• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Notch fatigue of Cu50Zr50 metallic glasses under cyclic loading:molecular dynamics simulations

    2021-07-06 05:04:08YongYangHairuiLiZailinYangJinLiuEvansKabuteyKateyeandJianweiZhao
    Communications in Theoretical Physics 2021年6期

    Yong Yang,Hairui Li,Zailin Yang,?,Jin Liu,Evans Kabutey Kateye and Jianwei Zhao

    1 College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001,China

    2 Key Laboratory of Advanced Material of Ship and Mechanics,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China

    3 College of Materials and Textile Engineering,Jiaxing University,Jiaxing 314000,China

    Abstract Molecular dynamics simulation is performed to simulate the tension–compression fatigue of notched metallic glasses(MGs),and the notch effect of MGs is explored.The notches will accelerate the accumulation of shear transition zones,leading to faster shear banding around the notches’root causing it to undergo severe plastic deformation.Furthermore,a qualitative investigation of the notched MGs demonstrates that fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.The fatigue performance of blunt notches is stronger than that of sharp notches.Making the notches blunter can improve the fatigue life of MGs.

    Keywords:metallic glasses,notches,fatigue life,molecular dynamics simulations

    1.Introduction

    In the field of materials science,research in notches is always a hot topic.It is important for the safety and reliability design of precision structural components[1–3].Metallic glasses(MGs)are widely used in microelectronic systems due to their high strength,high hardness,and good forming ability[4,5].However,in the manufacture and application of engineering materials,mechanical damage,corrosion,and other factors can cause notches and cracks[6].Therefore,exploring the notch effect of MGs has become a top priority[7–9].Numerous experiments and simulations have been performed to analyze the ductility and notch insensitivity of MGs.For example,Jang et al reported separate and distinct critical sizes for maximum strength and the brittle-to-ductile transition,thereby demonstrating that strength and ability to carry plasticity are decoupled at the nanoscale[10].Qu et al found that the tensile strength of the studied bulk MGs(BMGs)is insensitive to notches and much better than that of conventional brittle materials.Moreover,it might be possible to toughen BMGs by introducing artificial defects[11].Sha et al considered that failure mode and strength in notched MGs critically depend on the notch depth and notch sharpness[12].Pan et al reported that the anomalous inverse notch effect is caused by a transition in the failure mechanism from shear banding at the notch tip to the cavitation and the void coalescence[13,14].

    At present,fruitful research results have been achieved in improving ductility.However,over 90 percent of failures are due to fatigue in practical applications[15].It is particularly important to study the fatigue properties of MGs.The failure of notched MGs is accompanied by the initiation,propagation,and arrest of the shear band(SB).The time scale and length involved in fatigue failure are small,and it is difficult to observe the deformation process in the experiment.For instance,the critical scale of the SB is about 10nm[16].Conversely,the research scope of molecular dynamics(MD)simulations can completely solve the scale problem,and can also characterize the microstructure and deformation mechanism of materials[17].

    In this work,the MD method is used to investigate the fatigue response of notchedCu50Zr50MGs under tensile–compression fatigue experiments.The fatigue failure mechanism of MGs at the atomic level is analyzed and the factors affecting fatigue life are summarized.The fatigue life of MGs has a quantitative relationship with the notch sharpness.According to the fatigue response and deformation process analysis of the notched MGs under cyclic loading,the aggregation rate of the shear transition zones(STZs)is the key to determining the fatigue performance.The sample of sharp notches has a large stress concentration,which increases the growth rate of STZs,accelerates the amplitude of atomic energy changes,and shortens the fatigue life.

