• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Advances in thermoelectric(GeTe)x(AgSbTe2)100-x

    2022-04-12 03:47:58HongxiaLiu劉虹霞XinyueZhang張馨月WenLi李文andYanzhongPei裴艷中
    Chinese Physics B 2022年4期
    關(guān)鍵詞:李文張馨

    Hongxia Liu(劉虹霞) Xinyue Zhang(張馨月) Wen Li(李文) and Yanzhong Pei(裴艷中)

    1School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China

    2Laboratory of Magnetic and Electric Functional Materials and the Applications,The Key Laboratory of Shanxi Province,Taiyuan 030024,China

    3Interdisciplinary Materials Research Center,School of Materials Science and Engineering,Tongji University,Shanghai 201804,China

    Keywords: thermoelectric,TAGS,band structure,lattice thermal conductivity,thermoelectric figure of merit

    1. Introduction

    Thermoelectric technology,which enables a mutual conversion between heat and electricity through carrier transport within a solid, has been widely used in power generation and refrigeration without moving parts, emissions and noise. The conversion efficiency is dominantly determined by the thermoelectric materials’ dimensionless figure of merit,zT=S2T/ρ(κE+κL), whereS,T,ρ,κE, andκLare the Seebeck coefficient, absolute temperature, electrical resistivity,and electronic and lattice components of thermal conductivity,respectively. Thus,a highly efficient thermoelectric material requires a highS, a lowρ, but a lowκ. However, the electronic parameters includingS,ρ,andκEare strongly coupled with each other through the carrier concentration,leading it difficult to obtain a net increase inzTby optimizing one single parameter.

    TheκLis the only independent parameter determining the thermoelectric performance. Therefore,κL-minimization becomes a mainstream to enhance the thermoelectric performance of materials. This can be effectively realized by introducing various defects, such as zero-dimensional point defects,[1-6]one-dimensional dislocations[7,8]and twodimensional interfaces,[9-12]for effectively scattering phonons and thereby reducingκL. Moreover, the features of complex crystal structure,[13,14]liquid-like ions,[15]low sound velocity,[16]and strong lattice anharmonicity[17,18]have been demonstrated to accompany with an intrinsic lowκL, which are utilized as guiding principles for exploring novel thermoelectric materials with a superiorzT.

    Due to the existence of amorphous low-boundary limit ofκLfor a given material, numerous efforts have been devoted to enhancing the electronic performance at optimal carrier concentrations. Band engineering, including band convergence[19]/nestification[20]for high band degeneracy (Nv), has been proposed and demonstrated to effectively decouple the correlation among the electronic parameters (S,ρ, andκE). This strategy enables a significantzT-enhancement in many thermoelectric materials, such as PbTe,[19]SnTe,[21,22]GeTe,[23]CoSb3,[24]Mg2Si,[25]Zintl compounds[26]and Te.[20]Note that the small inertial effective mass (m?I)[27]and low deformation potential coefficient(Edef)[28]are proven to be beneficial for the high electronic performance as well.

    The IVA-VIAsemiconductors, typically PbTe,[29,30]SnTe[31,32]and GeTe[33,34]in a cubic structure, have been widely demonstrated as promising p-type thermoelectric materials with an extraordinaryzT. This largely comes from the coexistence of bothLandΣvalence bands with a small energy offset (ΔE), where theLandΣbands have a high band degeneracy(Nv)of 4 and 12,respectively.[35]Therefore,a high effectiveNvup to 16 can be achieved by aligning theLandΣbands,leading to an enhancement inzT.

    Recently,the crystal structure for rhombohedral GeTe has been revealed to be a directional distortion of the cubic one along[111]with the interaxial angle reducing from 90°(cubic)to 88.2°(rhombohedral)at room temperature.[23]Such a distortion leads to an opposite arrangement in energy of theLandΣvalence bands in rhombohedral GeTe, namely, low-energyLband and high-energyΣband. This unique band structure guarantees a possibility of band manipulation and thereby a superior electronic performance in rhombohedral GeTe.Eventually,a peakzThigher than 2 has been achieved in rhombohedral GeTe with a further help ofκL-reduction.[23]

    As a derivative of GeTe, (GeTe)x(AgSbTe2)100-xalloys, also called “TAGS-x” (tellurium-antimony-germaniumsilver), have long been considered as a promising candidate for p-type thermoelectric applications due to the highzTof>1.0 in a broad temperature range. In fact, TAGS-xhave been successfully utilized in radioisotope thermoelectric generators (RTG) for space missions. Numerous efforts have been devoted tozT-advancements of TAGS-xfocusing onxwithin 75-90. TAGS alloys retain the major features of the band structure of GeTe,which inspires a band engineering by manipulating AgSbTe2concentration forzT-enhancement.[36]Moreover, compositional optimization and doping for power factor improvement[37,38]and microstructure engineering forκL-reduction[39,40]have also been used for thermoelectric performance enhancements of TAGS alloys.

