• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Padéapproximant approach to singular properties of quantum gases:the ideal cases

    2021-07-06 05:04:12YuanHongTian田遠(yuǎn)鴻WenDuLi李文都YaoShen沈堯andWuShengDai戴伍圣
    Communications in Theoretical Physics 2021年6期
    關(guān)鍵詞:李文

    Yuan-Hong Tian(田遠(yuǎn)鴻),Wen-Du Li(李文都),Yao Shen(沈堯) and Wu-Sheng Dai(戴伍圣),*

    1 Department of Physics,Tianjin University,Tianjin 300350,China

    2 College of Physics and Materials Science,Tianjin Normal University,Tianjin 300387,China

    3 School of Criminal Investigation and Forensic Science,People’s Public Security University of China,Beijing 100038,China

    Abstract In this paper,we show how to recover the low-temperature and high-density information of ideal quantum gases from the high-temperature and low-density approximation by the Padé approximant.The virial expansion is a high-temperature and low-density expansion and in practice,often,only the first several virial coefficients can be obtained.For Bose gases,we determine the BEC phase transition from a truncated virial expansion.For Fermi gases,we recover the low-temperature and high-density result from the virial expansion.

    Keywords:approximate analytic continuation,virial expansion,Padéapproximant,quantum gas

    1.Introduction

    Singularity reflects the global behavior of a function.In perturbation theory,we usually use a truncated power series to approximate a function,i.e.use a polynomial to approximate a function.However,polynomials are entire functions and have no singularities.This means that if we use perturbation theory to approximate a physical quantity,the information of singularity will be lost;that is,even in the perturbation theory the approximation can be made accurate enough by calculating more highorder terms,but the information of singularity,i.e.the information of the global behavior of the physical quantity will be lost.

    In statistical mechanics,if the thermodynamic quantity of a system contains singularities,the system may have a phase transition.However,the method based on series approximations,such as the cluster expansion method,provides truncated power series approximation,i.e.approximating a thermodynamic quantity with a polynomial.The truncated series approximation,which is indeed a polynomial,cannot judge whether the thermodynamic quantity has a singularity,so it is difficult to study the phase transition by the series approximation.

    In ideal quantum gases there are two characteristic lengths.One characteristic length is the thermal wavelength,which is the average de Broglie wavelength of the gas particle.The other characteristic length is the average distance between particles.When the thermal wavelength is less than the particle distance,the overlap of the wave packets of the particles is small;in this case the quantum exchange effect can be ignored and the gas is close to the classical gas.When the thermal wavelength is greater than the average distance between particles,the wave packets of the particles overlap greatly;in this case,the quantum exchange effect of identical particles is obvious,and the gas should be treated as a quantum gas.

    In low temperatures and high densities,the thermal wavelength is long and the average particle distance is small,so the wave packets of particles overlaps and the quantum effect is obvious.On the contrary,in high temperatures and low densities,the wavelength is short and the average particle distance is large,so the wave packet overlap is small and the quantum effect is not obvious.In practical,it is relatively easy to obtain the high-temperature and low-density series approximation,but the high-temperature and low-density approximation is usually far away from phase transition region and one cannot directly judge whether there is a phase transition based on this.It is difficult to obtain the low-temperature and high-density property from the high-temperature and low-density approximation.In this paper,using the Padéapproximant,taking ideal Bose gases and ideal Fermi gases as examples,we consider the BEC phase transition and the low-temperature property of the Fermi system from the virial expansion which is a polynomial approximation in high temperatures and low densities.

    In order to recover the information of singularity from the polynomial approximation obtained by truncating the power series,we use a rational function instead of the polynomial to approximate a function.The rational function has singularities which are the poles of the rational function.Therefore,when approximating a function by a rational function,the information of the singularity may remain.To approximate a function by a power series,we have mathematical theories like Taylor’s theorem to ensure the validity and operability of the method.For rational function approximation,however,we have no such systematic method.The idea of approximating a function by a rational function already exists in Euler’s‘Introduction to analysis of the infinite’[1].In order to approximate a function by a rational function,we still start from the power series approximation:first approximate the function by a truncated series,i.e.a polynomial,and then use a rational function to approximate the polynomial.This is the idea of the Padéapproximant.

    The limitation of the truncated series approximation is that it is valid only for small perturbation parameters,for it is always a perturbation theory.Another aim of this paper is to improve a perturbation series so that the perturbation result applies also to nonperturbative regions based on the Padé approximant.

