• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-similar mixed convection analysis for magnetic flow of second-grade nanofluid over a vertically stretching sheet

    2021-07-06 05:04:24AmmarahRaeesUmerFarooqMuzamilHussainWaseemAsgharKhanandFoziaBashirFarooq
    Communications in Theoretical Physics 2021年6期

    Ammarah Raees,Umer Farooq,Muzamil Hussain,5,Waseem Asghar Khanand Fozia Bashir Farooq

    1 Faculty of Computer Science and Software Engineering,Huaiyin Institute of Technology,Huai’an,China

    2 Department of Mathematics,COMSATS University Islamabad,Park Road Chak Shahzad Islamabad 44000,Pakistan

    3 Department of Mathematics,College of Sciences AlZulfi,Majmaah University,Al Majma’ah,11952 Saudi Arabia

    4 Department of Mathematics,Imam Muhammad ibn Saud Islamic University,Riyadh 11432,Saudi Arabia

    5 Department of Mathematics,University of the Poonch Rawalakot,Rawalakot 12350,Pakistan

    Abstract The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow.The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction.The buoyancy effects in terms of temperature and concentration differences are inserted in the x-momentum equation.The aspects of heat and mass transfer are studied using dimensionless thermophoresis,Schmidt and Brownian motion parameters.The governing coupled partial differential system(PDEs)is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations.The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c.Finally,the quantitative effects of emerging dimensionless quantities on the nondimensional velocity,temperature and mass concentration in the boundary layer are conferred graphically,and inferences are drawn that important quantities of interest are substantially affected by these parameters.It is concluded that non-similar modeling,in contrast to similar models,is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.

    Keywords:non-similar modeling,second-grade fluid,exponentially stretching surface,local non-similarity,bvp4c

    1.Introduction

    Study of the flows induced by the stretching of the surfaces is of significant importance in view of its use in technical manufacturing,such as aerodynamics,the cooling process of metal sheets,extrusion of plastic sheets,the condensation process of fluid films,chemical processing equipment,glass and polymer industries,crystal growth and several heat exchanger projects.In such situations,the outputs with the required attributes depend on the rate of cooling and stretching in the process.Sakiadis[1]was the pioneer in this field who theoretically explored the moving solid structures.He addressed the problem by applying similarity transformation via a numerical technique.Moreover,Erickson et al[2]continued the exploration by assuming a moving surface with nonzero transverse velocity.The 2D steady flow was investigated by Crane[3]over a stretching surface.He attempted to concentrate on a stretching sheet as he realized that this case was a pivotal subject in the polymer industry.Gupta and Gupta[4]utilized that that was introduced by Crane[3]and extended those examinations.They explored heat and mass transfer by incorporating suction effects over an expanding surface.Rajagopal et al[5]inspected the flow of viscoelastic fluid in the absence of heat transfer and discussed its applications in the polymer industry.Using the momentum integral method,Bujurke et al[6]performed convection studies for second-grade fluid flow.Magyari and Keller[7]examined steady flow using both analytical and numerical solutions.They also compared heat and mass transfer features of the considered problem with already proven results of earlier authors.Elbashbeshy[8]introduced a new dimension in the analysis of an exponentially stretching surface.He examined the effects of suction in a surface which is expanding at exponential rate.Partha et al[9]studied mixed convection flow with viscous dissipation consequences over a vertical surface expanding at exponential rate.Khan et al[10]studied viscoelastic fluid over an exponentially expanding surface.Xu et al[11]analytically examined the unsteady electrically conductive incompressible viscous fluid in which flow is initiated by the expansion of the surface in two lateral directions.Latterly Khan[12]and Bataller[13]analytically reviewed convection equations for viscoelastic fluid flow persuaded by a stretchable sheet.Tan and Liao[14]analytically examined the 3D unsteady incompressible viscous rotating fluid flow over an impulsive surface.Sajid and Hayat[15]surveyed thermal radiation effects in an exponentially expanding sheet.Sekhar and Chethan[16]examined heat transfer using Boussinesq–Stokes suspension numerically in the fluid flow,which is started by the exponentially expanding surface.Siddheshwar et al[17]expanded this research by considering the magnetic field in a transversal direction.Ramzan et al[18],with the help of surface heat flux,examined the effects of thermal radiation and mixed convection on 3D second-grade nanofluid.Rasheed and Anwar[19]studied magnetohydrodynamic(MHD)viscoelastic fluid flow with homogeneous–heterogeneous reactions in the flow domain.By utilizing the time-dependent magnetic field,Muhammad[20]analyzed the impact of heat absorption/generation effects over a curved surface.Ahmad et al[21]inspected 3D unsteady flow with thermophoresis and Brownian motion effects.Jamil et al[22]examined heat transfer of viscoelastic incompressible unsteady flow generated by a stretching surface with heat radiation and chemical reaction effects.Irfan et al[23]examined 3D MHD nonlinear radiated flow of mixed convection Carreau nanofluid over a stretching surface.