    2.Atomistic simulations

    The Large-Scale Atomic/Molecular Massive Parallel Simulator(LAMMPS)is a commonly used method for MD simulation and is often used to describe multi-scale,largescale atomic structures and mechanical properties[18,19].A small cube containing 10,000 Cu atoms is established,and the corresponding number of Cu atoms is replaced with Zr atoms in combination with the random atomic replacement,forming the initial configuration ofCu50Zr50.The interaction between atoms is described by the embedded atom method potential function[20]:

    where F is called the embedding energy,which is a function of the electron density ρ,φ is a pair-potential interaction,α and β are the element types of atoms i and j.

    Periodic boundary conditions are applied in all directions of the initial configuration,reducing it from 2000 K to 50 K at a cooling rate of 1011K/s[21,22].A preliminary thin film sample with a size of28 ×56 ×5.6 nm3and containing 548,000 atoms is obtained by periodic replication in the X-,Y-,and Z-directions at the corresponding proportion.After annealing the sample at 800 K for 0.5 ns[23,24],the temperature is broughtback to 50 K at the same cooling rate,and then a second relaxation is performed to eliminate the effects of multiple replications and temperature fluctuations.After the sample is constructed,a strain rate of109s-1is applied to the Y-direction for loading.The boundary conditions are reset to free boundary conditions in the X-direction and periodic boundary conditions in the Y-and Z-directions.To quantify the plastic deformation of MGs and observe the change in the notches,the color of the atom is specified according to the atomic local shear strainηMises.

    whereηij(i,j=x,y,z)are the components of the Lagrangian strain matrix for the specific atoms[25,26].

    3.Results and discussion

    To explore the effect of notches on the fatigue performance of MGs,fatigue tests are performed on samples with different notch sharpness,and the relationship between notch sharpness,stress concentration,and fatigue life is analyzed.The constructed notched MGs sample is shown in figure 1(a).The notch radian θ is calculated as

    and the main features of the notched sample are the symmetrical notch radius R and notch depth D.To eliminate the impact of notch depth on the simulation results,a constant valueD=2 nm is set.Uniaxial tensile loading is carried out on the samples with different sharpness,and an applied strain of 5.4%is employed in the fatigue tests,where the maximum stress is 96% of the ultimate tensile strength(UTS).

    Tensile–compression cyclic loading is performed on samples with different sharpness.Figure 2 shows the stress versus cycle numbers curve of each sample(0 degrees,20 degrees,40 degrees,80 degrees).From each curve,it is found that after certain fatigue cycles the stress decreased obviously.After a few more cycles,the stress dropped to a stable value,i.e.at the blue arrow.The comparison results of the curves show that the stress drop position of the sample with small sharpness lags significantly.To elaborate on the curve changes,a series of snapshots of the deformation process of each sample is obtained by monitoring the atomic local shear strain during cyclic loading.The atomic local shear strain is characterized using the corresponding color[17,27].Figure 3 shows the process of the atomic structure of the unnotched sample.Shear banding is divided into four stages.A region with a large local atomic shear strain indicates a high density of STZs.In the SB initiation,the STZ density is relatively low.As the cycle numbers increase,the STZs gradually aggregate and reach a critical size.The STZs reaching the critical size inspire the SB,which propagates along the Y-direction at 45 degrees.After the SB crosses through the entire sample,it gradually thickens.The SB initiation stage of the notched sample gradually becomes shorter as the sharpness increases.Combining the stress curve change and deformation process,the stress drop corresponds to the rapid localization of plastic strain,while the SB formation corresponds to the failure of the sample.As in Sha’s simulation,the fatigue life of MGs is mostly concentrated in the SB initiation[28].

    Figure 1.(a)Structuralrepresentation of the Cu50Zr50 notched MGs sample,with notch depth D=2 nm,notch radius R,and notch radian θ.(b)The fatigue test with a 5.4% maximum strain corresponding to the 96% UTS.

    Figure 2.The stress versus cycle number plots for the fatigue tests with an applied strain of 5.4%,where the blue arrow corresponds to the cycle numbers of SB formation:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=80°.

    Figure 3.A series of snapshots are captured by monitoring the deformation process withηMises:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=8°0.

