• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-similar mixed convection analysis for magnetic flow of second-grade nanofluid over a vertically stretching sheet

    2021-07-06 05:04:24AmmarahRaeesUmerFarooqMuzamilHussainWaseemAsgharKhanandFoziaBashirFarooq
    Communications in Theoretical Physics 2021年6期

    Ammarah Raees,Umer Farooq,Muzamil Hussain,5,Waseem Asghar Khanand Fozia Bashir Farooq

    1 Faculty of Computer Science and Software Engineering,Huaiyin Institute of Technology,Huai’an,China

    2 Department of Mathematics,COMSATS University Islamabad,Park Road Chak Shahzad Islamabad 44000,Pakistan

    3 Department of Mathematics,College of Sciences AlZulfi,Majmaah University,Al Majma’ah,11952 Saudi Arabia

    4 Department of Mathematics,Imam Muhammad ibn Saud Islamic University,Riyadh 11432,Saudi Arabia

    5 Department of Mathematics,University of the Poonch Rawalakot,Rawalakot 12350,Pakistan

    Abstract The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction.The buoyancy effects in terms of temperature and concentration differences are inserted in the x-momentum equation.The aspects of heat and mass transfer are studied using dimensionless thermophoresis,Schmidt and Brownian motion parameters.The governing coupled partial differential system(PDEs)is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations.The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c.Finally,the quantitative effects of emerging dimensionless quantities on the nondimensional velocity,temperature and mass concentration in the boundary layer are conferred graphically,and inferences are drawn that important quantities of interest are substantially affected by these parameters.It is concluded that non-similar modeling,in contrast to similar models,is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.

    Keywords:non-similar modeling,second-grade fluid,exponentially stretching surface,local non-similarity,bvp4c

    1.Introduction

    Study of the flows induced by the stretching of the surfaces is of significant importance in view of its use in technical manufacturing,such as aerodynamics,the cooling process of metal sheets,extrusion of plastic sheets,the condensation process of fluid films,chemical processing equipment,glass and polymer industries,crystal growth and several heat exchanger projects.In such situations,the outputs with the required attributes depend on the rate of cooling and stretching in the process.Sakiadis[1]was the pioneer in this field who theoretically explored the moving solid structures.He addressed the problem by applying similarity transformation via a numerical technique.Moreover,Erickson et al[2]continued the exploration by assuming a moving surface with nonzero transverse velocity.The 2D steady flow was investigated by Crane[3]over a stretching surface.He attempted to concentrate on a stretching sheet as he realized that this case was a pivotal subject in the polymer industry.Gupta and Gupta[4]utilized that that was introduced by Crane[3]and extended those examinations.They explored heat and mass transfer by incorporating suction effects over an expanding surface.Rajagopal et al[5]inspected the flow of viscoelastic fluid in the absence of heat transfer and discussed its applications in the polymer industry.Using the momentum integral method,Bujurke et al[6]performed convection studies for second-grade fluid flow.Magyari and Keller[7]examined steady flow using both analytical and numerical solutions.They also compared heat and mass transfer features of the considered problem with already proven results of earlier authors.Elbashbeshy[8]introduced a new dimension in the analysis of an exponentially stretching surface.He examined the effects of suction in a surface which is expanding at exponential rate.Partha et al[9]studied mixed convection flow with viscous dissipation consequences over a vertical surface expanding at exponential rate.Khan et al[10]studied viscoelastic fluid over an exponentially expanding surface.Xu et al[11]analytically examined the unsteady electrically conductive incompressible viscous fluid in which flow is initiated by the expansion of the surface in two lateral directions.Latterly Khan[12]and Bataller[13]analytically reviewed convection equations for viscoelastic fluid flow persuaded by a stretchable sheet.Tan and Liao[14]analytically examined the 3D unsteady incompressible viscous rotating fluid flow over an impulsive surface.Sajid and Hayat[15]surveyed thermal radiation effects in an exponentially expanding sheet.Sekhar and Chethan[16]examined heat transfer using Boussinesq–Stokes suspension numerically in the fluid flow,which is started by the exponentially expanding surface.Siddheshwar et al[17]expanded this research by considering the magnetic field in a transversal direction.Ramzan et al[18],with the help of surface heat flux,examined the effects of thermal radiation and mixed convection on 3D second-grade nanofluid.Rasheed and Anwar[19]studied magnetohydrodynamic(MHD)viscoelastic fluid flow with homogeneous–heterogeneous reactions in the flow domain.By utilizing the time-dependent magnetic field,Muhammad[20]analyzed the impact of heat absorption/generation effects over a curved surface.Ahmad et al[21]inspected 3D unsteady flow with thermophoresis and Brownian motion effects.Jamil et al[22]examined heat transfer of viscoelastic incompressible unsteady flow generated by a stretching surface with heat radiation and chemical reaction effects.Irfan et al[23]examined 3D MHD nonlinear radiated flow of mixed convection Carreau nanofluid over a stretching surface.