    The idea to extend the range of application of a truncated series comes from the concept of analytic continuation.The domain of definition of a function f(z)may be of any shape,but the convergence region of a power-series expansion of f(z)around a point is only the largest open disc centered at the point in the domain.The convergence region of a powerseries expansion is often smaller than the definition domain of f(z)and the function f(z)is an analytic continuation of its power-series expansion.That is,the range of application of a series is extended by its sum function.Nevertheless,in practice we often only have an approximate truncated series rather than a complete series,let alone the difficulty of performing the sum of the series.Extending the range of application of a truncated series needs an approximate analytic continuation.

    In order to approximately analytically continuing a truncated series,we use the Padéapproximant.The Padé approximant approximates a function by a rational function[2–4].Concretely,for an n-term truncated series,there are n expansion coefficients.We choose a rational function with n coefficients to construct a Padéapproximant.The coefficient of the Padéapproximant can be solved by equating the rational function and the truncated power series.It can be shown that the range of application of the Padéapproximant is larger than the convergence region of the corresponding power series.That is,by constructing a Padéapproximant from a truncated series,we approximately extend the range of application of the series.

    The equation of state of Bose gases and Fermi gases is described by the Bose–Einstein integral and the Fermi–Dirac integral.In high temperatures and low densities,the Bose–Einstein integral and the Fermi–Dirac integral have the virial expansions which are power expansions.The Bose–Einstein integral and the Fermi–Dirac integral themselves are indeed analytic continuations of their virial expansions.However,if we only have a truncated virial expansion,i.e.we only know the first several virial coefficients,we cannot analytically continue the virial expansion by summing up the series.In the following,we show that by the Padéapproximant,we can approximately analytically continue the truncated virial expansion.

    The Padéapproximant is used to cosmology[5]and the equation of state of the dark energy[6].In[7],the extended Padéapproximant is applied to nonlinear problems.The Padé approximant can be used to QCD[8,9],hadron physics[10],and nuclear physics[11].The Padéapproximant applies also to many-body systems,such as the renormalization group technique[12],the Green function of the Hubbard model,and the Haldane model[13].In[14,15],the author extracts resonance pole parameters from the phase-shift scattering data by the Padéapproximant.

    In section 2,we give a brief review on how to construct a Padéapproximant from a power series.By using the Padé approximant,in section 3,we determine the BEC phase transition from the high-temperature and low-density expansion,and in section 4,we approximately analytically continue the virial expansion of the Fermi–Dirac integral.Conclusions and outlooks are given in section 5.

    2.Constructing the Padéapproximant from a series:a brief review

    The perturbation theory approximates an exact solution by a truncated series.The range of application of a perturbation theory is limited to a neighborhood of a certain value of a parameter.The aim of the paper is to extend the range of application of a truncated perturbation series by the Padé approximant.The treatment is indeed an approximate analytic continuation.

    In perturbation theories,the approximate result is a truncated power series.The convergence region of a power series

    is the largest open disc centered at zero in the domain of definition of f(z).

    The Padéapproximant approximates the function f(z)by a rational function[2–4]

    with the numerator an Lth order polynomial and the denominator an Mth order polynomial.The rational function(2)has L+M+1 coefficients to be determined,where b0can be taken to be 1.The parameters aiand biare determined by equating the rational function(2)to the power series(1):

    The coefficients then is given by the equation

    The solution reads[2–4,16]

    and

    Though the coefficient in the Padéapproximant is obtained from a power series,the domain of definition of the Padéapproximant(2)is different from the convergence region of the power series(1).This allows the Padéapproximant to serve as an approximate analytic continuation of the power series.

    It is worthy to note that the accuracy of a Padéapproximant(2)is often higher than that of the truncated power series from whom we construct the Padéapproximant.

    3.Determining BEC phase transition from hightemperature and low-density expansion

    The equation of state of ideal quantum gases is[17]

    with

    In this section,we use a truncated virial expansion which is a high-temperature and low-density expansion to determine whether there is a BEC phase transition.At first sight,it is difficult to determine the BEC phase transition from a hightemperature and low-density approximation,because BEC is a phase transition occurs only at low temperatures and high densities.In a phase transition there should exist a singularity,but the truncated virial expansion is a polynomial which has no singularity.The equation of state and the thermodynamic quantity of a three-dimensional ideal Bose gas are described by the Bose–Einstein integral.The Bose–Einstein integral

    has singularities on the positive real axis of the complex fugacity plane,continuously distributing in the interval from z=1 to z→∞(see figure 1)[18,19].The high-temperature and low-density expansion of the Bose–Einstein integral,i.e.the virial expansion,is a power series.The convergence radius of the virial series is∣z∣=1.In principle,the phase transition can be determined by the convergence radius of the virial expansion,for there must be singularities on the circle of convergence.However,in practice we often only know the first few virial coefficients,i.e.only a truncated virial expansion,a polynomial,can be known.When approximating a power series by a polynomial,we lose the information of singularity.That is,if we only have a truncated virial expansion,we cannot determine whether there is a phase transition.