    In this review, we summarize the characteristics of crystal structure,band structure and microstructure of TAGS alloys for understanding the origin of superior thermoelectric performance.The effective strategies leading to a great advancement in thermoelectric performance of TAGS are surveyed. The development of TAGS-based thermoelectric devices is also summarized.

    2. Crystal structure of TAGS alloys

    (GeTe)x(AgSbTe2)100-xalloys can be regarded as quasibinary solid solutions of GeTe and AgSbTe2. At room temperature, AgSbTe2crystallizes in a rock-salt structure (space group ofFmˉ3m)in which Te occupies the anion site while Ag and Sb occupy the cation site randomly.[41]GeTe exhibits a rock-salt structure(Fmˉ3m)only atT >720 K,and undergoes a phase transition to a rhombohedral structure (space group ofR3m) atT <720 K.[42]TAGS alloys maintain the crystal structure features of GeTe,and the phase transition is also observed in TAGS-xalloys withx ≥80.[43,44]Figure 1 shows the crystal structure of (GeTe)85(AgSbTe2)15(TAGS-85), as an example of TAGS-x. For high-temperature cubic phase of TAGS-85(Fmˉ3m),Ge,Ag and Sb occupy the cation sites(1/2,1/2,1/2),and Te occupies the anion site(0,0,0).[45]

    The low-temperature rhombohedral phase with an asymmetric structure can be regarded as the result of the directional distortion of the cubic structure along [111].[45]The breaking of the symmetry leads to a split of the diffraction peak into a doublet in the x-ray diffraction(XRD)pattern with decreasing temperature(Fig.2(a)).[46]This is further confirmed by the change of the interaxial angle with decreasing temperature, suggesting a phase transition temperature of 510 K in TAGS-85 with an interaxial angle of 89.1°at room temperature (Fig. 2(b)).[46]The interaxial angle for TAGS-xhas been illustrated to increase with decreasingx, corresponding to an increase in phase transition temperature. In addition,the interaxial angle increases to 90°whenx <80, therefore,the TAGS alloys withx <80 show a cubic structure at room temperature.[36]

    Fig.1.Crystal structures of both cubic(solid line)and rhombohedral phases(dashed line)for TAGS.The arrows indicate the lattice distortion from cubic to rhombohedral.[45]Reproduced under the terms of the CC-BY Creative Commons Attribution 3.0 License.[45] Copyright 2014,IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

    Fig. 2. Temperature dependent XRD patterns (a) and interaxial angle as a function of temperature (b) for TAGS-85 alloys.[46] Reprinted from Ref. [46], with the permission of AIP Publishing. Copyright 2007 American Institute of Physics.

    3. Band structure of TAGS alloys

    The parameters of band structure,including the band degeneracy near Fermi level(Nv),band effective mass(m?b)and band gap (Eg), provide a detailed understanding of charge carrier transport properties. TAGS alloys retain not only the crystal structure but also the band structure of GeTe. Figure 3 shows the effect of rhombohedral distortion on the Brillouin zone and the hole Fermi surfaces in degenerately doped TAGS.[45]The distortion splits 4Lcarrier pockets into 1T+3Land 12Σpockets into 6η+6Σin the Brillouin zone, respectively.Moreover,the 6η+6Σvalence bands become the highenergy bands as well as valence band maximum in rhombohedral TAGS alloys.This opens many possibilities for increasing the overallNvup to 16 by aligning the valence bands for enhanced electronic performance in TAGS alloys.

    Fig. 3. The Brillouin zones and Fermi surfaces for rhombohedral (a) and cubic (b) phases of TAGS.[45] Reproduced under the terms of the CC-BY Creative Commons Attribution 3.0 License.[45] Copyright 2014, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

    The density of state(DOS)effective mass(m?d=N2/3vm?b)for the different valence bands is calculated assuming them?bof 0.51meforηandΣbands and 1.15meforLandTbands.[45]The calculated results are listed in Table 1. The increasedNvenables multiple channels contributing to the charge transport and thus increases the electrical conductivity without explicitly decreasing the Seebeck coefficient. Them?dsignificantly increases with increasingNv,enabling a superior electronic performance for rhombohedral TAGS alloys.

    Table 1. Possible configurations of bands participating in transport and resulting degeneracy and calculated density of state effective mass (m?d).[45]Reproduced under the terms of the CC-BY Creative Commons Attribution 3.0 License.[45] Copyright 2014, IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

    4. Microstructure of TAGS alloys

    The lattice thermal conductivity(κL)is an important parameter determining thermoelectric performance, and a lowκLis essential for realizing extraordinaryzT. TAGS alloys show a lowκL,which is long considered to originate from the strong point defect phonon scattering by the alloying of GeTe and AgSbTe2. Until 2000s,the presence of nanoscale compositional modulations is revealed to be responsible for the lowκLin the PbTe-AgSbTe2(LAST) alloys,[47]which promotes many researchers to focus on the microstructures of TAGS for understanding the origin of the lowκL.