    Figure 4.The notch radian versus fatigue cycle number;the red dotted line is a fitting curve.

    A series of notched samples with different radians are simulated,the failure cycles are statistically analyzed,and the curve fitting is performed for the obtained data.Figure 4 shows the fatigue life versus notch radian curve;the fatigue life of the unnotched sample is 20 cycles,while the fatigue life is correspondingly shorter with the increase in radians.When the radian exceeds 40 degrees,the fatigue life is maintained at six cycles.By combining with the atomic structure snapshot of each notched sample during deformation,the phenomenon of fatigue life reduction can be clarified.The notches accelerate the aggregation rate of STZs and,as the notch sharpness increases,the faster the aggregation rate.According to Nakai’s experimental results[29,30],notches in the material will cause stress concentration,and the notch sharpness affects the degree of stress concentration.In the simulation process,the stress concentration at the root of the sharp notch is large,resulting in a faster STZ aggregation rate,and faster formation and propagation of the SB.The fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.

    Figure 5.Atomic energy versus fatigue cycle number during fatigue tests:(a)unnotched;(b)θ=20°;(c)θ=40°;(d)θ=80°.

    Figure 6.(a)The proportion of STZs versus fatigue cycle numbers;(b)the STZ’s growth rate versus fatigue cycle numbers.

    Figure 5 is the atomic energy change in each notched MG sample.As the sharpness increases,the linear elastic phase gradually becomes shorter.When the radian exceeds 40 degrees,the linear elastic phase disappears.The large stress gradient causes STZs to accumulate faster,the SB forms faster to withstand plastic deformation and,at the same time,the energy storage capacity of the notched sample drops faster.There is also significant STZ activity in the thickening stage of the SB,which is mainly because the stress required to form the SB is much larger than that continuing to propagate the SB.It is manifested as the thickening of the SB and the energy circulation within a certain amplitude at this stage.

    From the analysis and summary of the fatigue mechanism of the notched MGs,it is believed that the fatigue life is related to the aggregation rate of STZs.The STZs are formed by the aggregation of atoms with the large local atomic shear strain(ηMises>0.2).Statistics and analysis of the changes in the proportion of these atoms will help one to understand the intrinsic mechanism of the MGs’failure behavior.The proportion of the large shear strain atoms under each cycle is recorded,and the STZs of each sample are shown in figure 6(a).The STZ’s growth rate is obtained by taking the first-order derivative of each curve,as shown in figure 6(b).

    From figure 6,it is believed that the change in the content of STZs is related to the stress concentration at the notch root.The STZs show an S-shaped growth trend,andthe differences among the samples are mainly concentrated in the SB initiation stage.From the growth rate curves of the STZs,the overall trend is growth first and then it declines.Before the peak,it is the SB initiation stage,and the sample with greater sharpness has a more obvious stress concentration,resulting in a faster STZ aggregation rate.After the peak,the SB is completely formed,the stress concentration at the notch root disappears,and the growth rate of STZs is almost the same and gradually decreases.The position of each peak point corresponds to the SB propagation stage,and the growth rate of STZs is the highest at this moment.Obvious stratification can be observed from the curve.The STZ fraction of the unnotched sample has the slowest growth rate.When the notch radian exceeds 40 degrees,this indicates that fatigue life has reached the critical value at this moment.The fatigue life of notched MGs can be predicted by the STZs’growth rate curves.

    4.Conclusions

    Using MD simulation,cyclic responses of notched MGs under tension–compression fatigue have been investigated,and the fatigue failure mechanism of the notched MGs has been explained.Considering the impact of the notch radian on fatigue performance,several important conclusions are as follows:

    (i)According to the fatigue response of the notch radian,as the notch radian gradually increases,the fatigue life becomes shorter.When the radian exceeds 40 degrees,the fatigue life of the notched sample is maintained at six cycles.From the comparison of multiple samples,the fatigue life of notched MGs can be predicted.