    In accordance with industrial and technical applications,flow models based on non-Newtonian fluids are more acceptable than Newtonian fluids.Non-Newtonian fluids show a nonlinear stress and strain rate relationship at any point of flow.Mathematically,compared to the Newtonian the constitutive equations of non-Newtonian fluids are much more complex because of the nonlinear relation of the stress and strain rate.Constitutive equations are more complex,containing a number of parameters,and the solutions of the resulting equations are more complicated to find in general.Numerous variable viscous fluid models have been suggested which demonstrate the complexity of their governing equations.Now,several researchers are engaged in the study of analytical or numerical solutions to fluid flow problems that generate from the use of various non-Newtonian fluid models.Viscoelastic fluids are common types of non-Newtonian fluids.However,the most widely used basic type of viscoelastic fluid is the second-order fluid,which may address problems that are far from trivial.The fluid property viscoelasticity refers to the rise in the order of differential equations that describe the flow.Nevertheless,flow equations are typically more nonlinear compared to Newtonian fluid equations.Among these reasons,the field of research on non-Newtonian fluids poses some fascinating and impressive tasks for computer scientists,physicists and mathematicians alike.

    Mathematical simulations of physical processes in fields such as fluid dynamics,diffusion,wave dynamics,chemical kinetics and general transport problems are governed by nonlinear partial differential equations whose solutions are difficult to find analytically.Consequently,the conversion technique for analyzing nonlinear partial differential system(PDEs)into ordinary differential equations(ODEs)has been very influential in the study of various convection equations.Ames[24]presented many types of these reduction approaches and thought about the developments in fluid dynamics,wave propagation and nonlinear diffusion from the use of PDEs to the reduction approach to ODEs.Although a similar approach has frequently been used in the literature[25–29],the approach cannot be used to a significant extent because of a limitation clarified underneath.Success of this approach depends vigorously on the achievement of a reduced ODEs solution.For a few cases,the reduced ODEs may be integrated in the form of elementary functions,but it is not an easy matter in most cases,so it was proposed that numerical methods be used to solve the converted ODEs.Generally,the given system is not fully converted to ODEs using a local similar method;to overcome this drawback Sparrow and Yu[30]introduced a method of local non-similarity.Hayat et al[31]numerically examined magnetic viscous fluid in nonlinear curved expansion.Zhang et al[32]investigated 3D pressure drop through a spherically coordinated helically coiled tube.Ray et al[33]utilized local non-similarity via a homotopy analysis scheme for mixed convection in the vertical flow of Eyring–Powell fluid with variable velocity.Farooq et al[34]employed local non-similarity via bvp4c for Darcy–Forchheimer–Brinkman flow in non-Darcy porous media.

    The purpose of this work is to provide a realistic means of dealing with these circumstances in which governing equations cannot be reduced into ordinary differential systems.The laminar incompressible flow of magnetic secondgrade fluid over an exponentially expanding surface in the presence of buoyancy forces in terms of temperature and concentration with surface heat flux is considered.Under these premises,the governing convection differential equations are formulated.The appropriate non-similarity transformations are proposed.The governing equations are reduced into a dimensionless nonlinear partial differential system.The transformed system is solved numerically using local non-similarity via bvp4c,which is valid for a system of PDEs.Finally,tabular representations regarding the impact of concerning parameters on the friction coefficientCf,Nusselt numberNu,and Sherwood numberShare disclosed,and demonstrated graphically the effects of involved dimensionless parameters on the non-dimensional velocity,temperature and mass concentration profiles.

    2.Formulation of convection equations

    Consider mixed convection in a second-grade laminar,incompressible,steady,2D,magnetized second-grade fluid flow over a sheet positioned along thex-axis in the vertical direction,although fluid in the domainy>0 is constrained.It is also presumed that the sheet is stretched at an exponential ratewhereU0is the reference velocity.Figure 1 demonstrates the geometrical configuration of the present flow.