    In accordance with industrial and technical applications,flow models based on non-Newtonian fluids are more acceptable than Newtonian fluids.Non-Newtonian fluids show a nonlinear stress and strain rate relationship at any point of flow.Mathematically,compared to the Newtonian the constitutive equations of non-Newtonian fluids are much more complex because of the nonlinear relation of the stress and strain rate.Constitutive equations are more complex,containing a number of parameters,and the solutions of the resulting equations are more complicated to find in general.Numerous variable viscous fluid models have been suggested which demonstrate the complexity of their governing equations.Now,several researchers are engaged in the study of analytical or numerical solutions to fluid flow problems that generate from the use of various non-Newtonian fluid models.Viscoelastic fluids are common types of non-Newtonian fluids.However,the most widely used basic type of viscoelastic fluid is the second-order fluid,which may address problems that are far from trivial.The fluid property viscoelasticity refers to the rise in the order of differential equations that describe the flow.Nevertheless,flow equations are typically more nonlinear compared to Newtonian fluid equations.Among these reasons,the field of research on non-Newtonian fluids poses some fascinating and impressive tasks for computer scientists,physicists and mathematicians alike.

    Mathematical simulations of physical processes in fields such as fluid dynamics,diffusion,wave dynamics,chemical kinetics and general transport problems are governed by nonlinear partial differential equations whose solutions are difficult to find analytically.Consequently,the conversion technique for analyzing nonlinear partial differential system(PDEs)into ordinary differential equations(ODEs)has been very influential in the study of various convection equations.Ames[24]presented many types of these reduction approaches and thought about the developments in fluid dynamics,wave propagation and nonlinear diffusion from the use of PDEs to the reduction approach to ODEs.Although a similar approach has frequently been used in the literature[25–29],the approach cannot be used to a significant extent because of a limitation clarified underneath.Success of this approach depends vigorously on the achievement of a reduced ODEs solution.For a few cases,the reduced ODEs may be integrated in the form of elementary functions,but it is not an easy matter in most cases,so it was proposed that numerical methods be used to solve the converted ODEs.Generally,the given system is not fully converted to ODEs using a local similar method;to overcome this drawback Sparrow and Yu[30]introduced a method of local non-similarity.Hayat et al[31]numerically examined magnetic viscous fluid in nonlinear curved expansion.Zhang et al[32]investigated 3D pressure drop through a spherically coordinated helically coiled tube.Ray et al[33]utilized local non-similarity via a homotopy analysis scheme for mixed convection in the vertical flow of Eyring–Powell fluid with variable velocity.Farooq et al[34]employed local non-similarity via bvp4c for Darcy–Forchheimer–Brinkman flow in non-Darcy porous media.

    The purpose of this work is to provide a realistic means of dealing with these circumstances in which governing equations cannot be reduced into ordinary differential systems.The laminar incompressible flow of magnetic secondgrade fluid over an exponentially expanding surface in the presence of buoyancy forces in terms of temperature and concentration with surface heat flux is considered.Under these premises,the governing convection differential equations are formulated.The appropriate non-similarity transformations are proposed.The governing equations are reduced into a dimensionless nonlinear partial differential system.The transformed system is solved numerically using local non-similarity via bvp4c,which is valid for a system of PDEs.Finally,tabular representations regarding the impact of concerning parameters on the friction coefficientCf,Nusselt numberNu,and Sherwood numberShare disclosed,and demonstrated graphically the effects of involved dimensionless parameters on the non-dimensional velocity,temperature and mass concentration profiles.

    2.Formulation of convection equations

    Consider mixed convection in a second-grade laminar,incompressible,steady,2D,magnetized second-grade fluid flow over a sheet positioned along thex-axis in the vertical direction,although fluid in the domainy>0 is constrained.It is also presumed that the sheet is stretched at an exponential ratewhereU0is the reference velocity.Figure 1 demonstrates the geometrical configuration of the present flow.

