• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Padéapproximant approach to singular properties of quantum gases:the ideal cases

    2021-07-06 05:04:12YuanHongTian田遠(yuǎn)鴻WenDuLi李文都YaoShen沈堯andWuShengDai戴伍圣
    Communications in Theoretical Physics 2021年6期
    關(guān)鍵詞:李文

    Yuan-Hong Tian(田遠(yuǎn)鴻),Wen-Du Li(李文都),Yao Shen(沈堯) and Wu-Sheng Dai(戴伍圣),*

    1 Department of Physics,Tianjin University,Tianjin 300350,China

    2 College of Physics and Materials Science,Tianjin Normal University,Tianjin 300387,China

    3 School of Criminal Investigation and Forensic Science,People’s Public Security University of China,Beijing 100038,China

    Abstract In this paper,we show how to recover the low-temperature and high-density information of ideal quantum gases from the high-temperature and low-density approximation by the Padé approximant.The virial expansion is a high-temperature and low-density expansion and in practice,often,only the first several virial coefficients can be obtained.For Bose gases,we determine the BEC phase transition from a truncated virial expansion.For Fermi gases,we recover the low-temperature and high-density result from the virial expansion.

    Keywords:approximate analytic continuation,virial expansion,Padéapproximant,quantum gas

    1.Introduction

    Singularity reflects the global behavior of a function.In perturbation theory,we usually use a truncated power series to approximate a function,i.e.use a polynomial to approximate a function.However,polynomials are entire functions and have no singularities.This means that if we use perturbation theory to approximate a physical quantity,the information of singularity will be lost;that is,even in the perturbation theory the approximation can be made accurate enough by calculating more highorder terms,but the information of singularity,i.e.the information of the global behavior of the physical quantity will be lost.

    In statistical mechanics,if the thermodynamic quantity of a system contains singularities,the system may have a phase transition.However,the method based on series approximations,such as the cluster expansion method,provides truncated power series approximation,i.e.approximating a thermodynamic quantity with a polynomial.The truncated series approximation,which is indeed a polynomial,cannot judge whether the thermodynamic quantity has a singularity,so it is difficult to study the phase transition by the series approximation.

    In ideal quantum gases there are two characteristic lengths.One characteristic length is the thermal wavelength,which is the average de Broglie wavelength of the gas particle.The other characteristic length is the average distance between particles.When the thermal wavelength is less than the particle distance,the overlap of the wave packets of the particles is small;in this case the quantum exchange effect can be ignored and the gas is close to the classical gas.When the thermal wavelength is greater than the average distance between particles,the wave packets of the particles overlap greatly;in this case,the quantum exchange effect of identical particles is obvious,and the gas should be treated as a quantum gas.

    In low temperatures and high densities,the thermal wavelength is long and the average particle distance is small,so the wave packets of particles overlaps and the quantum effect is obvious.On the contrary,in high temperatures and low densities,the wavelength is short and the average particle distance is large,so the wave packet overlap is small and the quantum effect is not obvious.In practical,it is relatively easy to obtain the high-temperature and low-density series approximation,but the high-temperature and low-density approximation is usually far away from phase transition region and one cannot directly judge whether there is a phase transition based on this.It is difficult to obtain the low-temperature and high-density property from the high-temperature and low-density approximation.In this paper,using the Padéapproximant,taking ideal Bose gases and ideal Fermi gases as examples,we consider the BEC phase transition and the low-temperature property of the Fermi system from the virial expansion which is a polynomial approximation in high temperatures and low densities.

    In order to recover the information of singularity from the polynomial approximation obtained by truncating the power series,we use a rational function instead of the polynomial to approximate a function.The rational function has singularities which are the poles of the rational function.Therefore,when approximating a function by a rational function,the information of the singularity may remain.To approximate a function by a power series,we have mathematical theories like Taylor’s theorem to ensure the validity and operability of the method.For rational function approximation,however,we have no such systematic method.The idea of approximating a function by a rational function already exists in Euler’s‘Introduction to analysis of the infinite’[1].In order to approximate a function by a rational function,we still start from the power series approximation:first approximate the function by a truncated series,i.e.a polynomial,and then use a rational function to approximate the polynomial.This is the idea of the Padéapproximant.

    The limitation of the truncated series approximation is that it is valid only for small perturbation parameters,for it is always a perturbation theory.Another aim of this paper is to improve a perturbation series so that the perturbation result applies also to nonperturbative regions based on the Padé approximant.