    In order to analyze the phase transition by a truncated virial expansion,we recover the information of singularity from a truncated power series with the help of the Padé approximant.

    Suppose we only know the first N terms of the virial expansion of the Bose–Einstein integral:

    This approximation is valid for z?1.To recover the information of singularity,we approximate the polynomial(11)by a rational function,i.e.the Padéapproximant:

    The left-hand side of equation(12)is a polynomial and has no singularity,but the right-hand side of equation(12)is a rational function with the zeroes of the denominator as its singularity.The rational function in equation(12)has two poles:

    For three-dimensional Bose gases,we have

    The two poles are z01=1.447 46 and z02=6.510 84.In the exact result,the singularities of the Bose–Einstein integral continuously distribute in the interval[1,∞).The existence of singularities implies that there exists a phase transition which is just the BEC phase transition.

    The exact minimum value of the fugacity is z=1;the approximate minimum value given by the Padéapproximant,however,is z?1.447 46.In order to improve the accuracy of the approximation,instead ofwe consider the Padéapproximant:

    The three poles are z01=1.209 56,z02=2.329 18,and z03=11.7915;the minimum value is z?1.209 56.

    Figure 2 shows the singularities ofg32(z)and its Padé approximants[2 2]32(z)and[3 3]32(z).It can be seen that as the accuracy increases,the minimum value of the fugacity is getting closer and closer to the accurate result 1.

    Figure 1.The convergence region of the virial expansion is the largest open disc centered at zero in the domain of definition of the Bose–Einstein integral gν(z).

    Figure 3.The convergence region of the virial expansion is the largest open disc centered at zero in the domain of definition of the Fermi–Dirac integral fν(z).

    In a word,with the help of the Padéapproximant,we can determine the BEC phase transition which occurs only at low temperatures and high densities from the first several terms of a high-temperature and low-density expansion.

    4.Approximately analytically continuing high temperatures and low densities to low temperatures and high densities:Fermi–Dirac gases

    4.1.The Fermi-Dirac integral and the virial expansion

    The Fermi–Dirac integral is

    The virial expansion,a high-temperature and low-density expansion,of the Fermi–Dirac integral is a power series around the fugacity z=0[22,23],

    The Fermi–Dirac integral in the complex z-plane has a singularity line from z=-1 to-∞.The Fermi–Dirac integralfν(z )is analytic in the complex z-plane with the exception of the interval(-∞,-1) on the negative real axis[18,19].The convergence region of the virial expansion(18),due to Abel’s theorem,is an open disc of radius∣z∣=1 centered at zero,since the point z=-1 is a singularity of the Fermi–Dirac integral in the complex z-plane,see figure 3.Therefore,the virial expansion is only valid for z<1,i.e.the high-temperature and low-density case.For low temperatures and high densities,in which the fugacity z>1,however,the virial expansion is invalid.

    Though the virial expansion(18)is valid only for z<1,the Fermi–Dirac integral is real analytic on the whole positive real axis,i.e.the range of the value of the fugacity is 0<z<∞.This allows us to seek a low-temperature and high-density approximation by analytically continuing the virial expansion.

    4.2.Approximate analytical continuation:the Padé approximant

    The virial expansion is a high-temperature and low-density expansion,which is valid only for z<1.We now extend the viral expansion to low temperatures and high densities,the case of z>1,by the Padéapproximant.

    First consider the case that the first 4 virial coefficients of the Fermi–Dirac integral are known,

    By Eqs.(5)and(6)we have

    with

    Next consider the case that the first 6 virial coefficients of the Fermi–Dirac integral are known,

    by Eqs.(5)and(6),gives

    where

    Though the coefficients of the Padéapproximant(25)are all calculated from the virial coefficient,the range of application of the Padéapproximant is larger than the region of convergence of the virial expansion.The virial expansion is a power-series expansion,whose region of convergence is a disc∣z∣<1,i.e.the virial expansion diverges for∣z∣≥1.Nevertheless,the Padéapproximant(25)is valid even if∣z∣≥1.To show this,we compare the exact Fermi–Dirac integral,the Padéapproximant,and the virial expansion in figure 4.We can see that even for z>1,the Padéapproximant is very close to the exact result,while the virial expansion is invalid when z>1.

    4.3.Various choices of the Padéapproximant

    The Padéapproximant is an approximation and the choice of constructing the Padéapproximant is not unique.In the above,we consider two constructions of the Padéapproximant,andHere we compare various constructions of the Padéapproximant.