    Thein-situelevated-temperature transmission electron microscopy (TEM) observation on TAGS-85 alloy shows the presence of twin-boundary defects (Fig. 4(a)) along with high-density antiphase domains (Fig. 4(b)) in rhombohedral TAGS.[46,48]The twins are the result of inherently structural modulations, causing by the lattice strain imposed by the rhombohedral distortion along the [111] crystallographic direction. Moreover, nanodomains with a typical size of~10 nm are found in the TAGS-80,[49]as shown in Fig.5. The large number of twin-boundary defects and nanodomains provide the extra sources for phonon scattering in TAGS alloys.

    Fig.4. Bright field TEM images of twinning(a)and antiphase domains(b)in as-solidified TAGS-85.[46] Reprinted from Ref.[46],with the permission of AIP Publishing. Copyright 2007 American Institute of Physics.

    Fig. 5. Low-resolution TEM image (a) and high-resolution TEM image and selected area electron diffraction(SAED)pattern(b),(c)and magnified high magnification regions of A (d) and B (e) with the fast Fourier transforms(FFT).[49] Republished with permission of IOP Publishing Ltd,from Ref. [49]; permission conveyed through Copyright Clearance Center, Inc.Copyright 2008 IOP Publishing Ltd.

    Based on the TEM observations on TAGS-80 and TAGS-85 alloys, the microstructure features are found to be related to the composition. The atom probe tomography(APT)measurements are carried out on TAGS-50 and TAGS-85 alloys for clarifying the difference in microstructure.[39]High-density Ag- and Sb-rich nanoprecipitates are observed in TAGS-50 alloy (Fig. 6(a)). However, TAGS-85 alloy shows an appearance of Ag-and Ge-rich precipitates(Fig.6(b)). All these defects observed in the TAGS alloys with different compositions would contribute to the low lattice thermal conductivity.

    Fig.6.The 3D APT maps of TAGS-50(a)and TAGS-85(b).[39]Reproduced under the terms of the Creative Commons CC BY License.[39] Copyright 2020 The Authors, published by Wiley-VCH Verlag GmbH&Co. KGaA,Weinheim.

    5. Thermoelectric properties of TAGS alloys

    5.1. Synthesis of TAGS alloys

    The thermoelectric properties of TAGS-xalloys with differentxhave been widely investigated. GeTe-rich TAGS alloys(x ≥75)are proven to have a highzT,which largely stems from the superior electronic performance. Thus, existing investigations in TAGS mostly focus on compositions ofx ≥75.Thermoelectric properties of TAGS-xalloys are highly sensitive to the synthesis process. Minor phases including Ge-rich and Ag-rich phases, or Ag8GeTe6are frequently observed in TAGS alloys due to the high vapor pressures for the volatile elements of Te and Sb.[48,50-52]

    The techniques used to synthesize TAGS alloys could fall into three categories: (1) melting (M) and annealing (A) approach, which involves melting of pure elements with subsequent annealing and consolidating processes; (2) melt spinning(MS);(3)high-energy ball milling(BM).The latter two techniques are particularly applicable for preparing materials with fine grain, followed by a high-temperature sintering by hot-press (HP) or spark plasma sintering (SPS). The details of the synthesis techniques and relevant thermoelectric performance for the reported TAGS-xalloys with differentxare listed in Table 2. It is found that quite differentzTs can be realized in alloys with the same nominal composition. This can be presumably understood by the different phase compositions and microstructures of the obtained samples using different synthesis methods,which determine the thermoelectric properties. The phase compositions of TAGS are highly related to the synthesis process, due to the greatly different vapor pressures for the constituent elements. Taking TAGS-85 for example, single-phase rhombohedral samples exhibit the best thermoelectric properties.[50]The precipitation such as Ag8GeTe6is detrimental to its electronic performance.[50,53]However, the single-phase TAGS-85 can only be obtained by careful control of the synthesis conditions,such as annealing at an intermediate temperature for a long holding time,whereas shorter holding time gives multiphase mixtures of rhombohedral phases with slightly different lattice parameters,and even the metastable cubic phase,implying the variation of chemical compositions.[53]Moreover, the distributions of microstructures mentioned above for TAGS are diverse with different synthesis methods,[39,40,49,54-56]which involve the difference of homogeneity,grain size,crystallinity and the dimension of microstructures.

    Table 2.Synthesis techniques and thermoelectric performance of the TAGSx alloys.

