• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proton radioactivity within the generalized liquid drop model with various versions of proximity potentials

    2021-07-06 05:04:02YuQiXinJunGangDengandHongFeiZhang
    Communications in Theoretical Physics 2021年6期

    Yu-Qi Xin,Jun-Gang Dengand Hong-Fei Zhang

    School of Nuclear Science and Technology,Lanzhou University,730000 Lanzhou,China

    Abstract In the present work,we systematically investigate the proton radioactivity half-lives of spherical proton emitters adopting a generalized liquid drop model(GLDM)with 16 different proximity potentials,of which the proximity potential Prox.77-13 gives the closest results to the experimental data.Combined with the previous conclusion that the GLDM with proximity potential Prox.77-13 can also best describe α decay half-lives,which makes the model more uniform and consistent.Further,we use the proximity potential Prox.77-13 in GLDM to predict the proton radioactivity half-lives of 14 spherical proton emitters that are allowed energetically but not yet observed experimentally or specifically quantified.Finally,we research the Geiger?Nuttall law for proton radioactivity.The results reveal that the Geiger?Nuttall law can also be well used to study the proton radioactivity half-lives of isotopes with the same orbital angular momentum l.

    Keywords:spherical proton emitter,GLDM,proximity energy,Geiger?Nuttall law

    1.Introduction

    The research of exotic processes near the extremes of the nuclide chart is one of the current hot topics in nuclear physics,and proton radioactivity is one such exotic process.Since the first discovery of proton radioactivity by Jackson et al in 1970[1],with the development and improvement of experimental facilities and radiation beams,proton radioactivity has also been observed for many nuclei with mass numbers spanning from 110 to 185[2],with half-life length concentrated in the range of 10?6seconds to a few seconds.Proton-rich nuclei above the proton drip line would tend to stabilize by spontaneously emitting protons,and in turn,the proton drip line inherently provides certain limiting conditions for the synthesis of proton-rich nuclei in explosive objects as well,known as rapid proton capture[3–5].Proton radioactivity,as a typical decay mode of nuclei beyond the proton drop line,is a powerful tool for studying the properties and structures of very proton-rich nuclei[6,7].Thus both experimental measurements and theoretical studies of proton radioactivity are becoming increasingly necessary.

    In this study,we calculate the proton radioactivity half-lives of spherical proton emitters within the generalized liquid drop model(GLDM).The GLDM takes into account the asymmetry of mass and charge,shape evolution,and proximity energy,and it is a relatively unified theory that is well able to describe and predict the half-lives of proton radioactivity,α decay,cluster radioactivity,spontaneous fission,and the reaction crossing section of heavy-ion fusion[8–13].In the GLDM,when the potential barrier corresponding to the reaction process is constructed,the process can be considered as a barrier penetration problem and the WKB approximation can be used to calculate the penetration probability of the potential barrier.Besides,for proton radioactivity,the contribution of the centrifugal potential from the orbital angular momentum should be taken into account in the total energy E of the system.So far,many theoretical models have used different nuclear potentials between the emitted proton and the daughter nucleus to calculate the proton radioactive half-life,such as the Jeukenne,Lejeune,and Mahaux(JLM)effective interaction[14],the effective interaction of density-dependent M3Y(DDM3Y)[14–16],the distorted wave Born approximation[17],the Coulomb and proximity model(CPPM)[18,19],the Gamow-like model[20,21]and so on.

    The special features of GLDM lie in two main aspects,namely the quasimolecular shape mechanism[10]and the proximity potential.The benefit of the quasimolecular shape is the ability to describe the static transition process between one and two bodies during fission or fusion.During this process,a deep and narrow neck emerges,while attractive nuclear forces remain between the nucleon on either side of the neck[10,22–25],this is called the proximity potential,and it has a significant effect on the potential barriers.Since the proximity potential was first used in 1977[24],many physicists have improved or proposed new proximity potentials,either by adopting a better format for the surface energy coefficients[26–32]or by going further and improving the form of the universal function[25,33–41].These parameters are determined from experimental data on heavy-ion reactions and given that experimental data on proton radioactivity have become more abundant since 1970.It is necessary to investigate which of the current proximity potentials can best describe the available experimental data on proton radioactivity when applied to the more uniform GLDM.A recent work[18]has shown that using the proximity potential Guo2013 to the CPPM model provides the best description of proton radioactivity data,while the GLDM[42]combined with the proximity potential Prox.77-13 gives the closest results to the α decay half-life data.Inspired by this,we have first systematically studied the proton radioactivity half-lives of spherical proton emitters using GLDM with different proximity potentials,compared them with experimental data,and analyzed their physical mechanism.This proximity potential is then applied to GLDM to predict the half-lives of proton radioactivity for those spherical proton emitters that are energetically permissible but not yet observed or specifically quantified experimentally.Finally,the Geiger?Nuttall law for proton radioactivity is investigated.