    Figure 1.Flow over a hot vertical plate at temperature Tw immersed in a fluid at temperature∞T.

    Figure 2.f′(η)for several values of“M”.

    Figure 3.f′(η)for several values of‘α’.

    Figure 4.f′(η)for several values of‘λ’.

    Figure 5.f′(η)for several values of‘N’.

    The governing equations for

    are as follows:

    continuity equation

    equation of motion

    energy equation

    nanoparticle volume fraction equation

    In the governing systemuandvare the velocity components along thex-andy-directions,whileTandCrepresent temperature and concentration variables,respectively,ρfis the fluid density,σrepresents the electrical conductivity,?is the kinematic viscosity,B0indicates the applied magnetic field,α1is the second-grade fluid material parameter,gis the gravitational acceleration,βTandβcare the thermal and concentration enlargement coefficients,respectively,τdescribes the ratio between the nanoparticle’s heat capacity and the original fluid heat capacity,DBrepresents the coefficient of Brownian diffusion,DTindicates the thermophoresis diffusion coefficient,∞Cand∞Tare upstream concentration and temperature,respectively,andαis thermal diffusivity.

    The suitable boundary conditions for the considered flow problems are

    3.Non-similar analysis

    We propose the following non-similarity transformations

    These transformations identically satisfy the continuity equation(2).Substituting(8)into(3)–(7),we get the following system of dimensionless PDEs

    In the above equations,the magnetic parameter(M),secondgrade fluid parameter(α),Richardson number(λ),ratio of mass and heat transfer Grashof numbers(N),Brownian motion(Nb),Prandtl number(Pr),thermophoresis(Nt),and Schmidt number(Sc),respectively,are defined as

    4.First truncation system

    By using a local similarity technique the terms containing a partial derivative with respect toξare treated as approximately small and considered equal to zero.Therefore,equations(9)–(11)become

    The boundary conditions are

    5.Second truncation system

    For the second truncation system we considered

    Equations(9)–(11)take the following form

    The boundary conditions are

    The parameters of physical interest,such as the friction coefficientCf,the local Nusselt numberNuand the Sherwood numberShare defined as,

    where the wall skin frictionτwx,heat fluxqwand mass fluxjware expressed as

    Using(27)in(26)we get,

    6.Results and discussion

    The interpretation of solutions regarding the impacts of the different dimensionless quantities onf′(η),θ(η)andφ(η)arepresented in this section.The variation in the numerical data of the friction coefficient(Cf),Nusselt number(Nu)and Sherwood number(Sh)for numerous values of involved quantities are depicted in this tabular form.The Nusselt number is the ratio of convective to conductive heat transfer,and the Sherwood number is defined as the ratio of the convective mass transfer to the mass diffusivity at a boundary in a fluid.Large values of the Nusselt number show pre-eminence of convection of heat transfer over conduction and small values of the Nusselt number indicate that poor convection occurs.So the Nusselt number indicates the dominant heat transfer phenomenon of the system.Graphical analysis of the velocity,temperature and concentration fields are conferred to explain the current non-similar model.

    Table 1 shows the range of governing parameters in which graphical solutions of velocity,temperature and concentration profiles reveal stable behavior.Table 2 depicts the impacts of the magnetic parameter(M),Richardson number(λ),second-grade fluid parameter(α)and ratio of mass and heat transfer Grashof numbers(N)on the local skin friction.We perceive that the friction coefficient decreases marginally asMincreases,while the coefficient of skin friction increases due to increases in the values ofα,λandN.

    Table 1.The range of defined parameters for a stable solution.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    ?

    Table 3 displays the local Nusselt number values for the various governing parameter values.It is established that the rate of heat transfer on the wall increases due to the increase inNb.It is also shown that uplifting the values of the parametersPrandNtresulted in a decline in the numeric values of the local Nusselt number.

    Table 3.The local Nusselt numberfor various parameters.

    Table 3.The local Nusselt numberfor various parameters.

    ?