    (ii)The fatigue life of the blunt notched MGs is longer than that of the sharp notched MGs.The stress concentration at the root of the sharp notch is strong,which induces the faster aggregation of STZs,leads to the SB initiation,SB formation,and SB propagation,and reduces the fatigue life of MGs.Conversely,the SB formed by the blunt notch root is stable,the plastic zone of the sample is large,and the blunt notch enhances the fatigue resistance.

    (iii)With the effect of cyclic stress on the notch root,the SB is formed around it to undergo plastic deformation.The formation and propagation of the SB reduce the energy storage capacity of structures,and the energy storage capacity of sharp notch samples decreases faster.The SB propagation is inhibited at the later stage,which results in the thickening of the SB.

    Acknowledgments

    The work is supported by the Key Laboratory of Yarn Materials Forming and Composite Processing Technology,Zhejiang Province(No.MTC2019-01),the Fundamental Research Funds for the Central Universities(No.3072020CF0202)and the Program for Innovative Research Team in China Earthquake Administration.

    亚洲精品456在线播放app| 亚洲一级一片aⅴ在线观看| 视频中文字幕在线观看| 三级毛片av免费| 十八禁国产超污无遮挡网站| 国产亚洲精品av在线| av在线蜜桃| 免费av毛片视频| 搡老妇女老女人老熟妇| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 亚洲精品日韩在线中文字幕| 一级毛片电影观看| 秋霞在线观看毛片| 久久久精品免费免费高清| av.在线天堂| 欧美bdsm另类| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| 久久97久久精品| 久久精品久久久久久久性| 亚洲av中文字字幕乱码综合| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 国产亚洲一区二区精品| 九草在线视频观看| 国产黄频视频在线观看| 天美传媒精品一区二区| 亚洲一区高清亚洲精品| 中文资源天堂在线| 日韩欧美精品v在线| 嫩草影院精品99| 乱系列少妇在线播放| 午夜久久久久精精品| 成年版毛片免费区| 美女黄网站色视频| 能在线免费观看的黄片| 中文字幕av在线有码专区| 天天躁夜夜躁狠狠久久av| 国产成人精品婷婷| 秋霞在线观看毛片| 免费大片黄手机在线观看| 亚洲欧美日韩无卡精品| 一个人观看的视频www高清免费观看| 久久99热6这里只有精品| 免费av观看视频| 亚洲av中文av极速乱| 国产精品日韩av在线免费观看| 在线 av 中文字幕| 美女被艹到高潮喷水动态| 天堂中文最新版在线下载 | 日韩欧美 国产精品| 五月玫瑰六月丁香| 亚洲最大成人手机在线| 80岁老熟妇乱子伦牲交| 