    Figure 1.Flow over a hot vertical plate at temperature Tw immersed in a fluid at temperature∞T.

    Figure 2.f′(η)for several values of“M”.

    Figure 3.f′(η)for several values of‘α’.

    Figure 4.f′(η)for several values of‘λ’.

    Figure 5.f′(η)for several values of‘N’.

    The governing equations for

    are as follows:

    continuity equation

    equation of motion

    energy equation

    nanoparticle volume fraction equation

    In the governing systemuandvare the velocity components along thex-andy-directions,whileTandCrepresent temperature and concentration variables,respectively,ρfis the fluid density,σrepresents the electrical conductivity,?is the kinematic viscosity,B0indicates the applied magnetic field,α1is the second-grade fluid material parameter,gis the gravitational acceleration,βTandβcare the thermal and concentration enlargement coefficients,respectively,τdescribes the ratio between the nanoparticle’s heat capacity and the original fluid heat capacity,DBrepresents the coefficient of Brownian diffusion,DTindicates the thermophoresis diffusion coefficient,∞Cand∞Tare upstream concentration and temperature,respectively,andαis thermal diffusivity.

    The suitable boundary conditions for the considered flow problems are

    3.Non-similar analysis

    We propose the following non-similarity transformations

    These transformations identically satisfy the continuity equation(2).Substituting(8)into(3)–(7),we get the following system of dimensionless PDEs

    In the above equations,the magnetic parameter(M),secondgrade fluid parameter(α),Richardson number(λ),ratio of mass and heat transfer Grashof numbers(N),Brownian motion(Nb),Prandtl number(Pr),thermophoresis(Nt),and Schmidt number(Sc),respectively,are defined as

    4.First truncation system

    By using a local similarity technique the terms containing a partial derivative with respect toξare treated as approximately small and considered equal to zero.Therefore,equations(9)–(11)become

    The boundary conditions are

    5.Second truncation system

    For the second truncation system we considered

    Equations(9)–(11)take the following form

    The boundary conditions are

    The parameters of physical interest,such as the friction coefficientCf,the local Nusselt numberNuand the Sherwood numberShare defined as,

    where the wall skin frictionτwx,heat fluxqwand mass fluxjware expressed as

    Using(27)in(26)we get,

    6.Results and discussion

    The interpretation of solutions regarding the impacts of the different dimensionless quantities onf′(η),θ(η)andφ(η)arepresented in this section.The variation in the numerical data of the friction coefficient(Cf),Nusselt number(Nu)and Sherwood number(Sh)for numerous values of involved quantities are depicted in this tabular form.The Nusselt number is the ratio of convective to conductive heat transfer,and the Sherwood number is defined as the ratio of the convective mass transfer to the mass diffusivity at a boundary in a fluid.Large values of the Nusselt number show pre-eminence of convection of heat transfer over conduction and small values of the Nusselt number indicate that poor convection occurs.So the Nusselt number indicates the dominant heat transfer phenomenon of the system.Graphical analysis of the velocity,temperature and concentration fields are conferred to explain the current non-similar model.

    Table 1 shows the range of governing parameters in which graphical solutions of velocity,temperature and concentration profiles reveal stable behavior.Table 2 depicts the impacts of the magnetic parameter(M),Richardson number(λ),second-grade fluid parameter(α)and ratio of mass and heat transfer Grashof numbers(N)on the local skin friction.We perceive that the friction coefficient decreases marginally asMincreases,while the coefficient of skin friction increases due to increases in the values ofα,λandN.

    Table 1.The range of defined parameters for a stable solution.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    Table 2.Numerical data for the skin friction coefficientfor various parameters.

    ?

    Table 3 displays the local Nusselt number values for the various governing parameter values.It is established that the rate of heat transfer on the wall increases due to the increase inNb.It is also shown that uplifting the values of the parametersPrandNtresulted in a decline in the numeric values of the local Nusselt number.

    Table 3.The local Nusselt numberfor various parameters.

    Table 3.The local Nusselt numberfor various parameters.

    ?

    Table 4 describes the impact of governing parameters on the local Sherwood number.The table shows that for increasingNtandScvalues,the local Sherwood coefficient decreases.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    Table 4.Numerical data for the local Sherwood numberSh for various parameters.