    Table 4 describes the impact of governing parameters on the local Sherwood number.The table shows that for increasingNtandScvalues,the local Sherwood coefficient decreases.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    M αξλ N NbNtScPr --Re Sh x 12 22 0.01 51 0.4 0.4 0.270.127 830 7934 22 0.01 51 0.4 0.4 0.470.141 073 9103 22 0.01 51 0.4 0.4 0.670.294 137 7066 22 0.01 51 0.4 0.4 0.870.307 232 1177 22 0.01 51 0.2 0.4 0.170.102 663 3317 22 0.01 51 0.3 0.4 0.170.101 851 7903 22 0.01 51 0.4 0.4 0.170.093 584 0243 22 0.01 51 0.5 0.4 0.170.095 747 2218 22 0.01 51 0.4 0.1 0.170.075 010 4120 22 0.01 51 0.4 0.2 0.170.084 432 5427 22 0.01 51 0.4 0.3 0.170.087 396 3154 22 0.01 51 0.4 0.4 0.170.093 584 0243

    Whereas the local Sherwood number increases with the increasing values ofNb.

    Figures 2–5 demonstrate the velocity profiles for different parameters likeM,α,λ andN.The consequence of an applied magnetic fieldMin the transverse direction on flow over a stretching sheet is shown in figure 2.It is observed that the increase in magnetic field reduces the fluid velocity.In general,an increase in the applied magnetic field in the transverse direction produces the Lorentz force which opposes the flow.We observed that the Lorentz force effect reduces the flow of the velocity profile.Figure 3 indicates that the fluid flow increases with increasing α,thus thickening the boundary velocity layer.Figures 4 and 5 give an insight into the effect of λ andNon velocity.From figure 4 it is conspicuous that the velocity profile increases with increasing values of λ.Figure 5 indicates that the velocity profile increases with the increasing values ofN(ratio of mass and heat transfer Grashof numbers)due to the buoyancy effect.

    Figure 6.θ(η)for several values of‘Pr’.

    Figure 6 reveals that the effect of increasing thePris a decrease in the temperature profile.The ratio of momentum diffusivity and thermal diffusivity is specified by the Prandtl number.So,it is clear that the rise inPrdecreases the thickness of the thermal boundary layer.Figure 7 expresses the dimensionless temperature for several values ofNb.It shows that due to a rise in the values ofNb,the temperature profile decreases.From figure 8 it is seen that the temperature profile rises with the increasing values of the thermophoresis parameterNt.

    Figure 9 shows the influence of the Schmidt numberScon the mass concentration profile.It is seen that a rise inScleads to a reduction in the concentration boundary layer thickness.Figure 10 explains the impact of the Brownian motion parameterNbon the mass concentration profile.It is evident from the figure that the concentration profile rises with the upsurge in the values ofNb.The influence of the thermophoresis parameterNton the concentration profile is illustrated in figure 11.It is perceived that the concentration profile decreases with the increase inNt.

    Figure 7.θ(η)for several values of‘Nb’.

    Figure 8.θ(η)for several values of‘Nt’.

    Figure 9.φ(η)for several values of‘Sc’.

    Figure 10.φ(η)for several values of‘Nb’.

    Figure 11.φ(η)for several values of‘Nt’.

    7.Conclusions

    In this research non-similar modeling is performed for second-grade magnetic nanofluid flow over a vertical surface which is stretching at an exponential rate.Non-similar solutions are obtained through local non-similarity via bvp4c.The important results are mentioned below.

    ?The velocity profile is increased by the increase inN,λ and α,while the velocity profile decreases as a result of the increase inM.

    ?The temperature profile is increased due to the increase inNt,although the temperature profile decreases due to the increase inNbandPr.

    ?The increase in the valueNbleads to the rise in the volumetric concentration profile,while the opposite is true forScandNt.

    ?Local skin friction increases due to the increase in the values ofα,λandNand slightly decreases as the values of theMincrease.

    ?It is observed that the local Nusselt number upsurges against theNb,whereas it declines by uplifting thePr andNtparameters.

    ?The local Sherwood number decreases with the increase inNtandSc,but the effect is the reverse forNb.