    The paper is organized as follows:the theoretical framework for calculating the radioactive half-life of protons and the expressions for the proximity potential involved in the calculation are briefly described in section 2.The results of the calculations and the discussion are given in section 3.Finally,a summary is presented in section 4.

    2.Model and method

    2.1.The generalized liquid drop model

    For the GLDM[8–10,13,22,43],the total energy includes five parts:the volume,surface,Coulomb,proximity energies,and the additional centrifugal potential:

    In the one?body case,they are each given by:

    where I is the relative neutron excess and S is the surface area of the one-body nucleus.V(θ)denotes the electrostatic potential on the surface and V0represents the surface potential of the sphere.When transformed into two bodies:

    The centrifugal energy El(r)can be obtained by[44]

    Here Ai,Zi,Ri,and Iiare the mass numbers,proton numbers,radii,and the relative neutron excesses of proton and daughter nucleus,respectively.Should note that the I2of the proton is set to 0 to ensure a positive and a negative volume and surface energy.And l is the angular momentum carried away by the emitted proton.The calculation is done using its minimum value[45],which is given by observing the spin?parity conservation laws.The radius of proton radioactivity decay parent nucleus,daughter nucleus,and the emitted proton can be obtained by

    The half-life of a spherical proton emitter is defined asThe assault frequency ν is given by

    here,Epand Mpare the kinetic energy and mass of the emitted proton.The barrier penetrating probability P can be obtained by the following formula

    where r denotes the distance between the centers of the emitted proton and of the daughter nucleus.The classical two turning points rinand routare calculated by:rin=R1+R2and E(rout)=Qp.B(r)=μ denotes the reduced mass between the emitted proton and daughter nucleus.

    2.2.The proximity energy

    As covered in the introductory section,when a deep and narrow neck occurs during fission or fusion,the nuclear forces,or proximity energies,between nucleon close together on either side of the neck need to be considered.The proximity energy is defined as the product of a factor concerning the average curvature of the interaction surfaces and a universal function with respect to the separation distance[18,33].In this study,a total of 16 proximity potentials are chosen to replace the original proximity potential in the GLDM to calculate the proton radioactivity half-lives,namely:proximity potential Prox.77[24]and its 12 improved versions[26–32,46],Bass80[41],Prox.81[25],and Guo2013[34].

    2.2.1.The proximity potential Prox.77.The proximity energy Prox.77[24]are expressed as,

    here,the mean curvature radiuscan be calculated with

    where C1and C2represent the matter radii of proton and daughter nucleus,respectively.These two cofficients are given by

    with the effective sharp radius Ricalculating by equation(9).

    γ is the surface energy coefficient:

    where,As=(N?Z)/A is the neutron-proton excess.The improved versions of the proximity potential Prox.77 have only had its surface energy constant γ0and the surface asymmetry constant ksadjusted accordingly:

    Prox.77-1:γ0=0.9517(MeV fm?2),ks=1.7826[24]

    Prox.77-2:γ0=1.017 34(MeV fm?2),ks=1.79[26]

    Prox.77-3:γ0=1.460 734(MeV fm?2),ks=4.0[27]

    Prox.77-4:γ0=1.2402(MeV fm?2),ks=3.0[28]

    Prox.77-5:γ0=1.1756(MeV fm?2),ks=2.2[29]

    Prox.77-6:γ0=1.273 26(MeV fm?2),ks=2.5[29]

    Prox.77-7:γ0=1.2502(MeV fm?2),ks=2.4[29]

    Prox.77-8:γ0=0.9517(MeV fm?2),ks=2.6[47]

    Prox.77-9:γ0=1.2496(MeV fm?2),ks=2.3[30]

    Prox.77-10:γ0=1.252 84(MeV fm?2),ks=2.345[31]

    Prox.77-11:γ0=1.089 48(MeV fm?2),ks=1.9830[32]

    Prox.77-12:γ0=0.9180(MeV fm?2),ks=0.7546[32]

    Prox.77-13:γ0=0.911 445(MeV fm?2),ks=2.2938[32]

    The universal function φ(ξ)is written as

    where ξ0=2.54.ξ=(r?C1?C2)/b represents the distance between the near surface of the daughter nucleus and the emitted proton with the width coefficient b fixed to a unity value.

    2.2.2.The proximity potential Prox.81.The form of the proximity energy Prox.81[25]is very similar to that of the proximity energy Prox.77 but the universal function φ(ξ)in it has a different expression than that of Prox.77:

    here γ0=0.9517(MeV/fm2),ks=1.7826.