    M αξλ N NbNtScPr --Re Sh x 12 22 0.01 51 0.4 0.4 0.270.127 830 7934 22 0.01 51 0.4 0.4 0.470.141 073 9103 22 0.01 51 0.4 0.4 0.670.294 137 7066 22 0.01 51 0.4 0.4 0.870.307 232 1177 22 0.01 51 0.2 0.4 0.170.102 663 3317 22 0.01 51 0.3 0.4 0.170.101 851 7903 22 0.01 51 0.4 0.4 0.170.093 584 0243 22 0.01 51 0.5 0.4 0.170.095 747 2218 22 0.01 51 0.4 0.1 0.170.075 010 4120 22 0.01 51 0.4 0.2 0.170.084 432 5427 22 0.01 51 0.4 0.3 0.170.087 396 3154 22 0.01 51 0.4 0.4 0.170.093 584 0243

    Whereas the local Sherwood number increases with the increasing values ofNb.

    Figures 2–5 demonstrate the velocity profiles for different parameters likeM,α,λ andN.The consequence of an applied magnetic fieldMin the transverse direction on flow over a stretching sheet is shown in figure 2.It is observed that the increase in magnetic field reduces the fluid velocity.In general,an increase in the applied magnetic field in the transverse direction produces the Lorentz force which opposes the flow.We observed that the Lorentz force effect reduces the flow of the velocity profile.Figure 3 indicates that the fluid flow increases with increasing α,thus thickening the boundary velocity layer.Figures 4 and 5 give an insight into the effect of λ andNon velocity.From figure 4 it is conspicuous that the velocity profile increases with increasing values of λ.Figure 5 indicates that the velocity profile increases with the increasing values ofN(ratio of mass and heat transfer Grashof numbers)due to the buoyancy effect.

    Figure 6.θ(η)for several values of‘Pr’.

    Figure 6 reveals that the effect of increasing thePris a decrease in the temperature profile.The ratio of momentum diffusivity and thermal diffusivity is specified by the Prandtl number.So,it is clear that the rise inPrdecreases the thickness of the thermal boundary layer.Figure 7 expresses the dimensionless temperature for several values ofNb.It shows that due to a rise in the values ofNb,the temperature profile decreases.From figure 8 it is seen that the temperature profile rises with the increasing values of the thermophoresis parameterNt.

    Figure 9 shows the influence of the Schmidt numberScon the mass concentration profile.It is seen that a rise inScleads to a reduction in the concentration boundary layer thickness.Figure 10 explains the impact of the Brownian motion parameterNbon the mass concentration profile.It is evident from the figure that the concentration profile rises with the upsurge in the values ofNb.The influence of the thermophoresis parameterNton the concentration profile is illustrated in figure 11.It is perceived that the concentration profile decreases with the increase inNt.

    Figure 7.θ(η)for several values of‘Nb’.

    Figure 8.θ(η)for several values of‘Nt’.

    Figure 9.φ(η)for several values of‘Sc’.

    Figure 10.φ(η)for several values of‘Nb’.

    Figure 11.φ(η)for several values of‘Nt’.

    7.Conclusions

    In this research non-similar modeling is performed for second-grade magnetic nanofluid flow over a vertical surface which is stretching at an exponential rate.Non-similar solutions are obtained through local non-similarity via bvp4c.The important results are mentioned below.

    ?The velocity profile is increased by the increase inN,λ and α,while the velocity profile decreases as a result of the increase inM.

    ?The temperature profile is increased due to the increase inNt,although the temperature profile decreases due to the increase inNbandPr.

    ?The increase in the valueNbleads to the rise in the volumetric concentration profile,while the opposite is true forScandNt.

    ?Local skin friction increases due to the increase in the values ofα,λandNand slightly decreases as the values of theMincrease.

    ?It is observed that the local Nusselt number upsurges against theNb,whereas it declines by uplifting thePr andNtparameters.

    ?The local Sherwood number decreases with the increase inNtandSc,but the effect is the reverse forNb.