    5.2. Ag/Sb ratio manipulation

    The AgSbTe2can be regarded as a solid solution between Ag2Te and Sb2Te3. Thus, the TAGS-xalloys can be further expressed as (GeTe)x[(Ag2Te)0.5(Sb2Te3)0.5]100-x, in which the tuning of Ag/Sb atomic ratio has been proven to be an efficient approach for enhancing thermoelectric performance of TAGS. The deviation of stoichiometry in AgSbTe2towards the Sb2Te3side can lead to an obviously higherzTin TAGS-based alloys.[40,45,61,65]Study of several compositions in the system(GeTe)1-x[(Ag2Te)1-y(Sb2Te3)y]xwithy=0.6 andy=0.75 shows that the sample ofx=0.2,y=0.6 has a highzTof 1.68 at 700 K.[61]The peakzTof 1.7 has been realized in the TAGS-90 alloys with a Ag/Sb ratio of 2/3,which is 30% higher than that of (GeTe)90(AgSbTe2)10.[65]Additionally, the manipulation of the Ag/Sb ratio is also used in(GeTe)85(AgxSbTex/2+1.5)15withx=0.4-1.2 for thermoelectric performance enhancement. It is found that the carrier concentration can be tuned in a broad range of 3×1020-12.5×1020cm-2(Fig.7(a))by manipulating the Ag/Sb ratio.[45]Interestingly, an increasedm?dis obtained in the samples with high carrier concentrations (Fig. 7(b)), which is stated to be attributed to the increasedNvby Fermi level deepening into the low-lying valence band. Thus, the increasedm?denables an increase in Seebeck coefficient as well as electronic performance(Fig.7(c)).

    Fig. 7. Temperature dependent carrier concentration (a), Fermi energy dependent density of state effective mass (b) and temperature dependent power factor (c) for TAGS-85 with different Ag/Sb ratios.[45] Reproduced under the terms of the CC-BY Creative Commons Attribution 3.0 License.[45] Copyright 2014,IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

    Thus, the Ag/Sb ratio of~2/3 has been proven as the optimal composition in TAGS for the optimization of carrier concentration. Fixing the Ag/Sb atomic ratio at Ag:Sb=2:3,the effect of (Ag2Te)0.4(Sb2Te3)0.6concentration on thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]xalloys has been investigated.[36]The interaxial angle andm?dincrease with increasing(Ag2Te)0.4(Sb2Te3)0.6concentration,and the interaxial angle turns into 90°as the concentration up to 25%. The increasedm?dleads to an enhancement of Seebeck coefficient along with a reduction in Hall mobility due to the additional carrier scattering by point defects. Meanwhile,the lattice thermal conductivity lower than~0.7 W/m·K in the entire temperature range and the lowest value of only 0.45 W/m·K are achieved in TAGS-80 with Ag/Sb ratio of 2/3.Eventually,a peakzTof~1.8 and an average one of~1.37 in 300-800 K are realized.

    5.3. Rare-earth-element doping

    In order to enhance thermoelectric performance of TAGS,the rare-earth-element of Ce and Yb with the localized magnetic moment are used to substitute at Te site for introducing resonant states near the Fermi level, which enables a significant increase in Seebeck coefficient as well as electronic performance.[38]As a result,a peakzTof 1.8 is realized in Ybdoped TAGS-85.[40,54]In addition,substitutions of rare-earthelement Dy at Ge and Te sites have also been proven to effectively enhance thermoelectric performance in TAGS-85.[37]Such an enhancement dominantly results from the energy filtering of the carriers by potential barriers due to the large atomic size and localized magnetic moment of Dy. Nd substitution at Sb site is found to be effective on reducing carrier concentration (Fig. 8(a)).[60]The optimization of the carrier concentration leads to an enhancedS2σof 32μW·cm-1·K-2(Fig.8(b))and an extraordinaryzTat 727 K in 2%Nd-doped TAGS-85(Figs.8(c)and 8(d)),which is comparable to that of Ce-,Yb-,and Dy-doped TAGS-85.

    Fig.8. Room temperature carrier concentration(a),temperature-dependent electronic performance(S2σ)(b)and zT (c)for Ge0.74Ag0.13Sb0.13-xNdxTe(x=0, 0.02, and 0.04). Maximal zT (d) for Ge0.74Ag0.13Sb0.11Nd0.02Te with a comparison to that of the reported TAGS-85 doped with rare-earthelement.[60] Reproduced under the terms of the Creative Commons Attribution License(CC BY 4.0).[60] Copyright 2021 Wan Yu Lyu et al. Exclusive Licensee Beijing Institute of Technology Press.

    5.4. Lattice thermal conductivity

    TAGS alloys have been revealed to possess a low lattice thermal conductivity, while it is still higher than the amorphous limit estimated by the recently developed model taking into account the periodic boundary conditions (κminL≈0.13 W/m·K).[67,68]Therefore, a further reduction in lattice thermal conductivity is still necessary forzT-maximization.

    It has been illustrated that the carrier mean free path for TAGS-85 is comparable to the lattice parameter, indicating a possibly minimal carrier mobility, the Ioffe-Regel limit.[40]This suggests that further reduction in grain size can be beneficial forκLreduction while affect carrier mobility negligibly.A synthesis technique of melt spinning is applied to prepare the samples with fine grain. The lattice thermal conductivity(Fig. 9(a)) for TAGS-85 alloys with different Ag/Sb ratios is found to effectively reduced due to the strengthened phonon scattering by extra grain boundary(Fig.9(b)).