    2.2.3.The proximity potential Bass80.Bass(1977,1980)[41]derived a potential using a geometric interpretation of fusion data above the barrier for systems with Z1Z2=64?850:

    where ξ andtake the same form as before,but here

    3.Results and discussion

    Since this work requires the application of different proximity potentials to the GLDM,these proximity potentials should first meet certain conditions in order to be self-consistent with the GLDM.This means that the radius equations for these proximity potentials should be consistent with those in the framework of the GLDM and that the total potential curves constructed should be reasonable.We,therefore,chose 16 proximity potentials that satisfy the above conditions and applied them to the GLDM to investigate which of the calculated proton radioactivity half-lives gives the lowest rootmean-square(RMS)value compared to the experimental data.These are the proximity potential Prox.77-1[24]and its 12 improved versions Prox.77-2–13[26–32,47]obtained by improving the corresponding surface energy coefficients,as well as the proximity potentials Bass80[41],Prox.81[25]and Guo2013[34],which are obtained by improving the universal functions.In the specific calculation,it should be the same problem as the one encountered in Deng’s article[42]that the proximity potential Guo2013 cannot be applied in GLDM.For example,in figure 1,the potential barrier curves for146Tm when applying different proximity potentials in GLDM are given.In the region shown in figure 1(a),the barrier corresponding to the proximity potential Guo2013 drops abruptly to?7.5 MeV from 8.1 fm and then increases smoothly until 12 fm,until the curve coincides with other proximity potential curves.The graph also shows that for146Tm the effect of the proximity potential on the barrier curve is almost exclusively between 8 and 12 fm,as the rest range of the curve coincides almost exactly.So it can be attributed that the proximity potential Guo2013 gives an attractive effect that is too strong.

    Figure 1.Total potential barrier curves for 146Tm when using different proximity potentials in GLDM.

    The experimental proton radioactive half-lives,spin,parity,and Qpused in this work are all taken from the recently evaluated atomic mass table AME2016[47,48]and the nuclear properties table NUBASE2016[49].We calculated the RMS valuesbetween the calculated proton radioactivity half-lives using GLDM with different proximity potentials and the experimental data for 27 spherical proton emitters ranging in proton number between 69 and 83,and the relevant results are presented in table 1.As can be seen in this table,the differences between the calculated results are not particularly large.The proximity potential Prox.77-13 gives the closest results to the experimental data,while the original version,gives the largest deviation from the experimental data.The proximity potential Prox.77-13,when applied to the GLDM,improves the original version by 5.71%,which is not a large improvement,but firstly based on the relatively small amount of experimental data on proton radioactivity itself,and secondly,the effect of the proximity potential on the total potential barrier is only in the small range of 3–4 fm,this result is still of some significance.This,coupled with the recent work by Deng et al[42]that the most suitable proximity potential for the calculation of α decay within GLDM is also Prox.77-13,suggests that the results of our work are more coherent and general.

    Next,we explore what makes them differ from each other in terms of results.From the previous section 2,it is clear that the half-life is only related to two factors,the assault frequency ν and the penetrating probability P,while ν is fixed for the same nucleus.From the formula for calculating P,it is clear that it is only related to rin,rout,and the shape of the total potential barrier.From the formulas for rinand rout,we know that these two values are also fixed,thus the difference between the calculated proton radioactivity half-lives is due to the different total GLDM energy.Take146Tm as an example,we list in the last column of table 1 the logarithmic values of the proton radioactivity half-lives of146Tm obtained when the different proximity potentials are applied to the GLDM,and the relevant area in figure 1(a)is shown enlarged in figure 1(b).Firstly,we can see that the proximity potential makes the height of the barrier decrease and the position of the peak point change.Secondly,we see that the purple curve represents the highest total barrier curve corresponding to the proximity potential Prox.77-13,resulting in the longest halflife,while the red curve represents the lowest total barrier curve corresponding to the original proximity potential,resulting in the shortest half-life.

    Table 1.The second column denotes the RMS deviations between logarithmic calculated proton radioactivity half-lives by GLDM with different proximity potentials and experimental data.The last column denotes the logarithmic values of proton radioactivity halflives of 146Tm calculated by GLDM with different proximity potentials.The half-lives are in units of‘s’.