    For z>1,the virial expansion fails no matter how many terms of the power series are taken into account,for the convergence region of the virial expansion is a disc of radius∣z∣=1.However,the Padéapproximant,though constructed from a truncated virial expansion,is valid for z>1.

    From the virial expansion of 4 virial coefficients,we can construct three Padéapproximants:andFrom the virial expansion of 6 virial coefficients,we can construct five Padéapproximants:andThe comparison of these Padéapproximants are shown in figure 5.It can be seen that the Padéapproximant of the formi.e.the orders of the polynomials in the numerator and in the denominator are the same,is the better one.

    5.Conclusions and outlooks

    In the present paper,we suggest a method that allows us to infer the low-temperature and high-density result which is obtained by calculation or observation from the high-temperature and low-density result of high temperature.

    The virial expansion for quantum gases is a high-temperature and low-density approximation.Starting from a a truncated virial series,we infer the BEC phase transition for a Bose gas and infer the low-temperature and high-density properties for a Fermi gas by the Padéapproximant.

    An exact series solution has a natural analytic continuation:the sum function which is obtained by summing up the series[24].Nevertheless in perturbation theory,we often only have an approximate truncated series.The truncated series is an approximation.To extend the range of application of a truncated series needs an approximate analytic continuation.In this paper,we use the Padéapproximant to implement the analytic continuation.Furthermore,we can also perform approximate calculations in a small parameter range first,and then use Padéapproximant to seek results in a larger parameter range.For example,there are some methods developed for few-body systems,but when the number of particles are large,the calculation amount will increase dramatically[25–27].The Padéapproximationant may help us deal with systems with fewer particles first,and then approximately analytically continue to systems with more particles.

    The method considered in the present paper in principle applies to any perturbation theory so long as the approximation is represented by a truncated series.Most results of perturbation theories in physics are given by a truncated series,such as the Feynman diagram in quantum field theory,the cluster expansion in statistical mechanics,the perturbation method in classical and quantum mechanics.In these problems,we can use the method discussed in the present paper to extend the perturbation result to nonperturbative region.

    Acknowledgments

    We are very indebted to Dr G Zeitrauman for his encouragement.This work is supported in part by The Fundamental Research Funds for the Central Universities under Grant No.2020JKF306,Special Funds for theoretical physics Research Program of the NSFC under Grant No.11 947 124,and NSFC under Grant Nos.11 575 125 and 11 675 119.