    ORCID iDs

    七月丁香在线播放| 天天操日日干夜夜撸| 中文字幕人妻丝袜制服| 十分钟在线观看高清视频www| 色视频在线一区二区三区| 国产精品99久久99久久久不卡 | 1024香蕉在线观看| 婷婷色麻豆天堂久久| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜爱| 在现免费观看毛片| 久久久久久人妻| 国产伦理片在线播放av一区| 日韩av在线免费看完整版不卡| 日韩三级伦理在线观看| 日韩免费高清中文字幕av| 国产精品国产三级国产专区5o| 日韩电影二区| 肉色欧美久久久久久久蜜桃| av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 黄色 视频免费看| 国产午夜精品一二区理论片| 亚洲精品视频女| 亚洲国产欧美在线一区| 国产成人a∨麻豆精品| 高清欧美精品videossex| 97精品久久久久久久久久精品| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 国产日韩欧美亚洲二区| 亚洲国产看品久久| 久久精品国产亚洲av涩爱| 免费大片黄手机在线观看| 女性生殖器流出的白浆| 久久久国产精品麻豆| 国产精品一区二区在线观看99| 美女高潮到喷水免费观看| 国产精品.久久久| 成人免费观看视频高清| 国产在线免费精品| 精品国产一区二区三区久久久樱花| 看十八女毛片水多多多| 久久久久久久久久人人人人人人| 大陆偷拍与自拍| 日本-黄色视频高清免费观看| 男的添女的下面高潮视频| 久久久久久伊人网av| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美一区二区三区久久| a 毛片基地| 亚洲欧美一区二区三区国产| 另类精品久久| 国产精品麻豆人妻色哟哟久久| 国产乱人偷精品视频| 午夜免费观看性视频| 久久精品国产亚洲av涩爱| 亚洲第一区二区三区不卡| 丝袜美腿诱惑在线| 满18在线观看网站| 久久精品国产亚洲av高清一级| 伊人亚洲综合成人网| 这个男人来自地球电影免费观看 | 久久国产精品大桥未久av| 亚洲欧美精品自产自拍| av网站免费在线观看视频| 欧美日韩视频精品一区| 男人操女人黄网站| 少妇人妻 视频| 精品一区二区免费观看| 97在线视频观看| 91久久精品国产一区二区三区| 99热网站在线观看| 日韩中文字幕视频在线看片| 91久久精品国产一区二区三区| 大片免费播放器 马上看| 国产老妇伦熟女老妇高清| 日日爽夜夜爽网站| 蜜桃国产av成人99| 国产成人欧美| 一区二区日韩欧美中文字幕| a级片在线免费高清观看视频| 国产白丝娇喘喷水9色精品| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区二区三区在线| 国产一区二区在线观看av| 久久久精品94久久精品| 亚洲,欧美,日韩| 欧美xxⅹ黑人| 欧美精品一区二区免费开放| 中文字幕另类日韩欧美亚洲嫩草| 叶爱在线成人免费视频播放| 国产精品 国内视频| 日韩中字成人| 国产精品亚洲av一区麻豆 | 免费人妻精品一区二区三区视频| 国产一区二区三区av在线| 日韩中字成人| 国产激情久久老熟女| 日日爽夜夜爽网站| 日韩中文字幕欧美一区二区 | 一级毛片电影观看| 欧美日韩精品成人综合77777| 一级片免费观看大全| 美女主播在线视频| 熟女少妇亚洲综合色aaa.| 两个人看的免费小视频| av电影中文网址| 亚洲精品在线美女| 巨乳人妻的诱惑在线观看| 欧美人与善性xxx| 天天操日日干夜夜撸| 国产97色在线日韩免费| 亚洲成国产人片在线观看| 国产男女内射视频| 国产一区亚洲一区在线观看| 99久久中文字幕三级久久日本| av国产精品久久久久影院| 水蜜桃什么品种好| 国产亚洲精品第一综合不卡| 人妻 亚洲 视频| av有码第一页| 精品人妻偷拍中文字幕| 国产一区亚洲一区在线观看| 夫妻午夜视频| 亚洲av电影在线进入| 国产野战对白在线观看| a级片在线免费高清观看视频| 大香蕉久久网| 国产av精品麻豆| 亚洲一区二区三区欧美精品| 日韩制服骚丝袜av| 大片电影免费在线观看免费| 国产又色又爽无遮挡免| 夫妻性生交免费视频一级片| 亚洲一区二区三区欧美精品| av天堂久久9| 老司机亚洲免费影院| 亚洲图色成人| 亚洲欧美成人精品一区二区| av网站免费在线观看视频| 少妇被粗大猛烈的视频| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 国产精品熟女久久久久浪| 午夜精品国产一区二区电影| 日韩,欧美,国产一区二区三区| 欧美激情高清一区二区三区 | 亚洲国产毛片av蜜桃av| 另类亚洲欧美激情| 久久人妻熟女aⅴ| 2022亚洲国产成人精品| 亚洲av成人精品一二三区| 久久久久精品久久久久真实原创| 国产成人午夜福利电影在线观看| 