    From table 2,we can see that the half-life calculated for177mTl is more than one order of magnitude smaller than the experimental value.Moreover,we note that the spin/parity of the parent nucleus is uncertain,and if the value oflminincreases,the half-life length will be significantly longer.If we takelmin=6,the final result is log10T12=-4.01366,which is closer to the experimental value,that is,the spin/parity of the parent nucleus should be 13/2+.However,this conclusion is unreasonable,as we present in figure 2 the spherical single-particle energy levels corresponding to the protons of177Tl obtained by using the WS*parameters[51–53].From the figure,we can see that the energy level 1i13/2,which corresponds to 13/2+,is above the main shell Z=82,and its position is much higher than the position of 3s1/2in the ground state.The difference in energy between177Tl and177mTl is calculated by the AME2016 mass table[47,48]to be only 807 KeV,which clearly shows that the spin/parity of177mTl should be wrong at 13/2+.The reason for such a large difference may originate from microscopic effects.Subsequently,we realized that the spectroscopic factor[54–56]Sp=is also important for calculating the proton radioactivity,whererepresents the probability that the spherical orbit of the emitted proton is empty in the corresponding daughter nucleus.The spectroscopic factors are quite important from the viewpoint of nuclear structure.Since the proton is a quasiparticle in the nuclear volume,however,the previous results were only based on calculations with‘pure’potential,so the results should be corrected by the spectroscopic factors.It is also noted that the spectroscopicfactors calculated from the relativistic mean field theory combined with the BCS method in[56]have been successfully applied to the GLDM to calculate the proton radioactivity half-lives.If the spectroscopic factor Sp=0.022 for nucleus177mTl from[56]is used and substituted into the equationwhere both ν and P are calculated in this work,the final result of the proton radioactive half-life can be found to bewhich is very close to the experimental value ofWe then plotted the logarithmic difference betweenandin figure 3.From this picture,it is clear that the deviation between the theoretical and experimental half-lives tends to become larger near the proton number 82,which may be attributed to the shell effect that becomes apparent as Z approaches 82.

    Table 2.The logarithmic values of the proton radioactive half-lives derived when the proximity potential Prox.77-13 is applied to the GLDM,together with the corresponding results when the original version of the proximity potential is used.Elements with upper prefixes‘m’and‘n’represent the order of the excited isomeric states.‘()’denotes the spin and/or parity is indeterminate.‘#’means these values are estimated from the tendency of neighboring nuclides having the same Z and N parities.The experimental half-lives,spin/parity,and the proton radioactivity energies of the spherical proton emitters are taken from the NUBASE2016[49].All proton radioactivity half-lives and energies are in units of‘s’and‘MeV’.

    Figure 2.The spherical single-particle levels of the proton of 177Tl using WS*parameters[51–53].

    Further,we applied the proximity potential Prox.77-13 to the GLDM to predict the proton decay half-lives of 14 spherical proton emitters,where all 14 nuclei are energetically allowed in NUBASE2016[49]but not yet observed experimentally or specifically quantified.The predicted calculations are listed in table 3,where the first six columns are all the same as those indicated in table 2.The last column shows the predicted half-lives of proton radioactivity,labeled asMuch works have been done on natural α radioactivity since the beginning of the last century,and Geiger and Nuttall[57]found a correlation between decay energy and decay half-lives.For α decay,there has been recent work[58]that makes important development to the original Geiger?Nuttall law by adding terms to the law.Meanwhile,many studies[18,45,59–61]have shown that the Geiger?Nuttall law can also apply to describe the proton radioactivity isotopes with the samelmin.In addition,Ren et al[62]have recently developed a new formula to reproduce the half-lives of cluster radioactivity,extending the Geiger?Nuttall law from simple α decay to complex cluster radioactivity.In the present work,we plot the calculated logarithmic half-livesagainstfor Tm,Re,and Ir isotopes in figure 4,where each kind of isotopes have the same angular momentumlmin.The solid symbols indicate thefrom table 2,while the open symbols indicate thepredicted from table 3.In this figure,a good linear relationship is maintained betweenandfor each isotopes.In particular,as many as five nuclei in each of the Tm and Ir isotopes are perfectly in a straight line,including the predicted results represented by the open symbols,which further proves the credibility of our calculations.This reveals that the Geiger?Nuttall law is a good guide for both theoretical calculations and experimental discrimination of proton radioactivity half-lives.

    Table 3.Same as table 2,but for predicted radioactivity half-lives of spherical proton emitters,whose proton radioactivity are energetically allowed in NUBASE2016[49]but not yet observed experimentally or not yet specifically quantified,using GLDM with the proximity potential Prox.77-13.

    4.Summary

    In summary,with the development of proximity potentials and abundance of experimental data on proton radioactivity,it has become increasingly important at this stage to find the most suitable proximity potential type within the GLDM to describe and predict proton radioactivity half-lives more precisely.It is found that GLDM with the proximity potential Prox.77-13 gives the lowest RMS deviation in reproducing the proton radioactivity half-lives data of spherical proton emitters,and the combination also can give the closest results to the experimental α half-lives,making the model more uniform and consistent.In the calculation,we find that the146mTm proton radioactivity corresponds to a145Er final state that is closer to the experimental data than to the145mEr state,and the angular momentum carried away by the proton also matches the experimental value;the spin/parity of the150mLu state is uncertain,which is suggested to be the 2+state instead of the 1+state by our calculation results;the proton spherical single-particle levels of the177Tl indicate that the angular momentum carried by the proton during the proton radioactivity of the177mTl is 5 and cannot be equal to 6,these theoretical results may provide some guidance for experimentation.Finally,we use the proximity potential Prox.77-13 within the GLDM to predict the proton radioactivity half-lives and investigate the Geiger?Nuttall law for proton radioactivity.The theoretically calculatedandof the isotopes are found to maintain a very good linear relationship,including the predicted values,thus further enhancing the reliability of the predictions.These imply that the Geiger?Nuttall law can also be employed to describe the proton radioactivity half-lives of isotopes with the same angular momentum.After completing this work,we note that the spectroscopic factor is relatively important for improving the accuracy and predictive reliability of the proton radioactivity half-life calculations.Therefore,as an outlook,it is interesting to take the spectroscopic factor into account in our model,and this work is in progress.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(Grants No.11 675 066,No.11 665 019,and No.11 947 229),the China Postdoctoral Science Foundation(No.2019M663853),by the Fundamental Research Funds for the Central Universities(Grants No.lzujbky-2017-ot04,and No.lzujbky-2020-it01),and Feitian Scholar Project of Gansu province.