    The idea to extend the range of application of a truncated series comes from the concept of analytic continuation.The domain of definition of a function f(z)may be of any shape,but the convergence region of a power-series expansion of f(z)around a point is only the largest open disc centered at the point in the domain.The convergence region of a powerseries expansion is often smaller than the definition domain of f(z)and the function f(z)is an analytic continuation of its power-series expansion.That is,the range of application of a series is extended by its sum function.Nevertheless,in practice we often only have an approximate truncated series rather than a complete series,let alone the difficulty of performing the sum of the series.Extending the range of application of a truncated series needs an approximate analytic continuation.

    In order to approximately analytically continuing a truncated series,we use the Padéapproximant.The Padé approximant approximates a function by a rational function[2–4].Concretely,for an n-term truncated series,there are n expansion coefficients.We choose a rational function with n coefficients to construct a Padéapproximant.The coefficient of the Padéapproximant can be solved by equating the rational function and the truncated power series.It can be shown that the range of application of the Padéapproximant is larger than the convergence region of the corresponding power series.That is,by constructing a Padéapproximant from a truncated series,we approximately extend the range of application of the series.

    The equation of state of Bose gases and Fermi gases is described by the Bose–Einstein integral and the Fermi–Dirac integral.In high temperatures and low densities,the Bose–Einstein integral and the Fermi–Dirac integral have the virial expansions which are power expansions.The Bose–Einstein integral and the Fermi–Dirac integral themselves are indeed analytic continuations of their virial expansions.However,if we only have a truncated virial expansion,i.e.we only know the first several virial coefficients,we cannot analytically continue the virial expansion by summing up the series.In the following,we show that by the Padéapproximant,we can approximately analytically continue the truncated virial expansion.

    The Padéapproximant is used to cosmology[5]and the equation of state of the dark energy[6].In[7],the extended Padéapproximant is applied to nonlinear problems.The Padé approximant can be used to QCD[8,9],hadron physics[10],and nuclear physics[11].The Padéapproximant applies also to many-body systems,such as the renormalization group technique[12],the Green function of the Hubbard model,and the Haldane model[13].In[14,15],the author extracts resonance pole parameters from the phase-shift scattering data by the Padéapproximant.

    In section 2,we give a brief review on how to construct a Padéapproximant from a power series.By using the Padé approximant,in section 3,we determine the BEC phase transition from the high-temperature and low-density expansion,and in section 4,we approximately analytically continue the virial expansion of the Fermi–Dirac integral.Conclusions and outlooks are given in section 5.

    2.Constructing the Padéapproximant from a series:a brief review

    The perturbation theory approximates an exact solution by a truncated series.The range of application of a perturbation theory is limited to a neighborhood of a certain value of a parameter.The aim of the paper is to extend the range of application of a truncated perturbation series by the Padé approximant.The treatment is indeed an approximate analytic continuation.

    In perturbation theories,the approximate result is a truncated power series.The convergence region of a power series

    is the largest open disc centered at zero in the domain of definition of f(z).

    The Padéapproximant approximates the function f(z)by a rational function[2–4]

    with the numerator an Lth order polynomial and the denominator an Mth order polynomial.The rational function(2)has L+M+1 coefficients to be determined,where b0can be taken to be 1.The parameters aiand biare determined by equating the rational function(2)to the power series(1):

    The coefficients then is given by the equation

    The solution reads[2–4,16]

    and

    Though the coefficient in the Padéapproximant is obtained from a power series,the domain of definition of the Padéapproximant(2)is different from the convergence region of the power series(1).This allows the Padéapproximant to serve as an approximate analytic continuation of the power series.

    It is worthy to note that the accuracy of a Padéapproximant(2)is often higher than that of the truncated power series from whom we construct the Padéapproximant.