    ORCID iDs

    黄色怎么调成土黄色| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 欧美少妇被猛烈插入视频| 亚洲欧美一区二区三区黑人 | 美女视频免费永久观看网站| 观看美女的网站| 男女啪啪激烈高潮av片| 91精品一卡2卡3卡4卡| 妹子高潮喷水视频| 国产成人av激情在线播放 | 爱豆传媒免费全集在线观看| 国产av码专区亚洲av| 国产亚洲精品第一综合不卡 | 久久人人爽人人爽人人片va| 日韩熟女老妇一区二区性免费视频| 97在线人人人人妻| 亚洲国产精品成人久久小说| 少妇的逼好多水| 国产精品 国内视频| 精品人妻在线不人妻| 国产成人精品在线电影| 熟妇人妻不卡中文字幕| 毛片一级片免费看久久久久| 人人妻人人澡人人看| 永久网站在线| 日本91视频免费播放| 午夜福利影视在线免费观看| xxx大片免费视频| 这个男人来自地球电影免费观看 | 三级国产精品片| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久小说| 国产精品.久久久| 久久久国产欧美日韩av| av电影中文网址| 伦理电影免费视频| 哪个播放器可以免费观看大片| www.av在线官网国产| 97在线人人人人妻| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩卡通动漫| 777米奇影视久久| 99九九线精品视频在线观看视频| 啦啦啦视频在线资源免费观看| 一本大道久久a久久精品| 51国产日韩欧美| 精品亚洲乱码少妇综合久久| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 成人手机av| 人人妻人人澡人人爽人人夜夜| 国产午夜精品久久久久久一区二区三区| 久久久久久伊人网av| 我的女老师完整版在线观看| 欧美国产精品一级二级三级| 久久精品久久精品一区二区三区| 亚洲精品亚洲一区二区| 涩涩av久久男人的天堂| 青春草国产在线视频| 精品久久久精品久久久| 国精品久久久久久国模美| 久久国产精品大桥未久av| 日韩电影二区| 久久久精品免费免费高清| 九九爱精品视频在线观看| 欧美日韩亚洲高清精品| 久久 成人 亚洲| 精品国产国语对白av| 精品久久久精品久久久| 97精品久久久久久久久久精品| 91成人精品电影| 免费黄频网站在线观看国产| 欧美一级a爱片免费观看看| 综合色丁香网| a级毛片在线看网站| 熟女av电影| 国产日韩欧美亚洲二区| 国产乱来视频区| 91精品国产国语对白视频| 伦理电影免费视频| 成人国产av品久久久| 欧美三级亚洲精品| 日韩精品免费视频一区二区三区 | 亚洲国产欧美在线一区| 国产 一区精品| 人体艺术视频欧美日本| 日日摸夜夜添夜夜添av毛片| 新久久久久国产一级毛片| 亚洲人与动物交配视频| 免费日韩欧美在线观看| 人人妻人人添人人爽欧美一区卜| 国产一区亚洲一区在线观看| av福利片在线| 久久久亚洲精品成人影院| 色网站视频免费| 高清视频免费观看一区二区| 欧美一级a爱片免费观看看| 亚洲美女搞黄在线观看| 九色亚洲精品在线播放| 午夜福利影视在线免费观看| 国产成人av激情在线播放 | 美女福利国产在线| 日本欧美国产在线视频| 18禁在线无遮挡免费观看视频| 美女国产高潮福利片在线看| 简卡轻食公司| 婷婷色综合www| 日日摸夜夜添夜夜爱| 97在线视频观看| 亚洲av福利一区| 免费播放大片免费观看视频在线观看| 女人精品久久久久毛片| 十分钟在线观看高清视频www| 国产一区二区在线观看av| 国产精品一国产av| 国产永久视频网站| 免费av不卡在线播放| 国产探花极品一区二区| 精品人妻在线不人妻| 亚洲第一av免费看| 黑人巨大精品欧美一区二区蜜桃 | 男男h啪啪无遮挡| 在线观看国产h片| 有码 亚洲区| 亚洲精品乱久久久久久| 国产伦精品一区二区三区视频9| 久久99精品国语久久久| 成人毛片60女人毛片免费| 精品熟女少妇av免费看| 性高湖久久久久久久久免费观看| 99re6热这里在线精品视频| 日韩一区二区视频免费看| 99久久精品一区二区三区| 久久久国产精品麻豆| 女性被躁到高潮视频| 夜夜骑夜夜射夜夜干| 亚洲欧美日韩另类电影网站| 亚洲图色成人| 成人综合一区亚洲| 免费看光身美女| 欧美激情国产日韩精品一区| av电影中文网址| 欧美日韩国产mv在线观看视频| 日本爱情动作片www.在线观看| 一级二级三级毛片免费看| 黑人猛操日本美女一级片| 大码成人一级视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧洲国产日韩| 最新中文字幕久久久久| av福利片在线| 日本色播在线视频| 国产精品人妻久久久影院| 一边亲一边摸免费视频| 人体艺术视频欧美日本| 国产一区二区三区av在线| 国产精品三级大全| 午夜激情av网站| 亚洲欧美成人精品一区二区| 亚洲av国产av综合av卡| 黑人欧美特级aaaaaa片| 99久国产av精品国产电影| 18禁观看日本| 精品99又大又爽又粗少妇毛片| 亚洲av电影在线观看一区二区三区| 男女国产视频网站| 2018国产大陆天天弄谢| 少妇的逼好多水| 国产精品人妻久久久影院| www.