最近中文字幕2019免费版| 久久久久精品久久久久真实原创| xxx大片免费视频| 日本av手机在线免费观看| 韩国av在线不卡| 两个人免费观看高清视频| 一级毛片黄色毛片免费观看视频| 亚洲熟女精品中文字幕| 亚洲av男天堂| av国产精品久久久久影院| 日本-黄色视频高清免费观看| 美女高潮到喷水免费观看| 性色av一级| 老汉色∧v一级毛片| av视频免费观看在线观看| 超碰97精品在线观看| 巨乳人妻的诱惑在线观看| 99re6热这里在线精品视频| 久久久久国产网址| 交换朋友夫妻互换小说| 汤姆久久久久久久影院中文字幕| 热99久久久久精品小说推荐| 午夜福利在线免费观看网站| 永久网站在线| 夫妻性生交免费视频一级片| 亚洲美女黄色视频免费看| 日本vs欧美在线观看视频| 最近最新中文字幕免费大全7| 自拍欧美九色日韩亚洲蝌蚪91| 日韩不卡一区二区三区视频在线| 免费久久久久久久精品成人欧美视频| 青青草视频在线视频观看| 男人爽女人下面视频在线观看| videos熟女内射| 熟女电影av网| 国产精品人妻久久久影院| 亚洲一区中文字幕在线| 美女高潮到喷水免费观看| 日日撸夜夜添| 啦啦啦啦在线视频资源| 亚洲av电影在线进入| 夫妻午夜视频| 亚洲美女搞黄在线观看| 母亲3免费完整高清在线观看 | 性色avwww在线观看| 午夜免费男女啪啪视频观看| 人人妻人人澡人人看| 精品久久久精品久久久| 宅男免费午夜| 亚洲国产av影院在线观看| 欧美国产精品va在线观看不卡| 日韩在线高清观看一区二区三区| 欧美日韩一级在线毛片| 老司机亚洲免费影院| 热99久久久久精品小说推荐| freevideosex欧美| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 咕卡用的链子| 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 免费黄网站久久成人精品| 久久国产精品大桥未久av| 国产人伦9x9x在线观看 | 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 一级a爱视频在线免费观看| 亚洲在久久综合| 亚洲综合色惰| 久久久久久久大尺度免费视频| 天堂中文最新版在线下载| 中文字幕最新亚洲高清| 国产野战对白在线观看| 只有这里有精品99| av电影中文网址| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 美女国产高潮福利片在线看| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图| 老女人水多毛片| 久久久久久久久久久久大奶| 日日摸夜夜添夜夜爱| 一个人免费看片子| 久久精品亚洲av国产电影网| 2021少妇久久久久久久久久久| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 精品卡一卡二卡四卡免费| 国产精品国产av在线观看| 欧美人与性动交α欧美精品济南到 | 色哟哟·www| 狠狠精品人妻久久久久久综合| 欧美另类一区| 亚洲精品av麻豆狂野| 亚洲精品日本国产第一区| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 99香蕉大伊视频| 国产精品一区二区在线不卡| 成年人午夜在线观看视频| 麻豆精品久久久久久蜜桃| 亚洲精品国产av蜜桃| 少妇的逼水好多| 在线天堂最新版资源| xxx大片免费视频| 免费在线观看视频国产中文字幕亚洲 | 午夜福利影视在线免费观看| 校园人妻丝袜中文字幕| 午夜日韩欧美国产| 丝瓜视频免费看黄片| 成人免费观看视频高清| 日本av免费视频播放| 久久久精品94久久精品| 99热全是精品| 久久狼人影院| 一级毛片黄色毛片免费观看视频| 国产麻豆69| av在线播放精品| 免费看av在线观看网站| 丁香六月天网| 伦理电影大哥的女人| 在线观看www视频免费| 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 国产精品人妻久久久影院| 亚洲av免费高清在线观看| 在线观看免费视频网站a站| 精品国产乱码久久久久久男人| 美女主播在线视频| 99久久综合免费| 久久人人97超碰香蕉20202| 亚洲男人天堂网一区| 视频区图区小说| 老司机亚洲免费影院| 日本黄色日本黄色录像| 久久久久久久久免费视频了| 久久婷婷青草| 一边亲一边摸免费视频| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 国语对白做爰xxxⅹ性视频网站| 免费在线观看完整版高清| 18禁裸乳无遮挡动漫免费视频| 999久久久国产精品视频| 一级,二级,三级黄色视频| 亚洲av免费高清在线观看| 