    3.Determining BEC phase transition from hightemperature and low-density expansion

    The equation of state of ideal quantum gases is[17]

    with

    In this section,we use a truncated virial expansion which is a high-temperature and low-density expansion to determine whether there is a BEC phase transition.At first sight,it is difficult to determine the BEC phase transition from a hightemperature and low-density approximation,because BEC is a phase transition occurs only at low temperatures and high densities.In a phase transition there should exist a singularity,but the truncated virial expansion is a polynomial which has no singularity.The equation of state and the thermodynamic quantity of a three-dimensional ideal Bose gas are described by the Bose–Einstein integral.The Bose–Einstein integral

    has singularities on the positive real axis of the complex fugacity plane,continuously distributing in the interval from z=1 to z→∞(see figure 1)[18,19].The high-temperature and low-density expansion of the Bose–Einstein integral,i.e.the virial expansion,is a power series.The convergence radius of the virial series is∣z∣=1.In principle,the phase transition can be determined by the convergence radius of the virial expansion,for there must be singularities on the circle of convergence.However,in practice we often only know the first few virial coefficients,i.e.only a truncated virial expansion,a polynomial,can be known.When approximating a power series by a polynomial,we lose the information of singularity.That is,if we only have a truncated virial expansion,we cannot determine whether there is a phase transition.

    In order to analyze the phase transition by a truncated virial expansion,we recover the information of singularity from a truncated power series with the help of the Padé approximant.

    Suppose we only know the first N terms of the virial expansion of the Bose–Einstein integral:

    This approximation is valid for z?1.To recover the information of singularity,we approximate the polynomial(11)by a rational function,i.e.the Padéapproximant:

    The left-hand side of equation(12)is a polynomial and has no singularity,but the right-hand side of equation(12)is a rational function with the zeroes of the denominator as its singularity.The rational function in equation(12)has two poles:

    For three-dimensional Bose gases,we have

    The two poles are z01=1.447 46 and z02=6.510 84.In the exact result,the singularities of the Bose–Einstein integral continuously distribute in the interval[1,∞).The existence of singularities implies that there exists a phase transition which is just the BEC phase transition.

    The exact minimum value of the fugacity is z=1;the approximate minimum value given by the Padéapproximant,however,is z?1.447 46.In order to improve the accuracy of the approximation,instead ofwe consider the Padéapproximant:

    The three poles are z01=1.209 56,z02=2.329 18,and z03=11.7915;the minimum value is z?1.209 56.

    Figure 2 shows the singularities ofg32(z)and its Padé approximants[2 2]32(z)and[3 3]32(z).It can be seen that as the accuracy increases,the minimum value of the fugacity is getting closer and closer to the accurate result 1.

    Figure 1.The convergence region of the virial expansion is the largest open disc centered at zero in the domain of definition of the Bose–Einstein integral gν(z).

    Figure 3.The convergence region of the virial expansion is the largest open disc centered at zero in the domain of definition of the Fermi–Dirac integral fν(z).

    In a word,with the help of the Padéapproximant,we can determine the BEC phase transition which occurs only at low temperatures and high densities from the first several terms of a high-temperature and low-density expansion.

    4.Approximately analytically continuing high temperatures and low densities to low temperatures and high densities:Fermi–Dirac gases

    4.1.The Fermi-Dirac integral and the virial expansion

    The Fermi–Dirac integral is

    The virial expansion,a high-temperature and low-density expansion,of the Fermi–Dirac integral is a power series around the fugacity z=0[22,23],

    The Fermi–Dirac integral in the complex z-plane has a singularity line from z=-1 to-∞.The Fermi–Dirac integralfν(z )is analytic in the complex z-plane with the exception of the interval(-∞,-1) on the negative real axis[18,19].The convergence region of the virial expansion(18),due to Abel’s theorem,is an open disc of radius∣z∣=1 centered at zero,since the point z=-1 is a singularity of the Fermi–Dirac integral in the complex z-plane,see figure 3.Therefore,the virial expansion is only valid for z<1,i.e.the high-temperature and low-density case.For low temperatures and high densities,in which the fugacity z>1,however,the virial expansion is invalid.

    Though the virial expansion(18)is valid only for z<1,the Fermi–Dirac integral is real analytic on the whole positive real axis,i.e.the range of the value of the fugacity is 0<z<∞.This allows us to seek a low-temperature and high-density approximation by analytically continuing the virial expansion.

    4.2.Approximate analytical continuation:the Padé approximant

    The virial expansion is a high-temperature and low-density expansion,which is valid only for z<1.We now extend the viral expansion to low temperatures and high densities,the case of z>1,by the Padéapproximant.