色视频.com| 极品人妻少妇av视频| 免费播放大片免费观看视频在线观看| 又大又黄又爽视频免费| 日产精品乱码卡一卡2卡三| 亚洲精品日韩在线中文字幕| 久久免费观看电影| 欧美xxⅹ黑人| 永久免费av网站大全| 亚洲国产精品一区二区三区在线| 我的老师免费观看完整版| 精品熟女少妇av免费看| 制服丝袜香蕉在线| 成人毛片a级毛片在线播放| 国产精品久久久久久久电影| 狠狠婷婷综合久久久久久88av| 夜夜看夜夜爽夜夜摸| 两个人的视频大全免费| 天天躁夜夜躁狠狠久久av| 久久99一区二区三区| 边亲边吃奶的免费视频| 欧美精品一区二区大全| 久久久午夜欧美精品| 久久久午夜欧美精品| 日本av免费视频播放| 少妇人妻久久综合中文| 国产综合精华液| 一本大道久久a久久精品| 中文乱码字字幕精品一区二区三区| 成年人午夜在线观看视频| 老司机亚洲免费影院| 国产老妇伦熟女老妇高清| 亚洲五月色婷婷综合| 亚洲精品第二区| 丰满饥渴人妻一区二区三| 成人二区视频| 晚上一个人看的免费电影| 三上悠亚av全集在线观看| 精品99又大又爽又粗少妇毛片| 中文字幕人妻熟人妻熟丝袜美| 丁香六月天网| 99久久精品一区二区三区| av又黄又爽大尺度在线免费看| 搡女人真爽免费视频火全软件| 国产成人91sexporn| 久久热精品热| 亚洲国产精品一区二区三区在线| 麻豆成人av视频| 久久鲁丝午夜福利片| 人体艺术视频欧美日本| 91久久精品电影网| 亚洲精品,欧美精品| 亚洲av成人精品一二三区| 成人国产av品久久久| 国产高清国产精品国产三级| 午夜免费鲁丝| 毛片一级片免费看久久久久| 免费日韩欧美在线观看| 国产乱来视频区| 在线亚洲精品国产二区图片欧美 | 国产精品偷伦视频观看了| 看非洲黑人一级黄片| 18禁裸乳无遮挡动漫免费视频| 男女高潮啪啪啪动态图| av国产精品久久久久影院| 国模一区二区三区四区视频| a 毛片基地| 国产69精品久久久久777片| 久久精品国产a三级三级三级| 夜夜爽夜夜爽视频| 人人妻人人澡人人爽人人夜夜| 人成视频在线观看免费观看| 国产日韩欧美亚洲二区| 久久99一区二区三区| 中国国产av一级| 国产精品久久久久久精品古装| 免费人成在线观看视频色| 日本免费在线观看一区| 中文精品一卡2卡3卡4更新| 高清不卡的av网站| 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 日本爱情动作片www.在线观看| 精品国产国语对白av| 最近的中文字幕免费完整| 久久久久久久大尺度免费视频| 国产日韩欧美在线精品| 亚洲,欧美,日韩| 久久免费观看电影| 久久午夜综合久久蜜桃| 99久久精品国产国产毛片| 建设人人有责人人尽责人人享有的| 伊人久久国产一区二区| 蜜桃在线观看..| 老司机影院毛片| 男女啪啪激烈高潮av片| 国产一区二区在线观看av| 国产男人的电影天堂91| 欧美日韩视频高清一区二区三区二| 最后的刺客免费高清国语| 久久久久久人妻| 国产熟女欧美一区二区| 欧美日韩视频精品一区| 久久久国产一区二区| 好男人视频免费观看在线| 黑人巨大精品欧美一区二区蜜桃 | 午夜福利,免费看| 最近中文字幕2019免费版| 一区二区三区精品91| av免费在线看不卡| 天美传媒精品一区二区| 国内精品宾馆在线| 女的被弄到高潮叫床怎么办| 久久久精品免费免费高清| 亚洲国产日韩一区二区| 国产成人精品无人区| 精品久久久久久久久亚洲| 大码成人一级视频| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 高清在线视频一区二区三区| 亚洲国产精品999| 日本免费在线观看一区| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 精品久久久精品久久久| 超碰97精品在线观看| a级毛片黄视频| 少妇熟女欧美另类| 精品一品国产午夜福利视频| 91久久精品电影网| 日日撸夜夜添| 亚洲色图综合在线观看| 日韩 亚洲 欧美在线| 日本91视频免费播放| 免费看光身美女| 视频在线观看一区二区三区| 日韩大片免费观看网站| 免费观看无遮挡的男女| 日韩一区二区三区影片| 精品一区二区三卡| 精品国产一区二区三区久久久樱花| 大香蕉久久成人网| 一边亲一边摸免费视频| 人妻人人澡人人爽人人| 欧美亚洲日本最大视频资源| 日韩一区二区视频免费看| 国产免费又黄又爽又色| 热99久久久久精品小说推荐| av.