    猜你喜歡
    李文
    Clothing Parsing Based on Multi-Scale Fusion and Improved Self-Attention Mechanism
    Advances in thermoelectric(GeTe)x(AgSbTe2)100-x
    定制化光學(xué)遙感器精益質(zhì)量管理探索與實踐
    買狗糧
    心臟在哪兒
    上海故事(2017年8期)2017-08-23 10:11:25
    自 尊
    東方劍(2016年4期)2016-07-25 11:20:59
    Amplitude-Phase Modulation,Topological Horseshoe and Scaling Attractor of a Dynamical System?
    無比艱難的容易事
    夫妻那點事兒
    故事會(2012年20期)2012-10-11 04:47:18
    Monitoring Method for the Electrical Properties of Piezoelectric Transducer
    精品久久久久久成人av| av免费在线观看网站| 天堂动漫精品| 又紧又爽又黄一区二区| 中文在线观看免费www的网站 | 日韩有码中文字幕| 国产精品香港三级国产av潘金莲| 国产激情欧美一区二区| cao死你这个sao货| 精品乱码久久久久久99久播| 国产精品综合久久久久久久免费| 日韩欧美国产在线观看| 国产av又大| 亚洲精品美女久久久久99蜜臀| 亚洲成人免费电影在线观看| 成人精品一区二区免费| 国产日本99.免费观看| 中文字幕另类日韩欧美亚洲嫩草| 好男人电影高清在线观看| xxxwww97欧美| 免费高清在线观看日韩| 欧美+亚洲+日韩+国产| 老熟妇乱子伦视频在线观看| 国产亚洲精品一区二区www| 老汉色∧v一级毛片| 精品久久久久久久久久免费视频| 亚洲国产精品成人综合色| 欧美日本亚洲视频在线播放| 黑人欧美特级aaaaaa片| 又大又爽又粗| 亚洲va日本ⅴa欧美va伊人久久| 麻豆成人午夜福利视频| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久免费视频| 韩国精品一区二区三区| 久久草成人影院| 变态另类丝袜制服| www.熟女人妻精品国产| av有码第一页| 大型黄色视频在线免费观看| 欧美国产精品va在线观看不卡| 亚洲欧美激情综合另类| 亚洲三区欧美一区| 9191精品国产免费久久| 国产av又大| 国产黄色小视频在线观看| 国产免费av片在线观看野外av| 免费无遮挡裸体视频| 亚洲成国产人片在线观看| 一个人观看的视频www高清免费观看 | 制服丝袜大香蕉在线| 给我免费播放毛片高清在线观看| 久久精品人妻少妇| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器 | 久久国产亚洲av麻豆专区| 制服丝袜大香蕉在线| 欧美日韩黄片免| 怎么达到女性高潮| 黄频高清免费视频| 久久国产精品人妻蜜桃| 久久精品国产综合久久久| 后天国语完整版免费观看| 精品久久久久久,| 亚洲男人的天堂狠狠| or卡值多少钱| 午夜福利高清视频| 91大片在线观看| 久久午夜亚洲精品久久| 久久久久亚洲av毛片大全| 黑人欧美特级aaaaaa片| 国产成人影院久久av| 亚洲真实伦在线观看| 国产精品亚洲美女久久久| 99久久精品国产亚洲精品| 制服丝袜大香蕉在线| 久久精品国产亚洲av香蕉五月| 久久久久久人人人人人| 久久久水蜜桃国产精品网| 国产精华一区二区三区| 精品国产超薄肉色丝袜足j| 午夜精品久久久久久毛片777| 男人舔女人下体高潮全视频| 亚洲av成人一区二区三| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 亚洲精品美女久久av网站| 亚洲中文字幕日韩| 99国产极品粉嫩在线观看| 午夜成年电影在线免费观看| 18禁美女被吸乳视频| 黄色女人牲交| 亚洲电影在线观看av| 在线观看舔阴道视频| 日本一区二区免费在线视频| 午夜福利一区二区在线看| 老鸭窝网址在线观看| 午夜老司机福利片| 亚洲成人国产一区在线观看| 啦啦啦韩国在线观看视频| 91成年电影在线观看| 黄色a级毛片大全视频| 亚洲,欧美精品.