    First consider the case that the first 4 virial coefficients of the Fermi–Dirac integral are known,

    By Eqs.(5)and(6)we have

    with

    Next consider the case that the first 6 virial coefficients of the Fermi–Dirac integral are known,

    by Eqs.(5)and(6),gives

    where

    Though the coefficients of the Padéapproximant(25)are all calculated from the virial coefficient,the range of application of the Padéapproximant is larger than the region of convergence of the virial expansion.The virial expansion is a power-series expansion,whose region of convergence is a disc∣z∣<1,i.e.the virial expansion diverges for∣z∣≥1.Nevertheless,the Padéapproximant(25)is valid even if∣z∣≥1.To show this,we compare the exact Fermi–Dirac integral,the Padéapproximant,and the virial expansion in figure 4.We can see that even for z>1,the Padéapproximant is very close to the exact result,while the virial expansion is invalid when z>1.

    4.3.Various choices of the Padéapproximant

    The Padéapproximant is an approximation and the choice of constructing the Padéapproximant is not unique.In the above,we consider two constructions of the Padéapproximant,andHere we compare various constructions of the Padéapproximant.

    For z>1,the virial expansion fails no matter how many terms of the power series are taken into account,for the convergence region of the virial expansion is a disc of radius∣z∣=1.However,the Padéapproximant,though constructed from a truncated virial expansion,is valid for z>1.

    From the virial expansion of 4 virial coefficients,we can construct three Padéapproximants:andFrom the virial expansion of 6 virial coefficients,we can construct five Padéapproximants:andThe comparison of these Padéapproximants are shown in figure 5.It can be seen that the Padéapproximant of the formi.e.the orders of the polynomials in the numerator and in the denominator are the same,is the better one.

    5.Conclusions and outlooks

    In the present paper,we suggest a method that allows us to infer the low-temperature and high-density result which is obtained by calculation or observation from the high-temperature and low-density result of high temperature.

    The virial expansion for quantum gases is a high-temperature and low-density approximation.Starting from a a truncated virial series,we infer the BEC phase transition for a Bose gas and infer the low-temperature and high-density properties for a Fermi gas by the Padéapproximant.

    An exact series solution has a natural analytic continuation:the sum function which is obtained by summing up the series[24].Nevertheless in perturbation theory,we often only have an approximate truncated series.The truncated series is an approximation.To extend the range of application of a truncated series needs an approximate analytic continuation.In this paper,we use the Padéapproximant to implement the analytic continuation.Furthermore,we can also perform approximate calculations in a small parameter range first,and then use Padéapproximant to seek results in a larger parameter range.For example,there are some methods developed for few-body systems,but when the number of particles are large,the calculation amount will increase dramatically[25–27].The Padéapproximationant may help us deal with systems with fewer particles first,and then approximately analytically continue to systems with more particles.

    The method considered in the present paper in principle applies to any perturbation theory so long as the approximation is represented by a truncated series.Most results of perturbation theories in physics are given by a truncated series,such as the Feynman diagram in quantum field theory,the cluster expansion in statistical mechanics,the perturbation method in classical and quantum mechanics.In these problems,we can use the method discussed in the present paper to extend the perturbation result to nonperturbative region.

    Acknowledgments

    We are very indebted to Dr G Zeitrauman for his encouragement.This work is supported in part by The Fundamental Research Funds for the Central Universities under Grant No.2020JKF306,Special Funds for theoretical physics Research Program of the NSFC under Grant No.11 947 124,and NSFC under Grant Nos.11 575 125 and 11 675 119.

