品 国内视频| 操美女的视频在线观看| 美国免费a级毛片| 亚洲专区中文字幕在线| 90打野战视频偷拍视频| 亚洲人成伊人成综合网2020| 精品高清国产在线一区| 999精品在线视频| 亚洲视频免费观看视频| 麻豆av在线久日| 国产成人欧美在线观看 | 国产成人av激情在线播放| 国产精品99久久99久久久不卡| 亚洲美女黄片视频| 男女之事视频高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 在线观看66精品国产| 99re在线观看精品视频| 国产精品久久久久久人妻精品电影 | 午夜91福利影院| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 狠狠狠狠99中文字幕| 首页视频小说图片口味搜索| 欧美人与性动交α欧美软件| 巨乳人妻的诱惑在线观看| 日韩欧美免费精品| 亚洲第一欧美日韩一区二区三区 | 国产午夜精品久久久久久| 青草久久国产| 国精品久久久久久国模美| 亚洲精品在线美女| 日本黄色日本黄色录像| 国产麻豆69| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| 免费在线观看完整版高清| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 日韩一区二区三区影片| 欧美变态另类bdsm刘玥| 国产av又大| 大片电影免费在线观看免费| 亚洲综合色网址| 中文字幕人妻丝袜一区二区| 精品乱码久久久久久99久播| 亚洲成av片中文字幕在线观看| 成人亚洲精品一区在线观看| 男女免费视频国产| 51午夜福利影视在线观看| 国内毛片毛片毛片毛片毛片| 日韩中文字幕视频在线看片| 欧美日韩精品网址| 久久久欧美国产精品| 久久精品成人免费网站| 国产人伦9x9x在线观看| 搡老熟女国产l中国老女人| 成人国产av品久久久| 18禁美女被吸乳视频| 亚洲精品中文字幕一二三四区 | 亚洲专区中文字幕在线| 亚洲成av片中文字幕在线观看| 十八禁网站免费在线| 国产福利在线免费观看视频| 亚洲视频免费观看视频| a级片在线免费高清观看视频| 国产精品九九99| 一夜夜www| 日本av免费视频播放| 91麻豆av在线| 少妇猛男粗大的猛烈进出视频| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 国产成+人综合+亚洲专区| videos熟女内射| 91av网站免费观看| 国产男女内射视频| 亚洲五月色婷婷综合| 国产91精品成人一区二区三区 | www.自偷自拍.com| 亚洲国产精品一区二区三区在线| 久久影院123| 久久久精品区二区三区| 日韩视频一区二区在线观看| 免费久久久久久久精品成人欧美视频| 午夜两性在线视频| 人人妻人人澡人人爽人人夜夜| 午夜老司机福利片| 老司机深夜福利视频在线观看| 伊人久久大香线蕉亚洲五| 中文字幕人妻丝袜一区二区| 午夜精品久久久久久毛片777| 啦啦啦视频在线资源免费观看| 国产深夜福利视频在线观看| 高清黄色对白视频在线免费看| 免费久久久久久久精品成人欧美视频| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 如日韩欧美国产精品一区二区三区| 黄片播放在线免费| 日本五十路高清| 久久人妻福利社区极品人妻图片| 一级毛片电影观看| 老司机靠b影院| 五月开心婷婷网| 免费不卡黄色视频| 国产精品免费视频内射| 国产在线免费精品| 夜夜夜夜夜久久久久| 老司机深夜福利视频在线观看| avwww免费| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三区在线| 亚洲一码二码三码区别大吗| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人的私密视频| 精品福利永久在线观看| 精品少妇久久久久久888优播| 日韩制服丝袜自拍偷拍| 精品福利永久在线观看| 亚洲欧美日韩高清在线视频 | 大码成人一级视频| 久久久久久免费高清国产稀缺| 五月开心婷婷网| 一本色道久久久久久精品综合| 国产精品久久久久久精品电影小说| 国产91精品成人一区二区三区 | 国产精品久久久av美女十八| 久久久久国内视频| 热re99久久国产66热| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 人人妻人人添人人爽欧美一区卜| 搡老岳熟女国产| av超薄肉色丝袜交足视频| 久久人人爽av亚洲精品天堂| 午夜福利视频在线观看免费| 91国产中文字幕| 真人做人爱边吃奶动态| 久久精品国产亚洲av香蕉五月 | 少妇的丰满在线观看| av片东京热男人的天堂| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲综合一区二区三区_| 90打野战视频偷拍视频| 免费观看a级毛片全部| 