| 两人在一起打扑克的视频| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| 此物有八面人人有两片| 亚洲欧美激情综合另类| 亚洲av电影在线进入| 麻豆一二三区av精品| 国产黄色小视频在线观看| 久久久久久久久久黄片| 琪琪午夜伦伦电影理论片6080| 国产蜜桃级精品一区二区三区| 亚洲专区字幕在线| 在线观看午夜福利视频| 最好的美女福利视频网| 中文字幕精品免费在线观看视频| 好男人电影高清在线观看| 一级片免费观看大全| 精品久久久久久久久久免费视频| 亚洲五月婷婷丁香| 色综合婷婷激情| 午夜福利欧美成人| 又紧又爽又黄一区二区| 成人欧美大片| 女警被强在线播放| 久久九九热精品免费| www.www免费av| 1024视频免费在线观看| 免费女性裸体啪啪无遮挡网站| 在线免费观看的www视频| 精品国产一区二区三区四区第35| 亚洲电影在线观看av| 国产精品99久久99久久久不卡| 一本综合久久免费| 久久 成人 亚洲| 99久久综合精品五月天人人| 国产极品粉嫩免费观看在线| 51午夜福利影视在线观看| 欧美黑人欧美精品刺激| 日韩成人在线观看一区二区三区| 少妇粗大呻吟视频| 身体一侧抽搐| 最好的美女福利视频网| 男人舔女人下体高潮全视频| 国产成年人精品一区二区| 好看av亚洲va欧美ⅴa在| 老司机福利观看| 美女扒开内裤让男人捅视频| 亚洲av电影不卡..在线观看| bbb黄色大片| 亚洲第一av免费看| 少妇粗大呻吟视频| 免费在线观看成人毛片| 亚洲欧美精品综合一区二区三区| 免费在线观看成人毛片| 成人亚洲精品一区在线观看| 免费在线观看完整版高清| 国产真人三级小视频在线观看| 午夜福利欧美成人| 亚洲自拍偷在线| 一进一出抽搐动态| 国产av一区二区精品久久| 日韩有码中文字幕| 午夜激情福利司机影院| 亚洲av第一区精品v没综合| 亚洲欧美一区二区三区黑人| 亚洲九九香蕉| 又紧又爽又黄一区二区| 黄片播放在线免费| 三级毛片av免费| 国产欧美日韩一区二区精品| 日本一本二区三区精品| 免费在线观看影片大全网站| 国产精品99久久99久久久不卡| 又黄又爽又免费观看的视频| 亚洲国产日韩欧美精品在线观看 | 日韩精品青青久久久久久| 久久香蕉精品热| 亚洲成人久久性| 日本一本二区三区精品| xxx96com| 99热这里只有精品一区 | 欧美精品亚洲一区二区| 制服诱惑二区| 精品国产一区二区三区四区第35| 亚洲人成网站高清观看| 一级黄色大片毛片| cao死你这个sao货| 成人免费观看视频高清| 老熟妇乱子伦视频在线观看| 午夜精品在线福利| 欧美成人午夜精品| 午夜精品久久久久久毛片777| 久久亚洲精品不卡| 欧美国产精品va在线观看不卡| 50天的宝宝边吃奶边哭怎么回事| 最新在线观看一区二区三区| av有码第一页| 俄罗斯特黄特色一大片| 人人妻,人人澡人人爽秒播| 又紧又爽又黄一区二区| 国产亚洲精品一区二区www| 欧美另类亚洲清纯唯美| 欧美丝袜亚洲另类 | 少妇熟女aⅴ在线视频| 国产精品98久久久久久宅男小说| netflix在线观看网站| 18美女黄网站色大片免费观看| 桃红色精品国产亚洲av| av福利片在线| 久99久视频精品免费| 欧美日韩福利视频一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人澡人人看| 亚洲国产欧美一区二区综合| 欧美性猛交黑人性爽| 人人妻人人澡欧美一区二区| 美女午夜性视频免费| 国产一区在线观看成人免费| 一级a爱片免费观看的视频| 日本 av在线| 国产极品粉嫩免费观看在线| 精品久久久久久久末码| 视频区欧美日本亚洲| 国产一区二区在线av高清观看| 国产精品日韩av在线免费观看| 露出奶头的视频| 国产精品,欧美在线| 亚洲国产精品sss在线观看| 中文亚洲av片在线观看爽| 久久久精品国产亚洲av高清涩受| 99热只有精品国产| 啦啦啦观看免费观看视频高清| 欧美乱妇无乱码| 美女高潮到喷水免费观看| 欧美激情久久久久久爽电影| 天堂影院成人在线观看| 18禁国产床啪视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 好看av亚洲va欧美ⅴa在| 久久中文看片网| 免费看日本二区| 国产欧美日韩一区二区精品| 99久久精品国产亚洲精品| 欧美丝袜亚洲另类 | 免费在线观看视频国产中文字幕亚洲| 亚洲最大成人中文| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品影院久久| 久久久久亚洲av毛片大全| 国产精品久久久av美女十八| 村上凉子中文字幕在线| 日韩免费av在线播放| 国内少妇人妻偷人精品xxx网站 | 精品不卡国产一区二区三区| 黄色成人免费大全| 亚洲国产高清在线一区二区三 | 久久午夜综合久久蜜桃| 两性夫妻黄色片| 亚洲成av片中文字幕在线观看| 香蕉av资源在线| 日韩 欧美 亚洲 中文字幕| 人人妻人人澡欧美一区二区| 国产亚洲精品久久久久久毛片| 亚洲成国产人片在线观看| 欧美中文日本在线观看视频| 精品日产1卡2卡| 国产亚洲欧美在线一区二区| 久久久久亚洲av毛片大全| 亚洲午夜理论影院| 看黄色毛片网站| 亚洲国产欧美网| 美国免费a级毛片| 国产日本99.