    猜你喜歡
    李文
    Clothing Parsing Based on Multi-Scale Fusion and Improved Self-Attention Mechanism
    Advances in thermoelectric(GeTe)x(AgSbTe2)100-x
    定制化光學(xué)遙感器精益質(zhì)量管理探索與實踐
    買狗糧
    心臟在哪兒
    上海故事(2017年8期)2017-08-23 10:11:25
    自 尊
    東方劍(2016年4期)2016-07-25 11:20:59
    Amplitude-Phase Modulation,Topological Horseshoe and Scaling Attractor of a Dynamical System?
    無比艱難的容易事
    夫妻那點事兒
    故事會(2012年20期)2012-10-11 04:47:18
    Monitoring Method for the Electrical Properties of Piezoelectric Transducer
    中文字幕熟女人妻在线| 午夜日韩欧美国产| 少妇的丰满在线观看| 国产亚洲精品久久久com| 亚洲国产精品成人综合色| 一个人免费在线观看的高清视频| 色噜噜av男人的天堂激情| 欧美一区二区精品小视频在线| 成人高潮视频无遮挡免费网站| 国产熟女xx| 真人做人爱边吃奶动态| 99热精品在线国产| 最近最新中文字幕大全电影3| 亚洲欧美精品综合久久99| x7x7x7水蜜桃| 国产成人影院久久av| 91在线精品国自产拍蜜月 | 日韩高清综合在线| 色播亚洲综合网| 免费看美女性在线毛片视频| 少妇的逼好多水| 欧美黄色片欧美黄色片| 亚洲国产欧洲综合997久久,| 国产高清视频在线观看网站| 久久精品国产清高在天天线| 男女做爰动态图高潮gif福利片| 欧美av亚洲av综合av国产av| 好男人电影高清在线观看| av在线蜜桃| 国产精品亚洲一级av第二区| 亚洲电影在线观看av| av天堂中文字幕网| 网址你懂的国产日韩在线| 99久久九九国产精品国产免费| 亚洲一区二区三区不卡视频| 韩国av一区二区三区四区| 中文字幕久久专区| 在线国产一区二区在线| 国产成+人综合+亚洲专区| 免费av观看视频| 波多野结衣巨乳人妻| 看片在线看免费视频| 国产伦一二天堂av在线观看| 亚洲欧美日韩东京热| 成人国产综合亚洲| 少妇熟女aⅴ在线视频| 国产亚洲精品一区二区www| 搞女人的毛片| 久久久久久久久中文| 国产探花在线观看一区二区| 午夜视频国产福利| 18+在线观看网站| 又黄又粗又硬又大视频| h日本视频在线播放| 全区人妻精品视频| 精品一区二区三区人妻视频| 亚洲 欧美 日韩 在线 免费| 成人国产一区最新在线观看| 亚洲 国产 在线| 美女免费视频网站| 丁香欧美五月| 91麻豆精品激情在线观看国产| 18禁国产床啪视频网站| 宅男免费午夜| 亚洲av成人av| 一个人免费在线观看的高清视频| 90打野战视频偷拍视频| 天美传媒精品一区二区| 两个人视频免费观看高清| 少妇裸体淫交视频免费看高清| 91在线精品国自产拍蜜月 | 午夜视频国产福利| 少妇熟女aⅴ在线视频| 99视频精品全部免费 在线| 日韩免费av在线播放| 国产三级中文精品| eeuss影院久久| 国产91精品成人一区二区三区| 国产欧美日韩一区二区三| 国产精品一区二区三区四区久久| 亚洲,欧美精品.| a级毛片a级免费在线| 制服丝袜大香蕉在线| 午夜福利在线观看吧| av在线天堂中文字幕| 国产欧美日韩一区二区精品| 91字幕亚洲| 波多野结衣巨乳人妻| 一进一出抽搐gif免费好疼| 91在线观看av| 网址你懂的国产日韩在线| 老汉色∧v一级毛片| av国产免费在线观看| 亚洲美女视频黄频| 国产精品免费一区二区三区在线| 国产精品一区二区三区四区久久| 国产精品爽爽va在线观看网站| 香蕉丝袜av| 精品久久久久久久末码| 精品一区二区三区视频在线 | 欧美三级亚洲精品| 午夜福利在线在线| 99久久精品热视频| 免费高清视频大片| 综合色av麻豆| 夜夜爽天天搞| 最近在线观看免费完整版| 欧美3d第一页| 欧美中文综合在线视频| 成人18禁在线播放| 国产又黄又爽又无遮挡在线| 成人精品一区二区免费| h日本视频在线播放| 久久精品91蜜桃| 亚洲美女黄片视频| 免费电影在线观看免费观看| 亚洲av电影在线进入| 欧美在线一区亚洲| 1024手机看黄色片| 久久久国产成人精品二区| 亚洲人成网站高清观看| 久久精品亚洲精品国产色婷小说| 中文亚洲av片在线观看爽| 神马国产精品三级电影在线观看| av国产免费在线观看| 天堂动漫精品| 最近最新中文字幕大全免费视频| 久久午夜亚洲精品久久| 欧美3d第一页| 亚洲在线自拍视频| 国内精品一区二区在线观看| 99久久久亚洲精品蜜臀av| 一a级毛片在线观看| 18禁国产床啪视频网站| 俄罗斯特黄特色一大片| 国产精华一区二区三区| 亚洲人成伊人成综合网2020| 