    ORCID iDs

    国产熟女欧美一区二区| 1024手机看黄色片| 亚洲不卡免费看| 国产午夜精品论理片| 99视频精品全部免费 在线| 美女大奶头视频| 亚洲国产欧美人成| 国产成人aa在线观看| 丝袜喷水一区| 精品熟女少妇av免费看| 亚洲国产欧美在线一区| 欧美成人一区二区免费高清观看| 国产在视频线在精品| 日韩欧美在线乱码| 国产亚洲5aaaaa淫片| 精品久久久久久久久av| 99riav亚洲国产免费| 国产69精品久久久久777片| 国产成人午夜福利电影在线观看| 国产老妇女一区| 又粗又爽又猛毛片免费看| 成人性生交大片免费视频hd| 青春草亚洲视频在线观看| 亚洲国产欧美人成| 亚洲精品影视一区二区三区av| 成人av在线播放网站| 熟女人妻精品中文字幕| 国产真实乱freesex| 嘟嘟电影网在线观看| av在线老鸭窝| 99久久精品一区二区三区| 成年版毛片免费区| 日本黄大片高清| 蜜臀久久99精品久久宅男| 亚洲国产欧洲综合997久久,| 成人漫画全彩无遮挡| 一本久久中文字幕| 少妇人妻精品综合一区二区 | 亚洲丝袜综合中文字幕| 色5月婷婷丁香| 国产精品国产高清国产av| 欧美最新免费一区二区三区| 日韩,欧美,国产一区二区三区 | 国产老妇女一区| 男的添女的下面高潮视频| 亚洲精品乱码久久久久久按摩| 麻豆久久精品国产亚洲av| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 国产高清激情床上av| 久久中文看片网| 国国产精品蜜臀av免费| 国产一区二区三区在线臀色熟女| or卡值多少钱| 能在线免费看毛片的网站| 99热这里只有是精品在线观看| 国产精品一区www在线观看| 免费在线观看成人毛片| 亚洲av不卡在线观看| 亚洲av电影不卡..在线观看| 国产精品麻豆人妻色哟哟久久 | 爱豆传媒免费全集在线观看| 日韩强制内射视频| 日韩高清综合在线| 亚洲婷婷狠狠爱综合网| 天天躁日日操中文字幕| 毛片女人毛片| 99热6这里只有精品| 91精品国产九色| 午夜视频国产福利| 国产成人freesex在线| 小说图片视频综合网站| 国产爱豆传媒在线观看| 日韩欧美精品v在线| 亚洲国产欧美在线一区| 国产一区二区激情短视频| 乱人视频在线观看| 久久久久网色| 国产精品一二三区在线看| 国内久久婷婷六月综合欲色啪| 国产在线精品亚洲第一网站| 91精品一卡2卡3卡4卡| 中国美白少妇内射xxxbb| 永久网站在线| 91av网一区二区| 中文精品一卡2卡3卡4更新| 在线观看美女被高潮喷水网站| 亚洲七黄色美女视频| 99热全是精品| 国产精品永久免费网站| 联通29元200g的流量卡| 黄色日韩在线| 久久99精品国语久久久| 爱豆传媒免费全集在线观看| 超碰av人人做人人爽久久| 国产淫片久久久久久久久| 桃色一区二区三区在线观看| 亚洲国产精品久久男人天堂| 少妇的逼水好多| 国产老妇女一区| 大型黄色视频在线免费观看| 亚洲真实伦在线观看| 亚洲在久久综合| 亚洲,欧美,日韩| 精品一区二区三区人妻视频| avwww免费| 超碰av人人做人人爽久久| 免费观看的影片在线观看| 亚洲一区高清亚洲精品| 一本精品99久久精品77| 午夜免费男女啪啪视频观看| 99视频精品全部免费 在线| ponron亚洲| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 又粗又硬又长又爽又黄的视频 | 非洲黑人性xxxx精品又粗又长| 国产在视频线在精品| 特级一级黄色大片| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 午夜免费男女啪啪视频观看| 在线观看免费视频日本深夜| 精品人妻偷拍中文字幕| 哪个播放器可以免费观看大片| 美女国产视频在线观看| 日韩成人av中文字幕在线观看| 男插女下体视频免费在线播放| 欧洲精品卡2卡3卡4卡5卡区| 成人午夜精彩视频在线观看| 网址你懂的国产日韩在线| 人人妻人人澡欧美一区二区| 麻豆国产97在线/欧美| 天天躁日日操中文字幕| 男人狂女人下面高潮的视频| 看黄色毛片网站| 变态另类成人亚洲欧美熟女| 亚洲精品久久久久久婷婷小说 | 日韩av不卡免费在线播放| 国产伦精品一区二区三区视频9| 国产精品爽爽va在线观看网站| 美女cb高潮喷水在线观看| 校园春色视频在线观看| 十八禁国产超污无遮挡网站| 日韩,欧美,国产一区二区三区 | 只有这里有精品99| 美女国产视频在线观看| 欧美xxxx黑人xx丫x性爽| 狂野欧美白嫩少妇大欣赏| 成熟少妇高潮喷水视频| 丝袜喷水一区| 久久鲁丝午夜福利片| 亚洲av中文av极速乱| 亚洲av免费在线观看| 久久韩国三级中文字幕| 精品无人区乱码1区二区| 国产精品乱码一区二三区的特点| 少妇的逼好多水| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看| 日韩人妻高清精品专区| 亚洲精品影视一区二区三区av| 日韩视频在线欧美| 欧美日本亚洲视频在线播放| 久久国内精品自在自线图片| 精品少妇黑人巨大在线播放 | 一区二区三区免费毛片| 国产成人午夜福利电影在线观看| www.