中文字幕av成人在线电影| 少妇的逼好多水| 国产淫片久久久久久久久| 免费观看精品视频网站| 日韩av在线免费看完整版不卡| 夫妻午夜视频| 欧美丝袜亚洲另类| www.av在线官网国产| 美女主播在线视频| 能在线免费看毛片的网站| 伊人久久国产一区二区| 国产精品一区二区性色av| 天堂√8在线中文| 国产片特级美女逼逼视频| 中文字幕久久专区| av在线观看视频网站免费| 中国国产av一级| 国产精品一二三区在线看| av在线亚洲专区| 91aial.com中文字幕在线观看| 欧美性感艳星| 熟妇人妻不卡中文字幕| 亚洲成色77777| 99久久精品热视频| 成人av在线播放网站| 国产激情偷乱视频一区二区| 91aial.com中文字幕在线观看| 69人妻影院| 久久久久久久国产电影| 夜夜看夜夜爽夜夜摸| 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 免费看不卡的av| 久久久午夜欧美精品| 深爱激情五月婷婷| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 美女cb高潮喷水在线观看| 99热这里只有是精品50| 1000部很黄的大片| 青青草视频在线视频观看| 女人被狂操c到高潮| 亚洲最大成人中文| 久久久久久久久久黄片| 精品人妻熟女av久视频| 日韩,欧美,国产一区二区三区| 少妇丰满av| 国产精品久久视频播放| 日韩视频在线欧美| 亚洲欧美日韩无卡精品| 亚洲精品国产av成人精品| 中文字幕久久专区| 久久久午夜欧美精品| 午夜亚洲福利在线播放| videos熟女内射| 亚洲欧美一区二区三区黑人 | 日韩国内少妇激情av| 日韩精品有码人妻一区| 能在线免费看毛片的网站| 久久久久久久亚洲中文字幕| 国产精品国产三级专区第一集| 免费看美女性在线毛片视频| 国产精品蜜桃在线观看| 成年女人看的毛片在线观看| 亚洲国产欧美在线一区| 麻豆av噜噜一区二区三区| 亚洲,欧美,日韩| 国产不卡一卡二| 国产精品久久视频播放| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 亚洲高清免费不卡视频| 亚洲人成网站在线观看播放| 舔av片在线| 国产精品伦人一区二区| 国产有黄有色有爽视频| 日韩强制内射视频| 免费黄网站久久成人精品| 国产精品久久久久久久电影| 成人特级av手机在线观看| 免费看av在线观看网站| 三级经典国产精品| 久久久国产一区二区| 在线免费观看不下载黄p国产| 熟妇人妻久久中文字幕3abv| 亚洲av成人精品一二三区| 春色校园在线视频观看| 中国美白少妇内射xxxbb| 又大又黄又爽视频免费| 成人性生交大片免费视频hd| 少妇熟女aⅴ在线视频| 日韩制服骚丝袜av| 成人av在线播放网站| 人妻一区二区av| 亚洲精品成人久久久久久| 一个人观看的视频www高清免费观看| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 午夜福利成人在线免费观看| 边亲边吃奶的免费视频| 噜噜噜噜噜久久久久久91| 免费看av在线观看网站| 欧美日韩综合久久久久久| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 内射极品少妇av片p| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 大香蕉久久网| a级毛片免费高清观看在线播放| 91精品国产九色| 欧美区成人在线视频| 亚洲自偷自拍三级| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂 | 亚洲国产最新在线播放| 国产伦精品一区二区三区四那| 久久99蜜桃精品久久| 嫩草影院入口| 亚洲性久久影院| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网 | 久久精品久久精品一区二区三区| 免费观看精品视频网站| 久久久成人免费电影| 水蜜桃什么品种好| 白带黄色成豆腐渣| 男女国产视频网站| 中文在线观看免费www的网站| 午夜福利高清视频| 日韩av在线大香蕉| 日韩在线高清观看一区二区三区| 爱豆传媒免费全集在线观看| 久久99热6这里只有精品| 老司机影院毛片| 国产亚洲午夜精品一区二区久久 | 国产成人freesex在线| av免费在线看不卡| 91精品国产九色| 日本黄大片高清| 乱人视频在线观看| 久久久久久久亚洲中文字幕| 久久精品国产自在天天线| 亚洲va在线va天堂va国产| 久久这里有精品视频免费| 五月伊人婷婷丁香| 亚洲成人久久爱视频| 亚洲性久久影院| 亚洲av.av天堂| 国产视频内射| ponron亚洲| 国产成人a∨麻豆精品| 啦啦啦韩国在线观看视频| av免费观看日本| 久久久久网色| 欧美区成人在线视频| 成人漫画全彩无遮挡| 真实男女啪啪啪动态图| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| 特级一级黄色大片| 97超视频在线观看视频| 久久久久久久国产电影| 亚洲精品,欧美精品| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 丰满人妻一区二区三区视频av| 色视频www国产| 高清午夜精品一区二区三区| 观看美女的网站| 天堂网av新在线| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 高清午夜精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲三级黄色毛片| 国产精品久久久久久精品电影| 日韩一区二区三区影片| 日本黄大片高清| 69av精品久久久久久| 成人一区二区视频在线观看| av免费在线看不卡| 免费看日本二区| 1000部很黄的大片| 美女cb高潮喷水在线观看| 国产成人freesex在线| 麻豆国产97在线/欧美| 九九爱精品视频在线观看| 婷婷色麻豆天堂久久| 久久久久九九精品影院| 成年版毛片免费区| 啦啦啦中文免费视频观看日本| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美极品一区二区三区四区| 久久精品人妻少妇| 麻豆成人午夜福利视频| 夜夜看夜夜爽夜夜摸| 久久97久久精品| 久久久欧美国产精品| 高清日韩中文字幕在线| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 嘟嘟电影网在线观看| 日本黄大片高清| 嫩草影院入口| 女人久久www免费人成看片| 嫩草影院精品99| 成人综合一区亚洲| 国产成年人精品一区二区| 亚洲av不卡在线观看| 午夜日本视频在线| 亚洲国产色片| 精品熟女少妇av免费看| 一本久久精品| 最近中文字幕2019免费版| 69人妻影院| 亚洲欧美成人精品一区二区| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 亚州av有码| 成人亚洲精品av一区二区| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| av网站免费在线观看视频 | 国产成人精品福利久久| 搡老妇女老女人老熟妇| 国产精品99久久久久久久久| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 在线a可以看的网站| 青青草视频在线视频观看| 99久久精品一区二区三区| 亚洲av.av天堂| 国产91av在线免费观看| 欧美日韩精品成人综合77777| 51国产日韩欧美| 身体一侧抽搐| 大香蕉97超碰在线| 亚洲国产高清在线一区二区三| 毛片一级片免费看久久久久| 亚洲无线观看免费| 一级二级三级毛片免费看| 可以在线观看毛片的网站| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av在线观看美女高潮| 少妇人妻一区二区三区视频| 美女高潮的动态| 亚洲精品自拍成人| 非洲黑人性xxxx精品又粗又长| 1000部很黄的大片| 国产精品久久久久久精品电影小说 | 91精品国产九色| 人人妻人人澡欧美一区二区| 简卡轻食公司| 天天躁夜夜躁狠狠久久av| 国产精品嫩草影院av在线观看| 国产老妇女一区| 久久6这里有精品| 熟妇人妻久久中文字幕3abv| 校园人妻丝袜中文字幕| 熟妇人妻久久中文字幕3abv| 午夜亚洲福利在线播放| 国产一区二区三区综合在线观看 | 亚洲国产欧美人成| 欧美潮喷喷水| 色综合站精品国产| 人人妻人人看人人澡| 午夜激情久久久久久久| 亚洲在线观看片| 