亚洲人成网站高清观看| 日日夜夜操网爽| 免费无遮挡裸体视频| 国产三级在线视频| 美女黄网站色视频| 欧美日韩乱码在线| 日本一二三区视频观看| 欧美日韩一级在线毛片| 精品人妻一区二区三区麻豆 | 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区| 露出奶头的视频| 亚洲黑人精品在线| av片东京热男人的天堂| 人妻丰满熟妇av一区二区三区| 老司机在亚洲福利影院| 搡老岳熟女国产| 偷拍熟女少妇极品色| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 国产精品亚洲美女久久久| 一区二区三区激情视频| 亚洲精品成人久久久久久| 亚洲精品粉嫩美女一区| 嫁个100分男人电影在线观看| 久9热在线精品视频| 人妻丰满熟妇av一区二区三区| 亚洲专区国产一区二区| 欧美又色又爽又黄视频| 久久久久久久久久黄片| 欧美zozozo另类| 精品熟女少妇八av免费久了| 亚洲精品456在线播放app | 亚洲欧美日韩卡通动漫| 一进一出抽搐动态| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 在线观看一区二区三区| 在线观看美女被高潮喷水网站 | 久久性视频一级片| 成人18禁在线播放| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| 日本与韩国留学比较| 亚洲aⅴ乱码一区二区在线播放| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 亚洲欧美日韩东京热| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 最新美女视频免费是黄的| 欧美一区二区精品小视频在线| 亚洲欧美一区二区三区黑人| 天堂av国产一区二区熟女人妻| 亚洲欧美日韩无卡精品| 欧美日韩福利视频一区二区| 欧美不卡视频在线免费观看| 舔av片在线| 丰满人妻熟妇乱又伦精品不卡| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 亚洲精品色激情综合| 亚洲一区高清亚洲精品| 三级国产精品欧美在线观看| 日韩av在线大香蕉| 啦啦啦观看免费观看视频高清| 99久久久亚洲精品蜜臀av| 欧美性猛交╳xxx乱大交人| 色av中文字幕| 99久久久亚洲精品蜜臀av| 国产高清有码在线观看视频| 成人精品一区二区免费| 久久久久久久久久黄片| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡| 岛国在线免费视频观看| 在线播放无遮挡| 久久精品国产清高在天天线| 人妻久久中文字幕网| 身体一侧抽搐| 中亚洲国语对白在线视频| 免费av观看视频| 香蕉av资源在线| 日本撒尿小便嘘嘘汇集6| 变态另类成人亚洲欧美熟女| 天美传媒精品一区二区| 国产色婷婷99| 男人舔女人下体高潮全视频| 很黄的视频免费| 亚洲专区国产一区二区| 亚洲av第一区精品v没综合| 亚洲在线自拍视频| 99久久精品热视频| 蜜桃亚洲精品一区二区三区| 中文字幕av成人在线电影| 男女视频在线观看网站免费| 搞女人的毛片| 久久久国产精品麻豆| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 国产精华一区二区三区| av福利片在线观看| 制服丝袜大香蕉在线| 啦啦啦观看免费观看视频高清| 一a级毛片在线观看| 无人区码免费观看不卡| 网址你懂的国产日韩在线| 亚洲无线在线观看| 怎么达到女性高潮| www.色视频.com| 久久久久性生活片| 国产乱人视频| 亚洲最大成人手机在线| 网址你懂的国产日韩在线| 露出奶头的视频| 最近最新中文字幕大全电影3| 精品久久久久久,| 青草久久国产| 欧美乱码精品一区二区三区| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 国产精品久久久人人做人人爽| 国产97色在线日韩免费| 亚洲一区二区三区色噜噜| 岛国在线免费视频观看| 91在线观看av| 久久久久久久午夜电影| 日韩大尺度精品在线看网址| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 在线观看一区二区三区| 老司机午夜福利在线观看视频| 亚洲成人久久性| 亚洲精品影视一区二区三区av| 欧美日本视频| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 欧美bdsm另类| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 国产精品 国内视频| 亚洲午夜理论影院| 欧美性猛交黑人性爽| 男女那种视频在线观看| 热99在线观看视频| 校园春色视频在线观看| 国产三级中文精品| 国产麻豆成人av免费视频| 精品不卡国产一区二区三区| 