色视频.com| 精品一区二区三区视频在线| 九草在线视频观看| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 亚洲激情五月婷婷啪啪| 97热精品久久久久久| 国产精品野战在线观看| 精品一区二区免费观看| 国产69精品久久久久777片| 在线a可以看的网站| 亚洲无线在线观看| 中文在线观看免费www的网站| 又粗又爽又猛毛片免费看| 一区二区三区四区激情视频 | 99九九线精品视频在线观看视频| 亚洲精品乱码久久久v下载方式| av在线蜜桃| 国产精品女同一区二区软件| 联通29元200g的流量卡| 18禁黄网站禁片免费观看直播| 最后的刺客免费高清国语| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| .国产精品久久| 97在线视频观看| 亚洲av不卡在线观看| 我的老师免费观看完整版| 亚洲av一区综合| 中文在线观看免费www的网站| 欧美又色又爽又黄视频| 免费观看的影片在线观看| 国产午夜精品论理片| 我的女老师完整版在线观看| 国产精品伦人一区二区| 亚洲激情五月婷婷啪啪| 久久九九热精品免费| 欧美激情国产日韩精品一区| 色哟哟·www| 99热这里只有精品一区| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 熟妇人妻久久中文字幕3abv| 丰满乱子伦码专区| 亚洲不卡免费看| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 成人欧美大片| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 国产精品福利在线免费观看| 国产真实乱freesex| 少妇高潮的动态图| 国产精品女同一区二区软件| 精品久久久久久久人妻蜜臀av| 亚洲欧洲国产日韩| 久久精品夜色国产| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 国产一区二区在线观看日韩| 一级黄片播放器| 中文亚洲av片在线观看爽| 嫩草影院精品99| 99在线视频只有这里精品首页| 亚洲性久久影院| 国产一区亚洲一区在线观看| 亚洲国产精品国产精品| 精华霜和精华液先用哪个| 国产精品嫩草影院av在线观看| 欧美激情久久久久久爽电影| 超碰av人人做人人爽久久| 成人综合一区亚洲| 丰满的人妻完整版| 国产精品久久电影中文字幕| 精品人妻视频免费看| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 久久精品影院6| 99久久人妻综合| 欧美又色又爽又黄视频| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看| 免费人成在线观看视频色| 草草在线视频免费看| 99热全是精品| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| 成年版毛片免费区| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 国产精品av视频在线免费观看| 99热全是精品| 91午夜精品亚洲一区二区三区| 午夜福利在线观看吧| 欧美人与善性xxx| 精品久久久久久久久av| 成人综合一区亚洲| 菩萨蛮人人尽说江南好唐韦庄 | 一本精品99久久精品77| 亚洲成人中文字幕在线播放| 少妇熟女欧美另类| 22中文网久久字幕| 久久九九热精品免费| 国语自产精品视频在线第100页| 免费大片18禁| 人人妻人人看人人澡| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 中文字幕av成人在线电影| 一级毛片我不卡| 亚洲最大成人中文| 18禁在线播放成人免费| 欧美日本视频| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| 日韩一区二区视频免费看| 久久精品国产清高在天天线| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 亚洲人与动物交配视频| 日本黄大片高清| 日韩欧美精品免费久久| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜添av毛片| 久久久精品94久久精品| 成人午夜精彩视频在线观看| 国产精品日韩av在线免费观看| 级片在线观看| 