免费观看| 国产精品电影一区二区三区| 美女扒开内裤让男人捅视频| 欧美一级毛片孕妇| 国产久久久一区二区三区| 一级作爱视频免费观看| 亚洲精品美女久久av网站| 精品久久久久久久人妻蜜臀av| 欧美另类亚洲清纯唯美| 特大巨黑吊av在线直播 | 丝袜在线中文字幕| 黄色成人免费大全| 在线观看66精品国产| 成人欧美大片| a级毛片在线看网站| 日韩视频一区二区在线观看| 午夜免费激情av| 在线观看免费午夜福利视频| 午夜福利成人在线免费观看| 99久久精品国产亚洲精品| 国产午夜精品久久久久久| 国产精品久久久久久人妻精品电影| 日韩欧美 国产精品| 中文字幕人妻丝袜一区二区| 欧美日本视频| 欧美日韩中文字幕国产精品一区二区三区| 动漫黄色视频在线观看| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 亚洲国产欧美一区二区综合| 亚洲第一av免费看| 国产亚洲精品一区二区www| 日韩一卡2卡3卡4卡2021年| 久久这里只有精品19| 亚洲九九香蕉| 亚洲成av片中文字幕在线观看| 免费在线观看完整版高清| 亚洲无线在线观看| 大型av网站在线播放| 国产91精品成人一区二区三区| 日韩欧美免费精品| 99riav亚洲国产免费| 一级作爱视频免费观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产精品麻豆| 婷婷精品国产亚洲av在线| 亚洲熟女毛片儿| 99久久久亚洲精品蜜臀av| 欧美av亚洲av综合av国产av| 一区福利在线观看| 久久香蕉国产精品| 精品国产乱码久久久久久男人| 久热这里只有精品99| 19禁男女啪啪无遮挡网站| 日日干狠狠操夜夜爽| 欧美人与性动交α欧美精品济南到| 午夜免费激情av| 非洲黑人性xxxx精品又粗又长| 日本一本二区三区精品| 久久久久国产精品人妻aⅴ院| 熟女电影av网| 亚洲三区欧美一区| 男女做爰动态图高潮gif福利片| av欧美777| 国产亚洲欧美在线一区二区| 国产午夜精品久久久久久| 亚洲狠狠婷婷综合久久图片| av在线天堂中文字幕| 亚洲欧美一区二区三区黑人| 久9热在线精品视频| 黄色片一级片一级黄色片| 91麻豆av在线| 欧洲精品卡2卡3卡4卡5卡区| 50天的宝宝边吃奶边哭怎么回事| 亚洲va日本ⅴa欧美va伊人久久| 中文资源天堂在线| 国产午夜福利久久久久久| 免费在线观看成人毛片| 真人一进一出gif抽搐免费| 亚洲免费av在线视频| 九色国产91popny在线| 麻豆一二三区av精品| 午夜福利高清视频| 日本精品一区二区三区蜜桃| 午夜免费激情av| 精品欧美一区二区三区在线| 好看av亚洲va欧美ⅴa在| 丁香欧美五月| 最近最新中文字幕大全免费视频| 校园春色视频在线观看| 少妇熟女aⅴ在线视频| 精品国产一区二区三区四区第35| 日韩欧美三级三区| 最好的美女福利视频网| 日韩欧美国产一区二区入口| 国产蜜桃级精品一区二区三区| 色播亚洲综合网| 色尼玛亚洲综合影院| 亚洲一区中文字幕在线| 757午夜福利合集在线观看| 国产真人三级小视频在线观看| 国产黄色小视频在线观看| 日本一区二区免费在线视频| 精品欧美一区二区三区在线| 欧美最黄视频在线播放免费| 少妇熟女aⅴ在线视频| 97碰自拍视频| 亚洲国产精品合色在线| 日韩欧美 国产精品| 黄色女人牲交| 90打野战视频偷拍视频| 国产成人精品无人区| 久久久久国产一级毛片高清牌| 一区二区三区国产精品乱码| 动漫黄色视频在线观看| 两个人免费观看高清视频| av天堂在线播放| 听说在线观看完整版免费高清| 亚洲aⅴ乱码一区二区在线播放 | 成人18禁在线播放| 成人三级做爰电影| 久久久久精品国产欧美久久久| 真人做人爱边吃奶动态| 成年版毛片免费区| 手机成人av网站| 亚洲 欧美 日韩 在线 免费| 男女午夜视频在线观看| 精品免费久久久久久久清纯| 一夜夜www| 亚洲人成伊人成综合网2020| 搡老熟女国产l中国老女人| 国产在线观看jvid| 18禁美女被吸乳视频| 精品日产1卡2卡| 天天一区二区日本电影三级| 美女大奶头视频| 麻豆av在线久日| 国产激情久久老熟女| 女同久久另类99精品国产91| 免费高清视频大片| 18禁美女被吸乳视频| 制服人妻中文乱码| 免费无遮挡裸体视频| 国产成人系列免费观看| 免费人成视频x8x8入口观看| 国产精品一区二区免费欧美| 麻豆成人av在线观看| 国产精品精品国产色婷婷| 夜夜躁狠狠躁天天躁| 亚洲一区二区三区色噜噜| 欧美激情极品国产一区二区三区| 亚洲成av片中文字幕在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲男人天堂网一区| 久久香蕉激情| 亚洲中文字幕日韩| 色综合站精品国产| 欧美另类亚洲清纯唯美| 国产午夜福利久久久久久| 听说在线观看完整版免费高清| 午夜久久久久精精品| 国产三级在线视频| 国产亚洲av嫩草精品影院| 国产免费男女视频| av在线播放免费不卡| 夜夜爽天天搞| 黄片播放在线免费| 久久婷婷成人综合色麻豆| 91成年电影在线观看| 国产av一区在线观看免费| 免费看a级黄色片| 国产成人av教育| 老熟妇仑乱视频hdxx| 麻豆成人午夜福利视频| 女同久久另类99精品国产91| 黄片大片在线免费观看| 精品国产超薄肉色丝袜足j| 中亚洲国语对白在线视频| 国产伦一二天堂av在线观看| 国产精品二区激情视频| 久久热在线av| 成人亚洲精品一区在线观看| 99精品在免费线老司机午夜| 女性生殖器流出的白浆| 中文字幕高清在线视频| 国产精品九九99| 