丝袜美腿在线中文| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 色综合婷婷激情| 波多野结衣高清作品| 亚洲男人的天堂狠狠| 日本与韩国留学比较| 操出白浆在线播放| 欧美激情久久久久久爽电影| 日韩欧美免费精品| 国产精品野战在线观看| 久久精品国产清高在天天线| 国产高清videossex| 欧美在线黄色| e午夜精品久久久久久久| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 手机成人av网站| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 国产91精品成人一区二区三区| 亚洲人成网站在线播| 亚洲美女黄片视频| 国产69精品久久久久777片| 大型黄色视频在线免费观看| 国产成人aa在线观看| 国产午夜福利久久久久久| 午夜福利在线观看吧| 亚洲国产精品合色在线| 欧美激情在线99| 久久久久免费精品人妻一区二区| 欧美性猛交╳xxx乱大交人| 天堂av国产一区二区熟女人妻| 男女床上黄色一级片免费看| 最近最新中文字幕大全电影3| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 国产99白浆流出| 久久久久国内视频| 亚洲成人免费电影在线观看| 午夜免费激情av| h日本视频在线播放| 成人午夜高清在线视频| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 色综合婷婷激情| 国产亚洲欧美在线一区二区| a级一级毛片免费在线观看| 亚洲av成人av| 成人欧美大片| 有码 亚洲区| 欧美最黄视频在线播放免费| 国产成人福利小说| 麻豆一二三区av精品| 一二三四社区在线视频社区8| 国产在视频线在精品| avwww免费| 人妻久久中文字幕网| 97人妻精品一区二区三区麻豆| 国产97色在线日韩免费| 亚洲国产精品sss在线观看| 亚洲欧美激情综合另类| 久久国产乱子伦精品免费另类| 在线免费观看不下载黄p国产 | 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 日本熟妇午夜| 免费搜索国产男女视频| 一个人看的www免费观看视频| 丝袜美腿在线中文| 亚洲专区国产一区二区| 男人的好看免费观看在线视频| 黄色日韩在线| 一本久久中文字幕| 精品一区二区三区人妻视频| 欧美日韩一级在线毛片| 亚洲av成人不卡在线观看播放网| 在线免费观看不下载黄p国产 | 国产视频一区二区在线看| 日本 欧美在线| 一个人看的www免费观看视频| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 久久精品国产亚洲av涩爱 | 操出白浆在线播放| 国产私拍福利视频在线观看| 久久伊人香网站| 九九久久精品国产亚洲av麻豆| 欧美极品一区二区三区四区| 亚洲片人在线观看| 老司机午夜福利在线观看视频| 97人妻精品一区二区三区麻豆| 欧美中文日本在线观看视频| 国产不卡一卡二| 亚洲avbb在线观看| 婷婷六月久久综合丁香| 国产色爽女视频免费观看| 免费电影在线观看免费观看| 一级毛片女人18水好多| 九九热线精品视视频播放| 少妇的逼水好多| 舔av片在线| 好看av亚洲va欧美ⅴa在| 深爱激情五月婷婷| 国产精品一区二区三区四区免费观看 | 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 啦啦啦韩国在线观看视频| 成年女人永久免费观看视频| 久久久久久久亚洲中文字幕 | 国产亚洲av嫩草精品影院| 亚洲成人免费电影在线观看| 成人av在线播放网站| 日韩免费av在线播放| 中文字幕精品亚洲无线码一区| 波多野结衣高清无吗| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 久久久国产成人精品二区| 啦啦啦免费观看视频1| 成人亚洲精品av一区二区| 九九久久精品国产亚洲av麻豆| 天堂影院成人在线观看| 天堂动漫精品| 99久久99久久久精品蜜桃| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 国产极品精品免费视频能看的| 国产欧美日韩一区二区精品| av天堂在线播放| 国产成人欧美在线观看| 久久99热这里只有精品18| 两个人看的免费小视频| 亚洲av日韩精品久久久久久密| 国产熟女xx| 欧美激情在线99| 制服人妻中文乱码| 一a级毛片在线观看| 久久久久精品国产欧美久久久| 午夜免费观看网址| av专区在线播放| or卡值多少钱| 国产精品国产高清国产av| 亚洲五月天丁香| 成人特级黄色片久久久久久久| 欧美成狂野欧美在线观看| 亚洲成人久久性| 在线看三级毛片| 少妇人妻一区二区三区视频| 久久久久精品国产欧美久久久| 天堂动漫精品| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 国产伦一二天堂av在线观看| 久久久国产精品麻豆| 