我的女老师完整版在线观看| 成年av动漫网址| 3wmmmm亚洲av在线观看| 熟妇人妻不卡中文字幕| 国产伦精品一区二区三区视频9| 如何舔出高潮| 最新中文字幕久久久久| 久久精品国产亚洲av天美| 国产不卡一卡二| 99久国产av精品| 日产精品乱码卡一卡2卡三| 最近2019中文字幕mv第一页| 日韩精品青青久久久久久| 男人爽女人下面视频在线观看| 日本-黄色视频高清免费观看| 欧美日韩国产mv在线观看视频 | 国产一区二区三区综合在线观看 | 国产精品精品国产色婷婷| 美女被艹到高潮喷水动态| 久久人人爽人人爽人人片va| 免费观看精品视频网站| 男女边吃奶边做爰视频| 国产又色又爽无遮挡免| or卡值多少钱| 欧美+日韩+精品| 乱人视频在线观看| 精品少妇黑人巨大在线播放| 久久97久久精品| 人妻制服诱惑在线中文字幕| 91精品伊人久久大香线蕉| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频| 大香蕉久久网| 一区二区三区免费毛片| 免费观看av网站的网址| 国产淫片久久久久久久久| 我的老师免费观看完整版| 大香蕉97超碰在线| 成人毛片a级毛片在线播放| 久久久久精品性色| 久久久亚洲精品成人影院| 国产美女午夜福利| 免费高清在线观看视频在线观看| 婷婷色av中文字幕| 国产不卡一卡二| 99热这里只有精品一区| 亚洲av男天堂| 黄色欧美视频在线观看| 欧美另类一区| 久久久久免费精品人妻一区二区| 一夜夜www| 日本熟妇午夜| 国产精品久久视频播放| 欧美三级亚洲精品| 日韩亚洲欧美综合| 久久久亚洲精品成人影院| 免费黄色在线免费观看| 亚洲欧美精品专区久久| 女的被弄到高潮叫床怎么办| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 日韩精品有码人妻一区| 在线观看人妻少妇| 床上黄色一级片| 日韩一区二区视频免费看| 国产成人精品婷婷| 免费av观看视频| 免费大片18禁| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 全区人妻精品视频| 乱系列少妇在线播放| 亚洲av中文av极速乱| 99热这里只有是精品在线观看| 2021天堂中文幕一二区在线观| 成人二区视频| 日韩制服骚丝袜av| 午夜精品一区二区三区免费看| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 一夜夜www| 久久久久久久久久久免费av| 免费观看的影片在线观看| 国产午夜福利久久久久久| 在线免费十八禁| 日韩av在线免费看完整版不卡| 国产视频内射| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲av天美| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 亚洲最大成人av| 国产探花极品一区二区| 大片免费播放器 马上看| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人久久小说| 久久久午夜欧美精品| 国产单亲对白刺激| 免费av毛片视频| 午夜精品一区二区三区免费看| 夫妻午夜视频| 十八禁网站网址无遮挡 | 久久久久久九九精品二区国产| 一级黄片播放器| 少妇人妻一区二区三区视频| 亚洲精品一区蜜桃| 国产黄a三级三级三级人| 日韩在线高清观看一区二区三区| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 在线 av 中文字幕| 久久99蜜桃精品久久| 中文字幕免费在线视频6| 国产精品久久久久久精品电影| 精品久久久噜噜| 久久精品综合一区二区三区| 亚洲欧美日韩东京热| 亚洲高清免费不卡视频| av在线蜜桃| 人妻系列 视频| 欧美bdsm另类| 欧美一级a爱片免费观看看| 91久久精品国产一区二区三区| 99re6热这里在线精品视频| 日韩av在线大香蕉| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 亚洲精品日韩av片在线观看| 亚洲天堂国产精品一区在线| 日韩av免费高清视频| 91狼人影院| 欧美激情在线99| 亚洲成人av在线免费| 老司机影院成人| 亚洲av中文av极速乱| 