中文字幕久久专区| 免费高清视频大片| 国产熟女xx| 亚洲人成77777在线视频| 久久热在线av| 亚洲精品美女久久久久99蜜臀| 天堂影院成人在线观看| 国产一卡二卡三卡精品| 婷婷丁香在线五月| 波多野结衣高清无吗| 一进一出抽搐动态| 日本成人三级电影网站| 1024香蕉在线观看| 丰满的人妻完整版| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 久久婷婷人人爽人人干人人爱| 日本 欧美在线| 黄色毛片三级朝国网站| 国产又爽黄色视频| 别揉我奶头~嗯~啊~动态视频| 久久欧美精品欧美久久欧美| 亚洲一区二区三区色噜噜| 久久香蕉国产精品| 成人三级做爰电影| 国产一级毛片七仙女欲春2 | 国产三级在线视频| 亚洲国产精品成人综合色| 欧美最黄视频在线播放免费| 一a级毛片在线观看| 亚洲色图 男人天堂 中文字幕| 成人精品一区二区免费| 男女下面进入的视频免费午夜 | 岛国视频午夜一区免费看| 一边摸一边抽搐一进一小说| 国产成人精品久久二区二区免费| 美女大奶头视频| 午夜免费激情av| 色综合婷婷激情| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 一区二区三区激情视频| 国产一区二区在线av高清观看| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 国产精品乱码一区二三区的特点| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 最近最新中文字幕大全电影3 | 日韩 欧美 亚洲 中文字幕| 可以在线观看的亚洲视频| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看吧| 超碰成人久久| 一二三四社区在线视频社区8| 桃色一区二区三区在线观看| 精品高清国产在线一区| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 一二三四在线观看免费中文在| a级毛片在线看网站| 国产1区2区3区精品| 亚洲国产毛片av蜜桃av| 国产成人av教育| 日本成人三级电影网站| 久热这里只有精品99| bbb黄色大片| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 美女国产高潮福利片在线看| 嫩草影院精品99| 黄色片一级片一级黄色片| 熟女电影av网| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲美女久久久| 久久香蕉国产精品| 欧美最黄视频在线播放免费| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 亚洲中文av在线| 99国产精品99久久久久| 国产一区二区三区在线臀色熟女| 9191精品国产免费久久| 免费观看人在逋| 亚洲专区字幕在线| 18禁美女被吸乳视频| 成人国产综合亚洲| av超薄肉色丝袜交足视频| 精品不卡国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产精品免费视频内射| 国产精品久久视频播放| 亚洲av五月六月丁香网| 久久中文字幕人妻熟女| 人人妻人人看人人澡| 欧美性猛交╳xxx乱大交人| 久久国产亚洲av麻豆专区| 天堂动漫精品| 观看免费一级毛片| www.999成人在线观看| 欧美成人免费av一区二区三区| 伊人久久大香线蕉亚洲五| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 国产午夜福利久久久久久| 十八禁人妻一区二区| 亚洲精品一卡2卡三卡4卡5卡| 男女视频在线观看网站免费 | 99久久99久久久精品蜜桃| 99精品欧美一区二区三区四区| 日日摸夜夜添夜夜添小说| 男女床上黄色一级片免费看| 男女那种视频在线观看| 久久中文看片网| 午夜免费鲁丝| 亚洲精品美女久久av网站| 成人欧美大片| av有码第一页| 热re99久久国产66热| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| 哪里可以看免费的av片| 我的亚洲天堂| 88av欧美| 免费在线观看日本一区| 在线天堂中文资源库| 免费一级毛片在线播放高清视频| 久久香蕉国产精品| 国产1区2区3区精品| 成人免费观看视频高清| 在线国产一区二区在线| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| а√天堂www在线а√下载| 欧美日韩瑟瑟在线播放| 人成视频在线观看免费观看| 国产精品1区2区在线观看.| 亚洲精华国产精华精| 亚洲熟女毛片儿| 欧美乱妇无乱码| 一区二区三区高清视频在线| 国产极品粉嫩免费观看在线| 亚洲成人精品中文字幕电影| 成人三级做爰电影| 午夜福利一区二区在线看| 制服人妻中文乱码| 亚洲国产欧洲综合997久久, | 亚洲国产看品久久| 欧美中文综合在线视频| 在线永久观看黄色视频|