    Fig.9. Lattice thermal conductivity at room temperature for air cooled and melt-spinning TAGS-85 alloys with different Ag/Sb ratios (a), SEM image of melt-spinning ribbon of TAGS-85 alloy (b).[40] HRTEM image and zT values of Ge0.53Ag0.13Sb0.27□0.07Te1 with a comparison to TAGS-80 and TAGS-85.[64] (a),(b)Republished with permission of Royal Society of Chemistry, from Ref. [40]; permission conveyed through Copyright Clearance Center, Inc. (c) Reprinted with permission from Ref. [64], Copyright 2014 American Chemical Society.

    In addition to the grain boundary phonon scattering,introduction of cation vacancy is also used to effectively reduceκLof TAGS.[64]Ge0.53Ag0.13Sb0.27□0.07Te1exhibits “parquetlike” multidomain nanostructures with finite intersecting vacancy layers (Fig. 9(c)), which is similar to the nanostructure observed in silver-free(GeTe)nSb2Te3. These introduced short-range ordered cation vacancies act as phonon scattering centers,and lead to a significantly reduced lattice thermal conductivity. An extraordinaryzTup to 1.3 is achieved in Ge0.53Ag0.13Sb0.27□0.07Te1at 433 K,a temperature far below the phase transition temperature. This work opens possibility of TAGS alloys as a candidate for low-temperature thermoelectric applications.

    Inclusion of a compound with an ultralowκLas a second phase has been developed as an effective approach for reducingκLof a composite.[69]The phase compositions of the TAGS are sensitive to the Ag/Sb ratio. Ag8GeTe6precipitates could be observed in the samples with Ag/Sb ratio higher than 1.[63]Ag8GeTe6has been proven as a promising thermoelectric material with an ultralow lattice thermal conductivity of~0.26 W·m-1·K-1at room temperature.[70]Thus,a lowκLas low as~0.2 W·m-1·K-1at 700 K is realized in(GeTe)85(AgySb2-yTe3-y)15withy=1.3,[63]which can be reasonably understood by the contribution of Ag8GeTe6precipitates. The similar case has also observed in SnSe with Ag8SnSe6precipitates.[69]

    6. Thermoelectric applications of TAGS alloys

    The conversion efficiency for power generation primarily depends on the thermoelectric figure of merit(zT)and the temperature difference(ΔT)between the hot and cold sides of a device. Due to the outstanding thermoelectric performance,TAGS alloys have been often chosen as a p-type legs for highefficiency thermoelectric devices,which have been used in radioisotope thermoelectric generators for aerospace missions executed by National Aeronautics and Space Administration(NASA), including the two Viking Mars landers (1976) and the Pioneers 10 and 11(1972-1973). Moreover,the TAGS related RTGs are also used in the desert and arctic environments,such as the meteorological relay station in California and ten seismic detectors in Alaska.[71]

    In the early days, p-type TAGS alloys usually mate with n-type PbTe alloys. For single-leg or single-stage couples without segmentation, the power generation efficiency for TAGS-based devices ranges from~4%to~10%(Fig. 10(a)).[57,72-74]The rare earth element (1% Yb or Ce)doped TAGS-85 alloys (identified as “e-TAGS”), developed recent years, exhibit a promising potential for thermoelectric applications.[38,54,73,74]A three-stage device,incorporating e-TAGS materials,shows a peak device conversion efficiency as high as~20%with a ΔTof 750 K.[75]

    In addition to the highzTfor a high conversion efficiency,high service stability,essentially requiring thermoelectric materials with good mechanical properties, is also important for a thermoelectric device. Since the 2000s, great efforts have been devoted to optimizing the synthesis procedure for highly dense materials with excellent mechanical properties and low thermal expansion coefficients.[59]The thermal expansion coefficient for TAGS-80 has been decreased from 18.5 ppm/K to 13.3 ppm/K by the optimization of the synthesis procedure.[57]In addition, (GeTe)x(AgSbTe2)100-xalloys with high Vickers hardness have fabricated by a combination of gas atomization and hot-extrusion process(Fig.10(b)).[76]

    Fig. 10. Temperature difference (ΔT) dependent thermoelectric power generation efficiency (η) for TAGS based thermoelectric devices.[57,72-75](a), and Vickers micro-hardness values of (GeTe)x(AgSbTe2)100-x (x =75, 80, 85 or 90) alloys fabricated by gas-atomization and hot-extrusion processes.[76] (b)Reprinted by permission from Springer Nature Customer Service Centre GmbH:Springer Nature,Journal of Electronic Materials,[76]Copyright 2017,The Minerals,Metals&Materials Society.