别揉我奶头~嗯~啊~动态视频| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 在线亚洲精品国产二区图片欧美| 日韩欧美三级三区| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区 | 久久香蕉激情| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 久久国产精品男人的天堂亚洲| 黑丝袜美女国产一区| 国产成人一区二区三区免费视频网站| 成年版毛片免费区| 99re6热这里在线精品视频| 极品人妻少妇av视频| 岛国在线观看网站| 国产三级黄色录像| √禁漫天堂资源中文www| 妹子高潮喷水视频| 男女免费视频国产| 一区二区三区国产精品乱码| 国产免费av片在线观看野外av| 香蕉国产在线看| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 国产福利在线免费观看视频| 国产高清国产精品国产三级| 成人国产一区最新在线观看| 国产免费现黄频在线看| 精品久久蜜臀av无| 少妇粗大呻吟视频| 最近最新免费中文字幕在线| 国产一区二区 视频在线| 麻豆成人av在线观看| 国产欧美日韩一区二区三区在线| 国产亚洲欧美精品永久| 黑人欧美特级aaaaaa片| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 国产一区二区三区在线臀色熟女 | 777久久人妻少妇嫩草av网站| 国产真人三级小视频在线观看| 久久ye,这里只有精品| 欧美人与性动交α欧美软件| 热re99久久国产66热| 国产精品一区二区在线不卡| 热re99久久国产66热| 免费在线观看影片大全网站| 亚洲久久久国产精品| 国产亚洲精品久久久久5区| 精品福利永久在线观看| 一本色道久久久久久精品综合| 9191精品国产免费久久| 免费在线观看视频国产中文字幕亚洲| 午夜免费成人在线视频| 久久久久精品人妻al黑| 电影成人av| 国产亚洲午夜精品一区二区久久| 曰老女人黄片| 国产欧美日韩一区二区三| 波多野结衣一区麻豆| 大片免费播放器 马上看| 午夜免费成人在线视频| 欧美激情高清一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲色图综合在线观看| 免费在线观看视频国产中文字幕亚洲| 日韩视频在线欧美| 1024视频免费在线观看| 亚洲国产av影院在线观看| 亚洲国产欧美网| 日韩视频在线欧美| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 国产精品一区二区精品视频观看| 亚洲第一青青草原| 青草久久国产| 久久人妻av系列| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| 免费在线观看黄色视频的| 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 纵有疾风起免费观看全集完整版| 久久久精品94久久精品| 亚洲精品国产区一区二| 19禁男女啪啪无遮挡网站| 麻豆av在线久日| 久久精品国产a三级三级三级| 99国产综合亚洲精品| √禁漫天堂资源中文www| 色播在线永久视频| 乱人伦中国视频| 亚洲视频免费观看视频| av超薄肉色丝袜交足视频| 日日夜夜操网爽| 日本五十路高清| 久久人妻福利社区极品人妻图片| 99热网站在线观看| 91九色精品人成在线观看| 女人被躁到高潮嗷嗷叫费观| 国产在线免费精品| 亚洲人成伊人成综合网2020| 欧美成人午夜精品| 国产精品自产拍在线观看55亚洲 | 国产精品秋霞免费鲁丝片| netflix在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 91成年电影在线观看| 欧美日韩一级在线毛片| 久久ye,这里只有精品| 侵犯人妻中文字幕一二三四区| 亚洲精品国产区一区二| 久久精品人人爽人人爽视色| 国产国语露脸激情在线看| 国产精品电影一区二区三区 | 亚洲 国产 在线| 日韩视频一区二区在线观看| 精品午夜福利视频在线观看一区 | 十八禁网站免费在线| 欧美另类亚洲清纯唯美| 亚洲第一av免费看| 亚洲免费av在线视频| 中文字幕制服av| 最新的欧美精品一区二区| 免费日韩欧美在线观看| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 国产伦理片在线播放av一区| 国产片内射在线| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 99香蕉大伊视频| 国产亚洲av高清不卡| 高清黄色对白视频在线免费看| 在线观看舔阴道视频| 一二三四社区在线视频社区8| 丰满人妻熟妇乱又伦精品不卡| 欧美精品高潮呻吟av久久| 午夜老司机福利片| 国产一区二区三区视频了| 久久免费观看电影| 国产精品98久久久久久宅男小说| 黄频高清免费视频| 