久久精品国产清高在天天线| 天堂影院成人在线观看| 久久久久久久久大av| 亚洲人成网站在线播| 少妇人妻一区二区三区视频| 成人二区视频| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| av在线观看视频网站免费| 国产美女午夜福利| 久久久久久九九精品二区国产| 免费观看的影片在线观看| av天堂中文字幕网| 日韩欧美精品免费久久| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 欧美激情久久久久久爽电影| 欧美在线一区亚洲| 网址你懂的国产日韩在线| 日日干狠狠操夜夜爽| av在线亚洲专区| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 欧美性猛交黑人性爽| 青春草视频在线免费观看| 色吧在线观看| 真实男女啪啪啪动态图| 日韩三级伦理在线观看| 国产色婷婷99| 国产男人的电影天堂91| 99热这里只有是精品50| 久久人人爽人人爽人人片va| 99热精品在线国产| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 中文精品一卡2卡3卡4更新| 男女那种视频在线观看| 欧美精品国产亚洲| 免费观看精品视频网站| 麻豆国产97在线/欧美| 啦啦啦观看免费观看视频高清| 黑人高潮一二区| 中文在线观看免费www的网站| 99久久精品热视频| 国产大屁股一区二区在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 啦啦啦韩国在线观看视频| 亚洲18禁久久av| 男女那种视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 岛国在线免费视频观看| 婷婷亚洲欧美| 97热精品久久久久久| 国产高清不卡午夜福利| 国产精华一区二区三区| 1000部很黄的大片| 熟女人妻精品中文字幕| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| 麻豆乱淫一区二区| 国产 一区精品| 桃色一区二区三区在线观看| 日本色播在线视频| 中文字幕制服av| 欧美日韩精品成人综合77777| 成人二区视频| avwww免费| 高清毛片免费看| 菩萨蛮人人尽说江南好唐韦庄 | a级一级毛片免费在线观看| 精品久久国产蜜桃| 免费av观看视频| 国产精品爽爽va在线观看网站| 久久久欧美国产精品| 国产一区二区三区在线臀色熟女| 特级一级黄色大片| 少妇猛男粗大的猛烈进出视频 | 1024手机看黄色片| 亚洲激情五月婷婷啪啪| 成人鲁丝片一二三区免费| 国产精品福利在线免费观看| 极品教师在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 欧美变态另类bdsm刘玥| 欧美一区二区亚洲| 国产精品一区二区三区四区免费观看| 97热精品久久久久久| 亚洲国产高清在线一区二区三| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 亚洲真实伦在线观看| 久久精品久久久久久久性| 国产 一区精品| 亚洲av电影不卡..在线观看| 日日撸夜夜添| 国产精品电影一区二区三区| 最近视频中文字幕2019在线8| 国产成人一区二区在线| 免费人成视频x8x8入口观看| 日本成人三级电影网站| 麻豆成人午夜福利视频| 只有这里有精品99| 亚洲av电影不卡..在线观看| av免费在线看不卡| 日韩大尺度精品在线看网址| 久久久精品94久久精品| 不卡视频在线观看欧美| 97热精品久久久久久| 日本-黄色视频高清免费观看| 一本久久精品| 在线观看av片永久免费下载| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 久久久久久久久久久丰满| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 99九九线精品视频在线观看视频| 亚洲国产精品合色在线| 午夜免费激情av| 三级国产精品欧美在线观看| 日本撒尿小便嘘嘘汇集6| 97人妻精品一区二区三区麻豆| 99热这里只有是精品在线观看| ponron亚洲| 日韩欧美精品免费久久| 性插视频无遮挡在线免费观看| 亚洲精品乱码久久久v下载方式| 深夜a级毛片| 成年免费大片在线观看| 在线观看av片永久免费下载| 久久久久网色| 成年女人看的毛片在线观看| 18禁在线无遮挡免费观看视频| 国产毛片a区久久久久| 日本av手机在线免费观看| 小蜜桃在线观看免费完整版高清| 长腿黑丝高跟| 亚洲人成网站高清观看| 久久99热这里只有精品18| 九九爱精品视频在线观看| 村上凉子中文字幕在线| 一本一本综合久久| 