    7. Summary

    In summary, TAGS-xalloys, especially those withxwithin 75-90, well retain the features of crystal and band structures of GeTe.The phase transition of cubic-torhombohedral provides a possibility of the band engineering by the variation of the interaxial angle, and thus a superior electronic performance. The inherently low lattice thermal conductivity,stemming from the strong anharmonicity and extra phonon scattering by defects,successfully ensures highzTs in both rhombohedral and cubic TAGS with optimal composition,leading these alloys to be promising p-type candidates for middle-temperature thermoelectric applications. Efforts have been made including adjusting the ratio of Ag/Sb and rareearth-elements doping for the power factor improvement,and microstructure engineering such as grain refinement,introduction of high-concentration cation vacancies and composting second-phase materials with low thermal conductivity for decreasing theκL. Through these efforts,the thermoelectric figure of merit has been significantly improved in TAGS-based alloys. Further considerations about the future directions in TAGS-based thermoelectrics are shown below.

    A manipulation of the band structure by tuning the interaxial angle with a negligible effect on the carrier mobility is important,which highly relies on the discovery of efficient solvent to increase the band degeneracy. This might open new possibilities for electronic performance enhancement. Thermally,according to the model predictions,the experimentally reported lattice thermal conductivity, especially near room temperature,is still much higher than its theoretical minimum,suggesting an available room for a further reduction. This is likely realizable by manipulating the hierarchical microstructures, including the dislocations. In terms of thermoelectric devices, promoting the TAGS materials with optimized thermoelectric properties and improved mechanical strength to the fabrication of devices will benefit the thermoelectric applications of TAGS. Particularly, development of the TAGS-based devices for thermoelectric applications near room temperature can be of great interest in the future,due to its highly competitive performance and good mechanical properties.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China(Grant Nos.T2125008, 92163203,and 52022068), the Innovation Program of Shanghai Municipal Education Commission, the Hefei National Laboratory for Physical Sciences at the Microscale (Grant No. KF2020007), the Shanghai Natural Science Foundation (Grant No. 19ZR1459900), Taiyuan University of Science and Technology Scientific Research Initial Funding(No.20222002),and the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,No.2022-KF-32).