在线天堂| 日本wwww免费看| 观看美女的网站| 亚洲五月色婷婷综合| 一级爰片在线观看| 亚洲经典国产精华液单| 哪个播放器可以免费观看大片| 黑人猛操日本美女一级片| 国内精品宾馆在线| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 一级,二级,三级黄色视频| 日韩中文字幕视频在线看片| 五月天丁香电影| 欧美97在线视频| 熟女电影av网| 亚州av有码| 国产精品久久久久久精品电影小说| 一区二区日韩欧美中文字幕 | 青春草国产在线视频| 午夜免费观看性视频| 日本黄大片高清| 成人国产av品久久久| 啦啦啦啦在线视频资源| 久久狼人影院| 国产成人精品久久久久久| www.色视频.com| 婷婷色综合www| 夜夜爽夜夜爽视频| 街头女战士在线观看网站| 婷婷色综合www| 国产乱人偷精品视频| 亚洲性久久影院| 制服丝袜香蕉在线| 成人国产av品久久久| 色94色欧美一区二区| av播播在线观看一区| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 高清午夜精品一区二区三区| 国产伦精品一区二区三区视频9| 国产av国产精品国产| 99热这里只有是精品在线观看| 久热这里只有精品99| 人妻夜夜爽99麻豆av| 啦啦啦在线观看免费高清www| 一区二区三区乱码不卡18| 亚洲美女搞黄在线观看| 五月开心婷婷网| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 少妇熟女欧美另类| 考比视频在线观看| 亚洲精品aⅴ在线观看| 热re99久久国产66热| 国产午夜精品一二区理论片| 熟妇人妻不卡中文字幕| 国产有黄有色有爽视频| 黄片播放在线免费| 一个人免费看片子| 欧美xxⅹ黑人| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 99视频精品全部免费 在线| 少妇人妻 视频| 欧美日韩视频精品一区| 一区二区三区免费毛片| 美女中出高潮动态图| 观看av在线不卡| 狂野欧美白嫩少妇大欣赏| 久久av网站| 日本与韩国留学比较| 国产日韩一区二区三区精品不卡 | 热re99久久精品国产66热6| 国产精品不卡视频一区二区| 2022亚洲国产成人精品| 黑人欧美特级aaaaaa片| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 日本色播在线视频| 中文字幕av电影在线播放| 精品99又大又爽又粗少妇毛片| 亚洲中文av在线| 极品人妻少妇av视频| 一级毛片我不卡| 少妇精品久久久久久久| 永久免费av网站大全| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区 | 精品人妻偷拍中文字幕| 美女福利国产在线| 午夜视频国产福利| 亚州av有码| 亚洲精品国产av蜜桃| 精品人妻偷拍中文字幕| 天堂8中文在线网| 少妇人妻精品综合一区二区| av视频免费观看在线观看| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看| 汤姆久久久久久久影院中文字幕| 久久久久久久精品精品| 欧美丝袜亚洲另类| 日韩熟女老妇一区二区性免费视频| 男人操女人黄网站| 国产免费一区二区三区四区乱码| 涩涩av久久男人的天堂| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 精品一区二区免费观看| 女性被躁到高潮视频| 午夜福利,免费看| 欧美人与性动交α欧美精品济南到 | 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 人人妻人人澡人人看| 男男h啪啪无遮挡| h视频一区二区三区| 九色亚洲精品在线播放| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 精品久久久久久电影网| 人妻少妇偷人精品九色| 两个人免费观看高清视频| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 亚洲图色成人| 日韩av在线免费看完整版不卡| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 欧美三级亚洲精品| 久久久久人妻精品一区果冻| 国产精品蜜桃在线观看| 亚洲中文av在线| 免费av中文字幕在线| 久久久久国产精品人妻一区二区| 久久久久久久久久久免费av| 我的女老师完整版在线观看| 成年人午夜在线观看视频| 91精品三级在线观看| 久久精品国产自在天天线| 精品一区二区三区视频在线| 精品人妻在线不人妻| 26uuu在线亚洲综合色| 我要看黄色一级片免费的| 麻豆成人av视频| 伦理电影免费视频| h视频一区二区三区| 大片电影免费在线观看免费| 婷婷成人精品国产| 亚洲成人av在线免费| 一本色道久久久久久精品综合| 91精品国产九色| 久久女婷五月综合色啪小说| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 国产av精品麻豆| 亚洲情色 制服丝袜| 自线自在国产av| 2022亚洲国产成人精品| 日日爽夜夜爽网站| 99久久精品一区二区三区| 欧美日韩视频精品一区| 最后的刺客免费高清国语| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| 亚洲国产精品999| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 国产精品.