国产亚洲精品久久久久久毛片| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看| 成年女人永久免费观看视频| 老女人水多毛片| 婷婷色综合大香蕉| 国产69精品久久久久777片| 又粗又爽又猛毛片免费看| 99久国产av精品国产电影| 99久久九九国产精品国产免费| 久久久久久大精品| 99久久人妻综合| 久久精品国产自在天天线| 亚洲久久久久久中文字幕| 日韩三级伦理在线观看| 国产亚洲精品av在线| 欧美激情在线99| 亚洲人成网站在线播放欧美日韩| 欧美xxxx性猛交bbbb| 成人三级黄色视频| 高清在线视频一区二区三区 | 综合色av麻豆| 国产精品一区二区三区四区免费观看| 男人的好看免费观看在线视频| 欧美一区二区精品小视频在线| 亚洲一区高清亚洲精品| 日日撸夜夜添| 人人妻人人看人人澡| 亚洲av熟女| 你懂的网址亚洲精品在线观看 | kizo精华| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 九九久久精品国产亚洲av麻豆| 青春草视频在线免费观看| 少妇的逼好多水| 亚洲丝袜综合中文字幕| 久久这里只有精品中国| 久久精品综合一区二区三区| 亚洲欧美日韩卡通动漫| 成人永久免费在线观看视频| av免费观看日本| 麻豆乱淫一区二区| 国产精品福利在线免费观看| 中出人妻视频一区二区| 久久国产乱子免费精品| 老司机福利观看| 精品久久久久久久久亚洲| 美女 人体艺术 gogo| 亚洲真实伦在线观看| 国产美女午夜福利| 中文字幕av成人在线电影| 乱系列少妇在线播放| 日韩精品青青久久久久久| 国产精品久久久久久精品电影小说 | 久久久久久久午夜电影| 久久久久国产网址| 国产片特级美女逼逼视频| 日韩欧美精品v在线| 国产大屁股一区二区在线视频| 国产精品爽爽va在线观看网站| 三级经典国产精品| 国产美女午夜福利| 国产精品av视频在线免费观看| 可以在线观看毛片的网站| 成人午夜高清在线视频| 日韩欧美 国产精品| 男人狂女人下面高潮的视频| 亚洲18禁久久av| 精品少妇黑人巨大在线播放 | 啦啦啦观看免费观看视频高清| 午夜亚洲福利在线播放| 天堂中文最新版在线下载 | 国产免费一级a男人的天堂| 啦啦啦啦在线视频资源| 在线免费观看的www视频| av在线亚洲专区| 久久久久九九精品影院| 亚洲精品久久久久久婷婷小说 | 赤兔流量卡办理| 欧美成人a在线观看| 日韩人妻高清精品专区| 99久久人妻综合| 狂野欧美激情性xxxx在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美xxxx性猛交bbbb| 久久婷婷人人爽人人干人人爱| 中文字幕av在线有码专区| 午夜福利在线观看吧| 亚洲精品日韩在线中文字幕 | 麻豆国产97在线/欧美| 伦理电影大哥的女人| 一进一出抽搐动态| 亚洲美女视频黄频| kizo精华| 男插女下体视频免费在线播放| 久久人人精品亚洲av| 亚洲人成网站高清观看| 嫩草影院新地址| 国产午夜福利久久久久久| 蜜桃亚洲精品一区二区三区| 九色成人免费人妻av| 少妇熟女aⅴ在线视频| 国产真实乱freesex| 亚洲欧洲国产日韩| 在线国产一区二区在线| 午夜免费激情av| 国产 一区精品| 大又大粗又爽又黄少妇毛片口| 日日摸夜夜添夜夜爱| 大型黄色视频在线免费观看| 高清在线视频一区二区三区 | 午夜老司机福利剧场| 久久99蜜桃精品久久| 久久久精品大字幕| 亚洲国产精品成人综合色| 亚洲精品亚洲一区二区| 老师上课跳d突然被开到最大视频| 免费看美女性在线毛片视频| av在线蜜桃| 免费黄网站久久成人精品| 国产一区二区在线av高清观看| 婷婷精品国产亚洲av| 99热这里只有是精品在线观看| 亚洲自偷自拍三级| 少妇高潮的动态图| 一级黄片播放器| 爱豆传媒免费全集在线观看| 九草在线视频观看| 精品无人区乱码1区二区| 亚洲一级一片aⅴ在线观看| 国产成人freesex在线| 国产精品美女特级片免费视频播放器| 亚洲综合色惰| 日韩国内少妇激情av| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 欧美日韩国产亚洲二区| 国产老妇伦熟女老妇高清| 亚洲欧美成人综合另类久久久 | 亚洲欧美日韩无卡精品| av专区在线播放| 午夜老司机福利剧场| 免费观看a级毛片全部| 午夜视频国产福利| 春色校园在线视频观看| 欧美日韩精品成人综合77777| 国产在线男女| 成人无遮挡网站| 免费观看a级毛片全部| 午夜视频国产福利| 美女cb高潮喷水在线观看| 26uuu在线亚洲综合色| 日韩在线高清观看一区二区三区| 一本一本综合久久| 九九久久精品国产亚洲av麻豆| 熟妇人妻久久中文字幕3abv| 乱系列少妇在线播放| 丰满人妻一区二区三区视频av| 国产精品国产高清国产av| 国产日本99.免费观看| 国产av不卡久久|