    猜你喜歡
    李文張馨
    “烤”驗(yàn)
    Clothing Parsing Based on Multi-Scale Fusion and Improved Self-Attention Mechanism
    Padéapproximant approach to singular properties of quantum gases:the ideal cases
    神奇的“太陽雨”
    快樂的班隊(duì)課
    張馨予
    張馨月等
    自 尊
    東方劍(2016年4期)2016-07-25 11:20:59
    Amplitude-Phase Modulation,Topological Horseshoe and Scaling Attractor of a Dynamical System?
    張馨予調(diào)配
    Coco薇(2015年7期)2015-08-13 22:28:01
    大型黄色视频在线免费观看| 欧美亚洲日本最大视频资源| 久久精品国产清高在天天线| 欧美日韩中文字幕国产精品一区二区三区| 成人手机av| 国产亚洲欧美98| 一级毛片高清免费大全| 一区二区三区激情视频| 国产免费av片在线观看野外av| 亚洲精品中文字幕一二三四区| 三级毛片av免费| 正在播放国产对白刺激| 亚洲自拍偷在线| 男女下面进入的视频免费午夜 | 亚洲成人久久爱视频| 欧美日韩福利视频一区二区| 很黄的视频免费| 国产成人欧美在线观看| 99热这里只有精品一区 | 久久久久久人人人人人| 久久精品91蜜桃| 一区二区三区激情视频| 国产免费av片在线观看野外av| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 啦啦啦观看免费观看视频高清| 成人国产综合亚洲| 久久亚洲精品不卡| 免费看十八禁软件| 午夜久久久久精精品| 手机成人av网站| 亚洲欧美日韩无卡精品| 露出奶头的视频| 国产成人一区二区三区免费视频网站| 国产精品野战在线观看| av中文乱码字幕在线| 久久久久久大精品| 首页视频小说图片口味搜索| www日本在线高清视频| 村上凉子中文字幕在线| 国产高清有码在线观看视频 | svipshipincom国产片| 老司机深夜福利视频在线观看| 神马国产精品三级电影在线观看 | 久久性视频一级片| 高潮久久久久久久久久久不卡| 激情在线观看视频在线高清| av在线播放免费不卡| av视频在线观看入口| 久久久久国产一级毛片高清牌| 久久精品亚洲精品国产色婷小说| 人人妻,人人澡人人爽秒播| 19禁男女啪啪无遮挡网站| 青草久久国产| 久久青草综合色| 身体一侧抽搐| 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| 黄片大片在线免费观看| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 国产一区在线观看成人免费| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| av中文乱码字幕在线| 欧美激情极品国产一区二区三区| 午夜老司机福利片| 夜夜躁狠狠躁天天躁| 国产精品国产高清国产av| 国产免费男女视频| 欧美日韩乱码在线| av福利片在线| 观看免费一级毛片| 欧美日韩瑟瑟在线播放| 国产精品久久久久久亚洲av鲁大| 黄片小视频在线播放| 性色av乱码一区二区三区2| 视频在线观看一区二区三区| 国产亚洲欧美98| 精品久久久久久久人妻蜜臀av| 亚洲三区欧美一区| 国产av在哪里看| 日本精品一区二区三区蜜桃| 91国产中文字幕| 欧美另类亚洲清纯唯美| 久久精品亚洲精品国产色婷小说| 一进一出抽搐gif免费好疼| avwww免费| 国产高清有码在线观看视频 | 国内揄拍国产精品人妻在线 | 美女扒开内裤让男人捅视频| 国内精品久久久久久久电影| 欧美在线一区亚洲| 国产伦人伦偷精品视频| 午夜福利视频1000在线观看| 国产视频内射| 久久午夜综合久久蜜桃| 一二三四在线观看免费中文在| 国产蜜桃级精品一区二区三区| 日韩高清综合在线| 免费一级毛片在线播放高清视频| 欧美在线黄色| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 欧美不卡视频在线免费观看 | 啪啪无遮挡十八禁网站| 正在播放国产对白刺激| 此物有八面人人有两片| 一级片免费观看大全| 欧洲精品卡2卡3卡4卡5卡区| 99久久久亚洲精品蜜臀av| 成人亚洲精品一区在线观看| 法律面前人人平等表现在哪些方面| 久久国产精品影院| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 午夜久久久在线观看| 久久国产精品影院| 十八禁网站免费在线| 在线观看免费午夜福利视频| 在线十欧美十亚洲十日本专区| 午夜a级毛片| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 久久午夜综合久久蜜桃| 国产精品影院久久| 久久精品91无色码中文字幕| 免费在线观看日本一区| 国产真人三级小视频在线观看| av超薄肉色丝袜交足视频| 久久国产精品人妻蜜桃| 国产三级在线视频| 18禁裸乳无遮挡免费网站照片 | 91麻豆精品激情在线观看国产| 十八禁人妻一区二区| 中文字幕av电影在线播放| 午夜福利18| cao死你这个sao货| 99riav亚洲国产免费| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观 | 精品一区二区三区视频在线观看免费| 欧美激情极品国产一区二区三区| 精品久久久久久成人av| 999精品在线视频| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久久久久久久 | 久久精品成人免费网站| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 日韩有码中文字幕| 国产乱人伦免费视频| 99精品欧美一区二区三区四区| 热99re8久久精品国产| 日韩国内少妇激情av| 国产主播在线观看一区二区| 国产国语露脸激情在线看| 不卡av一区二区三区| 久久中文看片网| 国产国语露脸激情在线看| 欧美国产精品va在线观看不卡| 免费av毛片视频| 久久香蕉激情| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸| 色综合欧美亚洲国产小说| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 极品教师在线免费播放| 级片在线观看| 嫩草影视91久久| 69av精品久久久久久| 夜夜躁狠狠躁天天躁| 91成人精品电影| 99riav亚洲国产免费| 99国产精品99久久久久| 黄片小视频在线播放| 免费在线观看亚洲国产| 欧美日韩黄片免| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 精品电影一区二区在线| 十八禁人妻一区二区| netflix在线观看网站| 日本 av在线| 中文字幕人妻熟女乱码| 婷婷精品国产亚洲av| 在线天堂中文资源库| 国产单亲对白刺激| 好男人电影高清在线观看| cao死你这个sao货| 国产激情偷乱视频一区二区| 久久天堂一区二区三区四区| 国产单亲对白刺激| www.