校园人妻丝袜中文字幕| 少妇熟女aⅴ在线视频| 一级毛片我不卡| 一区二区三区高清视频在线| 女人被狂操c到高潮| 久久久成人免费电影| 免费人成在线观看视频色| 免费大片18禁| 人体艺术视频欧美日本| 熟女人妻精品中文字幕| 97人妻精品一区二区三区麻豆| 高清在线视频一区二区三区| 亚洲国产欧美人成| 国内精品一区二区在线观看| 性插视频无遮挡在线免费观看| 欧美三级亚洲精品| 99热这里只有是精品在线观看| 日韩不卡一区二区三区视频在线| 天堂网av新在线| 成人漫画全彩无遮挡| 亚洲av二区三区四区| 国产片特级美女逼逼视频| 黄片无遮挡物在线观看| 中文在线观看免费www的网站| 国产一区二区亚洲精品在线观看| 伊人久久精品亚洲午夜| 亚洲精品国产av成人精品| 亚洲精品视频女| 成年av动漫网址| 午夜激情久久久久久久| 搞女人的毛片| 亚洲va在线va天堂va国产| 亚洲精品视频女| 蜜桃久久精品国产亚洲av| 久久久国产一区二区| 内射极品少妇av片p| 亚洲精品国产av成人精品| 神马国产精品三级电影在线观看| 欧美高清性xxxxhd video| 亚洲av成人av| 不卡视频在线观看欧美| 久久午夜福利片| 久久久亚洲精品成人影院| 午夜精品国产一区二区电影 | 偷拍熟女少妇极品色| 老司机影院毛片| 狂野欧美白嫩少妇大欣赏| 美女主播在线视频| 青春草视频在线免费观看| 嫩草影院新地址| 成年女人看的毛片在线观看| 干丝袜人妻中文字幕| 亚洲精品乱久久久久久| 久久久久久久久久成人| 亚洲最大成人手机在线| 久久国产乱子免费精品| 日本一本二区三区精品| 观看美女的网站| 天堂中文最新版在线下载 | 老师上课跳d突然被开到最大视频| 精品一区在线观看国产| 久久久久久久久久人人人人人人| 免费黄色在线免费观看| 亚洲伊人久久精品综合| 在线播放无遮挡| 最后的刺客免费高清国语| 日产精品乱码卡一卡2卡三| 国产乱人偷精品视频| 国产视频首页在线观看| 黄色日韩在线| 午夜激情欧美在线| 日日撸夜夜添| 高清视频免费观看一区二区 | 国产黄频视频在线观看| av在线老鸭窝| 日本爱情动作片www.在线观看| 身体一侧抽搐| 亚洲精品国产av蜜桃| 日本猛色少妇xxxxx猛交久久| 99久久九九国产精品国产免费| 能在线免费观看的黄片| 婷婷六月久久综合丁香| kizo精华| 99久久精品国产国产毛片| 深夜a级毛片| 精品一区二区三卡| 亚洲国产精品成人综合色| 午夜福利高清视频| 久久精品国产鲁丝片午夜精品| 搡老乐熟女国产| 精品不卡国产一区二区三区| 天堂俺去俺来也www色官网 | 国产乱人偷精品视频| 最近视频中文字幕2019在线8| 国产有黄有色有爽视频| 一级av片app| 亚洲国产欧美在线一区| 国产成人精品福利久久| 97精品久久久久久久久久精品| 免费av毛片视频| 亚洲性久久影院| 日韩亚洲欧美综合| 成人国产麻豆网| 97超碰精品成人国产| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 日韩视频在线欧美| 午夜福利视频精品| 国产精品国产三级专区第一集| 国产高清三级在线| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| 尤物成人国产欧美一区二区三区| 乱人视频在线观看| 大话2 男鬼变身卡| 欧美高清性xxxxhd video| 嫩草影院精品99| 亚洲欧美精品自产自拍| 国产91av在线免费观看| 亚洲最大成人av| 精品熟女少妇av免费看| 亚洲av电影不卡..在线观看| 综合色av麻豆| 午夜福利在线观看免费完整高清在| 亚洲av不卡在线观看| 淫秽高清视频在线观看| 人体艺术视频欧美日本| 国产精品久久久久久久久免| 97在线视频观看| 国产有黄有色有爽视频| 女的被弄到高潮叫床怎么办| 91久久精品国产一区二区三区| 日本免费在线观看一区| 成人亚洲精品av一区二区| 日韩强制内射视频| 寂寞人妻少妇视频99o| 九九爱精品视频在线观看| 99九九线精品视频在线观看视频| 人妻夜夜爽99麻豆av| 亚洲精品一区蜜桃| 天美传媒精品一区二区| 日韩人妻高清精品专区| 真实男女啪啪啪动态图| 一二三四中文在线观看免费高清| 亚洲精品乱码久久久久久按摩| 又黄又爽又刺激的免费视频.| 一区二区三区四区激情视频| 日韩一本色道免费dvd| 日本一本二区三区精品|