久久久| 久久影院123| 久久久久久人妻| 免费人妻精品一区二区三区视频| 久久97久久精品| 国产不卡av网站在线观看| 精品国产乱码久久久久久小说| 九色亚洲精品在线播放| 亚洲中文av在线| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美 | 亚洲综合色网址| 性色av一级| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 男女免费视频国产| av电影中文网址| 久久鲁丝午夜福利片| 欧美国产精品一级二级三级| 久久久久久人妻| 22中文网久久字幕| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 亚洲综合色网址| 晚上一个人看的免费电影| 一区二区三区精品91| 成人无遮挡网站| 成人免费观看视频高清| 少妇的逼好多水| 午夜福利视频在线观看免费| 免费高清在线观看视频在线观看| 精品一区二区三区视频在线| 亚洲成色77777| 观看美女的网站| kizo精华| 2018国产大陆天天弄谢| av在线app专区| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 看十八女毛片水多多多| 亚洲内射少妇av| 精品亚洲成国产av| 91aial.com中文字幕在线观看| 人妻少妇偷人精品九色| 国产av码专区亚洲av| av在线播放精品| 精品一品国产午夜福利视频| 国产精品人妻久久久影院| 嘟嘟电影网在线观看| 欧美精品一区二区免费开放| 99久久精品国产国产毛片| 大陆偷拍与自拍| 久久综合国产亚洲精品| 欧美激情 高清一区二区三区| 99热网站在线观看| 老熟女久久久| 国产 一区精品| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 亚洲综合精品二区| 精品少妇黑人巨大在线播放| 亚洲国产精品一区三区| 日本欧美视频一区| 国产成人精品婷婷| 人妻 亚洲 视频| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品999| 日本猛色少妇xxxxx猛交久久| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 99热6这里只有精品| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 麻豆成人av视频| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久人人人人人人| 久久ye,这里只有精品| 不卡视频在线观看欧美| 亚洲情色 制服丝袜| 成年人免费黄色播放视频| 亚洲欧美日韩卡通动漫| 国产在线视频一区二区| 国精品久久久久久国模美| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产精品成人在线| 久久久久精品性色| av网站免费在线观看视频| 午夜福利影视在线免费观看| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 日本黄色日本黄色录像| 黄片播放在线免费| 亚洲国产精品999| 成人18禁高潮啪啪吃奶动态图 | 欧美最新免费一区二区三区| 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| 亚洲欧美日韩卡通动漫| 高清视频免费观看一区二区| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 国产精品一区二区在线不卡| 久热这里只有精品99| 国产亚洲最大av| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 亚洲国产日韩一区二区| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 欧美丝袜亚洲另类| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| 成人国语在线视频| 中文字幕人妻熟人妻熟丝袜美| 99热网站在线观看| 欧美精品高潮呻吟av久久| 伦理电影免费视频|