成年人免费黄色播放视频| av一本久久久久| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久小说| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 成人影院久久| 日本欧美视频一区| 最近最新中文字幕免费大全7| 激情视频va一区二区三区| 天天操日日干夜夜撸| 91精品伊人久久大香线蕉| 国产毛片在线视频| 免费av中文字幕在线| 十八禁高潮呻吟视频| 丝袜人妻中文字幕| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 美女国产视频在线观看| 国产精品蜜桃在线观看| 欧美人与性动交α欧美精品济南到 | 免费大片黄手机在线观看| 男女国产视频网站| 精品一品国产午夜福利视频| 亚洲国产精品一区二区三区在线| 久久午夜福利片| 亚洲国产日韩一区二区| 国产av国产精品国产| 久久这里有精品视频免费| 亚洲国产av影院在线观看| 亚洲欧美中文字幕日韩二区| 久久女婷五月综合色啪小说| 国产免费视频播放在线视频| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 美女午夜性视频免费| 国产成人91sexporn| 国产黄色视频一区二区在线观看| 日韩av在线免费看完整版不卡| 亚洲精品日本国产第一区| 成人亚洲精品一区在线观看| 免费观看性生交大片5| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 亚洲成人手机| 国产男女超爽视频在线观看| 看免费av毛片| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 91精品三级在线观看| www.精华液| 蜜桃国产av成人99| 成人亚洲欧美一区二区av| 最近最新中文字幕免费大全7| 国产男人的电影天堂91| 一级毛片我不卡| 久久婷婷青草| 久久99蜜桃精品久久| 国产一区二区 视频在线| 伊人久久国产一区二区| 纵有疾风起免费观看全集完整版| 日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| 永久网站在线| 免费观看性生交大片5| 国产野战对白在线观看| 欧美精品一区二区免费开放| 9191精品国产免费久久| 国产又爽黄色视频| 国产一区二区三区av在线| 9191精品国产免费久久| 久久狼人影院| 亚洲激情五月婷婷啪啪| 看免费av毛片| 一区福利在线观看| 青草久久国产| 91精品伊人久久大香线蕉| 精品人妻在线不人妻| 欧美亚洲 丝袜 人妻 在线| 午夜老司机福利剧场| 国产色婷婷99| 1024视频免费在线观看| 日日摸夜夜添夜夜爱| 在线观看一区二区三区激情| 一级片免费观看大全| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区 | 免费不卡的大黄色大毛片视频在线观看| 午夜激情av网站| www.av在线官网国产| 免费av中文字幕在线| 狠狠精品人妻久久久久久综合| 一级片免费观看大全| 国产免费视频播放在线视频| av视频免费观看在线观看| 最新中文字幕久久久久| av天堂久久9| 国产亚洲一区二区精品| 久久久久网色| 国产日韩欧美在线精品| 日韩人妻精品一区2区三区| 人人妻人人添人人爽欧美一区卜| 日韩制服丝袜自拍偷拍| 久久久久国产网址| 人人妻人人澡人人看| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| 成人国产av品久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩av在线免费看完整版不卡| 91在线精品国自产拍蜜月| 男女无遮挡免费网站观看| 日本色播在线视频| 丝袜脚勾引网站| 精品少妇黑人巨大在线播放| 欧美少妇被猛烈插入视频| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 国产av精品麻豆| 精品少妇久久久久久888优播| videos熟女内射| 一区在线观看完整版| www日本在线高清视频| 精品人妻熟女毛片av久久网站| 国产精品蜜桃在线观看| 国产白丝娇喘喷水9色精品| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 少妇的逼水好多| 伦理电影免费视频| 国产精品久久久av美女十八| 日韩av免费高清视频| 免费看不卡的av| av一本久久久久| 少妇被粗大的猛进出69影院| 国产熟女欧美一区二区| 最近手机中文字幕大全| 亚洲中文av在线| 久久久久久久久免费视频了| 黄色配什么色好看| 亚洲国产欧美网| 大话2 男鬼变身卡| 美女国产高潮福利片在线看| 黄片无遮挡物在线观看| 超碰成人久久| 免费人妻精品一区二区三区视频| 国产黄色视频一区二区在线观看| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 