午夜福利影视在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 成年版毛片免费区| 精品国产乱码久久久久久男人| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 天天影视国产精品| 日韩大片免费观看网站| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 国产成人精品在线电影| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 精品国产一区二区久久| av线在线观看网站| 亚洲伊人久久精品综合| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 久久久久久久国产电影| 99精品久久久久人妻精品| 亚洲精品在线美女| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产福利在线免费观看视频| a级毛片黄视频| 51午夜福利影视在线观看| 丰满少妇做爰视频| 欧美激情高清一区二区三区| 高清欧美精品videossex| 老司机影院毛片| 久久 成人 亚洲| 老汉色av国产亚洲站长工具| 亚洲 欧美一区二区三区| 久久av网站| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 多毛熟女@视频| 麻豆乱淫一区二区| 在线看a的网站| 中文字幕精品免费在线观看视频| 一夜夜www| 我要看黄色一级片免费的| 俄罗斯特黄特色一大片| 夜夜骑夜夜射夜夜干| 99国产综合亚洲精品| 高潮久久久久久久久久久不卡| 99re在线观看精品视频| 一级黄色大片毛片| 国产日韩欧美在线精品| 亚洲国产精品一区二区三区在线| 成人18禁在线播放| 激情视频va一区二区三区| 国产有黄有色有爽视频| 9色porny在线观看| 在线亚洲精品国产二区图片欧美| 国产精品九九99| 在线观看免费午夜福利视频| 在线观看免费高清a一片| 国产在线一区二区三区精| 在线看a的网站| 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰成人久久| 日韩三级视频一区二区三区| 国产99久久九九免费精品| 精品少妇黑人巨大在线播放| 精品国内亚洲2022精品成人 | a级片在线免费高清观看视频| 国产高清videossex| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全电影3 | 久久中文字幕人妻熟女| 欧美性长视频在线观看| 精品福利永久在线观看| 黑人巨大精品欧美一区二区mp4| 国产黄色免费在线视频| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 乱人伦中国视频| 操美女的视频在线观看| 啦啦啦免费观看视频1| 老司机福利观看| 欧美在线黄色| 免费久久久久久久精品成人欧美视频| 热99久久久久精品小说推荐| 久久久久久久久免费视频了| 国产精品九九99| 美女福利国产在线| 香蕉丝袜av| 我要看黄色一级片免费的| 18禁美女被吸乳视频| 色老头精品视频在线观看| 久久99一区二区三区| 一边摸一边抽搐一进一出视频| 国产成人精品无人区| 下体分泌物呈黄色| 国产黄色免费在线视频| 黄色 视频免费看| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 成人特级黄色片久久久久久久 | 午夜老司机福利片| 飞空精品影院首页| 18在线观看网站| 757午夜福利合集在线观看| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| tube8黄色片| 日本wwww免费看| 悠悠久久av| 国产精品 国内视频| 又黄又粗又硬又大视频| 天堂动漫精品| 制服人妻中文乱码| 在线观看免费视频网站a站| 久久香蕉激情| 高清欧美精品videossex| 十八禁网站免费在线| 中文字幕最新亚洲高清| 一区福利在线观看| 国产区一区二久久| 久久久久久久国产电影| 国产色视频综合| 水蜜桃什么品种好| 极品教师在线免费播放| 亚洲专区字幕在线| 亚洲精华国产精华精| 一区二区三区激情视频| 操出白浆在线播放| 丁香欧美五月| 国产精品一区二区在线不卡| 在线观看www视频免费| 成人手机av| 好男人电影高清在线观看| 亚洲免费av在线视频| av在线播放免费不卡| 国产aⅴ精品一区二区三区波| 国产一区二区三区综合在线观看| 天天躁日日躁夜夜躁夜夜| 99国产精品一区二区蜜桃av | 欧美激情 高清一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成77777在线视频| 欧美国产精品va在线观看不卡| 久久亚洲真实| 12—13女人毛片做爰片一| 性少妇av在线| av在线播放免费不卡| 两个人看的免费小视频| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 