别揉我奶头~嗯~啊~动态视频| 嫩草影院入口| 欧美日本视频| 久久久久久久久大av| 欧美丝袜亚洲另类 | bbb黄色大片| 精品久久久久久久久久免费视频| 国产精品久久久久久亚洲av鲁大| 欧美成狂野欧美在线观看| 一个人看视频在线观看www免费 | 亚洲在线观看片| 日本成人三级电影网站| av在线天堂中文字幕| 久久久精品大字幕| 动漫黄色视频在线观看| 欧美黑人巨大hd| 岛国在线观看网站| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 一区二区三区高清视频在线| 好男人在线观看高清免费视频| 黄色日韩在线| 女人十人毛片免费观看3o分钟| netflix在线观看网站| 偷拍熟女少妇极品色| 亚洲最大成人中文| 91在线精品国自产拍蜜月 | 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 99久久成人亚洲精品观看| 日韩欧美三级三区| 欧美大码av| 国产高清视频在线观看网站| 久久久精品大字幕| 亚洲av成人av| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 亚洲国产中文字幕在线视频| 国产主播在线观看一区二区| 级片在线观看| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| 丰满的人妻完整版| 精品久久久久久久久久久久久| 他把我摸到了高潮在线观看| 最新美女视频免费是黄的| 亚洲激情在线av| 最新美女视频免费是黄的| 十八禁网站免费在线| 免费一级毛片在线播放高清视频| 国产精品自产拍在线观看55亚洲| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 丝袜美腿在线中文| 亚洲人成网站在线播放欧美日韩| 久久九九热精品免费| 网址你懂的国产日韩在线| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看| 禁无遮挡网站| 日本黄大片高清| 欧美成狂野欧美在线观看| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 在线观看av片永久免费下载| 国产成人aa在线观看| 精品人妻1区二区| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| av片东京热男人的天堂| 美女免费视频网站| 99久久成人亚洲精品观看| avwww免费| 观看免费一级毛片| 波多野结衣高清作品| 国产av麻豆久久久久久久| 俄罗斯特黄特色一大片| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 免费av不卡在线播放| 18禁裸乳无遮挡免费网站照片| 久久香蕉精品热| 成人性生交大片免费视频hd| 嫩草影视91久久| 亚洲人与动物交配视频| 精品人妻1区二区| 婷婷丁香在线五月| av欧美777| 国产精品 国内视频| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 亚洲中文字幕日韩| 成人av在线播放网站| 男女午夜视频在线观看| 成年女人毛片免费观看观看9| 国产精品影院久久| 色综合欧美亚洲国产小说| av天堂中文字幕网| 久久九九热精品免费| 国产爱豆传媒在线观看| 在线看三级毛片| 中文字幕人成人乱码亚洲影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线国产一区二区在线| 性色av乱码一区二区三区2| 在线观看66精品国产| 成年人黄色毛片网站| 国产精品影院久久| 老司机福利观看| 亚洲av美国av| 18+在线观看网站| 免费搜索国产男女视频| 欧美日韩黄片免| 可以在线观看的亚洲视频| 午夜免费成人在线视频| 老司机福利观看| 午夜免费观看网址| 国产成人a区在线观看| 国产精品三级大全| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 免费人成视频x8x8入口观看| 国产99白浆流出| 亚洲欧美激情综合另类| 在线天堂最新版资源| 精品无人区乱码1区二区| 少妇丰满av| 日韩大尺度精品在线看网址| 偷拍熟女少妇极品色| 欧美最新免费一区二区三区 | 他把我摸到了高潮在线观看| 免费观看精品视频网站| 嫩草影院精品99| 黄色日韩在线| 日韩有码中文字幕| 欧美在线黄色| 国产在线精品亚洲第一网站| 国产av不卡久久| 亚洲欧美日韩东京热| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 搡老熟女国产l中国老女人| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 亚洲欧美日韩高清专用| 国产三级在线视频| 日本在线视频免费播放| 19禁男女啪啪无遮挡网站| 日本熟妇午夜| 午夜福利视频1000在线观看| 午夜福利在线在线| 欧美国产日韩亚洲一区|