少妇被粗大猛烈的视频| 欧美成人精品欧美一级黄| 美女国产视频在线观看| 在线观看人妻少妇| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 久久人人爽av亚洲精品天堂| 亚洲久久久国产精品| 观看美女的网站| 亚洲国产色片| 日韩av在线免费看完整版不卡| 欧美亚洲日本最大视频资源| 久久精品国产自在天天线| 日本91视频免费播放| 交换朋友夫妻互换小说| 亚洲国产欧美日韩在线播放| 欧美bdsm另类| 亚洲伊人色综图| 午夜av观看不卡| 婷婷成人精品国产| 中国三级夫妇交换| 天堂俺去俺来也www色官网| 少妇人妻 视频| 自线自在国产av| 国产精品秋霞免费鲁丝片| 99久久人妻综合| 少妇人妻 视频| 亚洲三区欧美一区| 久久99精品国语久久久| 一边摸一边做爽爽视频免费| av在线观看视频网站免费| 国产精品久久久久久精品古装| 青草久久国产| 精品99又大又爽又粗少妇毛片| 国产 一区精品| 久久久国产欧美日韩av| 少妇的丰满在线观看| 成年女人在线观看亚洲视频| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 久久久久久久久久久久大奶| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 伊人久久国产一区二区| 亚洲国产欧美在线一区| 天天影视国产精品| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 成人国语在线视频| 欧美激情 高清一区二区三区| av又黄又爽大尺度在线免费看| 久久狼人影院| 久久久久人妻精品一区果冻| www.av在线官网国产| 国产1区2区3区精品| 久久女婷五月综合色啪小说| 国产成人aa在线观看| 18在线观看网站| 国产在线一区二区三区精| 精品久久蜜臀av无| 日韩精品免费视频一区二区三区| 国产片内射在线| 人妻一区二区av| 婷婷色综合www| 免费大片黄手机在线观看| 国精品久久久久久国模美| 高清黄色对白视频在线免费看| 黄色视频在线播放观看不卡| 视频区图区小说| www.自偷自拍.com| 国产亚洲欧美精品永久| 欧美日韩精品网址| 精品人妻偷拍中文字幕| 老汉色∧v一级毛片| 欧美精品人与动牲交sv欧美| 少妇熟女欧美另类| 在线观看免费视频网站a站| 国产精品一区二区在线不卡| 欧美av亚洲av综合av国产av | 久久国产精品男人的天堂亚洲| 十八禁网站网址无遮挡| 午夜激情久久久久久久| 一本久久精品| 国产伦理片在线播放av一区| 欧美精品国产亚洲| 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 中文字幕制服av| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在| 国产成人精品久久久久久| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| www.熟女人妻精品国产| 美女午夜性视频免费| 久久久久久伊人网av| 亚洲国产精品国产精品| 一本色道久久久久久精品综合| 极品少妇高潮喷水抽搐| av福利片在线| 欧美 日韩 精品 国产| 18在线观看网站| 2021少妇久久久久久久久久久| 久久久久国产网址| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免| 美女国产视频在线观看| 18禁动态无遮挡网站| 男人操女人黄网站| 亚洲成人一二三区av| 少妇精品久久久久久久| 国产 一区精品| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 大香蕉久久成人网| 亚洲三区欧美一区| 国产极品天堂在线| 最近的中文字幕免费完整| 久久精品国产亚洲av高清一级| 曰老女人黄片| 天堂中文最新版在线下载| a级毛片黄视频| 欧美日韩亚洲高清精品| 国产一区二区在线观看av| 三级国产精品片| 精品国产一区二区久久| 国产 精品1| 欧美亚洲 丝袜 人妻 在线| 三级国产精品片| 日本色播在线视频| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 两性夫妻黄色片| 欧美日韩精品网址| 国产福利在线免费观看视频| 亚洲一区中文字幕在线| 亚洲,欧美精品.| 欧美日韩视频高清一区二区三区二| 国产男女超爽视频在线观看| 国产欧美亚洲国产| 国产精品久久久久成人av| 大陆偷拍与自拍| 亚洲精品国产av成人精品| 久久久久久久久久久免费av| videossex国产| 国产精品av久久久久免费| av卡一久久| 黄频高清免费视频| 国产精品熟女久久久久浪| 一级,二级,三级黄色视频| 亚洲国产最新在线播放| 叶爱在线成人免费视频播放| 9191精品国产免费久久|