老鸭窝网址在线观看| 国产亚洲一区二区精品| 日韩一卡2卡3卡4卡2021年| 天天影视国产精品| 久久国产精品人妻蜜桃| 90打野战视频偷拍视频| 激情在线观看视频在线高清 | 日本av手机在线免费观看| 老司机影院毛片| 美女国产高潮福利片在线看| 久久午夜亚洲精品久久| 国产野战对白在线观看| 一级毛片电影观看| 五月开心婷婷网| 在线十欧美十亚洲十日本专区| 午夜福利在线观看吧| 国产高清视频在线播放一区| 日韩大片免费观看网站| 91麻豆精品激情在线观看国产 | 天堂8中文在线网| 人人妻人人澡人人爽人人夜夜| 欧美精品啪啪一区二区三区| 超色免费av| 999久久久国产精品视频| 首页视频小说图片口味搜索| 宅男免费午夜| 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 动漫黄色视频在线观看| 国产97色在线日韩免费| 久久天堂一区二区三区四区| 亚洲成人手机| 啪啪无遮挡十八禁网站| 三上悠亚av全集在线观看| 十分钟在线观看高清视频www| 两个人免费观看高清视频| 黄色怎么调成土黄色| 国内毛片毛片毛片毛片毛片| 麻豆乱淫一区二区| 日本撒尿小便嘘嘘汇集6| h视频一区二区三区| 精品少妇久久久久久888优播| 久久人妻福利社区极品人妻图片| 亚洲欧美激情在线| 99热网站在线观看| 1024香蕉在线观看| 午夜91福利影院| 亚洲精品自拍成人| 乱人伦中国视频| 免费av中文字幕在线| 国产一区二区激情短视频| 在线十欧美十亚洲十日本专区| 国产色视频综合| 精品亚洲成国产av| 国产一区二区 视频在线| 成在线人永久免费视频| 精品少妇一区二区三区视频日本电影| 久久这里只有精品19| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | 欧美中文综合在线视频| 久久久久精品人妻al黑| 岛国在线观看网站| 午夜精品久久久久久毛片777| 巨乳人妻的诱惑在线观看| 午夜免费鲁丝| 最近最新中文字幕大全免费视频| 免费在线观看影片大全网站| 老司机福利观看| 亚洲精品美女久久av网站| 欧美精品啪啪一区二区三区| 中文字幕人妻熟女乱码| 国产xxxxx性猛交| 欧美精品av麻豆av| 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 99国产精品一区二区三区| 久久av网站| 日本av手机在线免费观看| 欧美日本中文国产一区发布| 国产av国产精品国产| 亚洲人成77777在线视频| 色综合婷婷激情| 五月开心婷婷网| 国产精品久久久久成人av| 国产精品久久久久久人妻精品电影 | 一二三四在线观看免费中文在| 这个男人来自地球电影免费观看| 国产无遮挡羞羞视频在线观看| av福利片在线| 久久精品国产a三级三级三级| 亚洲伊人久久精品综合| 波多野结衣av一区二区av| 国产男女内射视频| 1024香蕉在线观看| 国产99久久九九免费精品| 大陆偷拍与自拍| www日本在线高清视频| 精品福利永久在线观看| 黄色成人免费大全| 免费人妻精品一区二区三区视频| 成人特级黄色片久久久久久久 | 亚洲成人手机| 久久中文字幕一级| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 飞空精品影院首页| 十分钟在线观看高清视频www| 午夜福利乱码中文字幕| svipshipincom国产片| 国产精品免费一区二区三区在线 | 国产色视频综合| 天天躁夜夜躁狠狠躁躁| 欧美黄色淫秽网站| 久久国产精品男人的天堂亚洲| 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| 午夜福利影视在线免费观看| 丝袜人妻中文字幕| 韩国精品一区二区三区| 久久久国产一区二区| www.999成人在线观看| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 好男人电影高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| kizo精华| 欧美精品av麻豆av| 露出奶头的视频| 美女国产高潮福利片在线看| 成人手机av| 亚洲精品在线观看二区| 人妻久久中文字幕网| 午夜福利视频在线观看免费| 多毛熟女@视频| 一二三四社区在线视频社区8| netflix在线观看网站| 亚洲精品中文字幕一二三四区 | 国产福利在线免费观看视频| 国产精品98久久久久久宅男小说| 国产黄频视频在线观看| 亚洲精品在线观看二区| 国产精品欧美亚洲77777| 国产在线免费精品| 一边摸一边抽搐一进一出视频| 欧美乱妇无乱码| 亚洲少妇的诱惑av| 夫妻午夜视频| 黄色视频不卡| 亚洲专区字幕在线| 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 亚洲国产av新网站| 80岁老熟妇乱子伦牲交| 国产99久久九九免费精品| 狠狠婷婷综合久久久久久88av| 一区二区三区激情视频|