自偷自拍.com| 在线观看午夜福利视频| 老司机深夜福利视频在线观看| 亚洲男人天堂网一区| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 一夜夜www| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 777久久人妻少妇嫩草av网站| 国产精品九九99| svipshipincom国产片| 嫩草影视91久久| 1024视频免费在线观看| 亚洲专区字幕在线| 国产精品日韩av在线免费观看| 成人三级做爰电影| 人人妻人人澡欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 变态另类成人亚洲欧美熟女| 日日干狠狠操夜夜爽| 免费在线观看日本一区| 国产精品,欧美在线| 桃色一区二区三区在线观看| 亚洲精品中文字幕在线视频| 国产高清有码在线观看视频 | 日韩国内少妇激情av| 天堂√8在线中文| 人妻久久中文字幕网| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 少妇被粗大的猛进出69影院| 成年女人毛片免费观看观看9| 欧美亚洲日本最大视频资源| 十八禁人妻一区二区| 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 脱女人内裤的视频| 国产精品免费一区二区三区在线| 成人亚洲精品av一区二区| 91字幕亚洲| 午夜福利在线观看吧| 美国免费a级毛片| 99精品欧美一区二区三区四区| 精品日产1卡2卡| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看 | 国产成人欧美| 18禁裸乳无遮挡免费网站照片 | 欧美性猛交黑人性爽| 高清在线国产一区| av欧美777| 99热6这里只有精品| 国产亚洲av高清不卡| 18禁美女被吸乳视频| 91大片在线观看| 美女大奶头视频| bbb黄色大片| 国产亚洲精品久久久久久毛片| 91av网站免费观看| 男男h啪啪无遮挡| 1024香蕉在线观看| 亚洲第一电影网av| avwww免费| 免费在线观看黄色视频的| 在线观看66精品国产| 91av网站免费观看| 国产熟女xx| 天堂√8在线中文| 国产片内射在线| 国产成人系列免费观看| 非洲黑人性xxxx精品又粗又长| 中文亚洲av片在线观看爽| 搡老妇女老女人老熟妇| 欧美日本视频| 国产一区二区三区在线臀色熟女| 看片在线看免费视频| 国产91精品成人一区二区三区| 色av中文字幕| 搡老岳熟女国产| 中文字幕精品亚洲无线码一区 | 最近最新中文字幕大全免费视频| 搞女人的毛片| 日本免费a在线| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 国产精品 国内视频| 一级毛片高清免费大全| 国产欧美日韩精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 性欧美人与动物交配| 午夜福利高清视频| 久99久视频精品免费| 亚洲三区欧美一区| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 嫩草影院精品99| 久久青草综合色| 黄片小视频在线播放| 亚洲国产精品久久男人天堂| 国产又色又爽无遮挡免费看| 人妻久久中文字幕网| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 一区二区三区高清视频在线| 一本久久中文字幕| 亚洲三区欧美一区| 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| 91国产中文字幕| 侵犯人妻中文字幕一二三四区| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看 | 久久国产亚洲av麻豆专区| 精品乱码久久久久久99久播| 亚洲第一电影网av| 一区福利在线观看| 成年女人毛片免费观看观看9| 久久久久亚洲av毛片大全| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| 亚洲黑人精品在线| 白带黄色成豆腐渣| 日韩av在线大香蕉| 亚洲av五月六月丁香网| 一级片免费观看大全| 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 国产成+人综合+亚洲专区| 露出奶头的视频| 看片在线看免费视频| 在线天堂中文资源库| 高潮久久久久久久久久久不卡| 亚洲第一青青草原| xxx96com| 亚洲久久久国产精品| 精品第一国产精品| 88av欧美| 久久热在线av| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 99在线人妻在线中文字幕| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 一本精品99久久精品77| 精品乱码久久久久久99久播| 午夜免费鲁丝| 亚洲中文av在线| 人妻丰满熟妇av一区二区三区| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 一二三四社区在线视频社区8| 黄色a级毛片大全视频| 岛国视频午夜一区免费看| 黑人欧美特级aaaaaa片| 波多野结衣高清作品| 人人澡人人妻人| 免费电影在线观看免费观看| 国产精品一区二区免费欧美| 国产精品二区激情视频| 国产精品电影一区二区三区| 成人亚洲精品一区在线观看| av电影中文网址| 久久人妻福利社区极品人妻图片| 搞女人的毛片| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 高清毛片免费观看视频网站| 国产一级毛片七仙女欲春2 | 美女免费视频网站| 欧美日韩亚洲国产一区二区在线观看| 日本 av在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲片人在线观看| 正在播放国产对白刺激| 亚洲久久久国产精品| 亚洲在线自拍视频| 一二三四社区在线视频社区8| 亚洲天堂国产精品一区在线| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 久久精品影院6| 日日爽夜夜爽网站| 啦啦啦 在线观看视频| 脱女人内裤的视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲 欧美一区二区三区| 天堂动漫精品| 国产精品野战在线观看| 丝袜美腿诱惑在线| 少妇熟女aⅴ在线视频| 最近最新中文字幕大全免费视频| 变态另类成人亚洲欧美熟女| 一本一本综合久久| 男人舔奶头视频| 夜夜夜夜夜久久久久| 成人三级黄色视频| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 亚洲在线自拍视频| 淫秽高清视频在线观看| 欧美 亚洲 国产 日韩一| 大型av网站在线播放| 国产黄片美女视频| 禁无遮挡网站| 久久精品人妻少妇| 女人被狂操c到高潮| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 亚洲,欧美精品.| 国产成人av激情在线播放| 19禁男女啪啪无遮挡网站| 色综合婷婷激情| 国产精品精品国产色婷婷| 国产亚洲精品综合一区在线观看 | 在线av久久热| 国产高清激情床上av| 制服人妻中文乱码| 国产精品九九99| 91在线观看av| 欧美成人性av电影在线观看| 侵犯人妻中文字幕一二三四区| 国产色视频综合| 国产爱豆传媒在线观看 | 91在线观看av| 69av精品久久久久久| 国产亚洲av高清不卡| 最近在线观看免费完整版| 自线自在国产av| 精品一区二区三区四区五区乱码| 搡老岳熟女国产| 丰满人妻熟妇乱又伦精品不卡| 美女高潮喷水抽搐中文字幕| 久久久久久久久中文| 国产伦人伦偷精品视频| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 此物有八面人人有两片| 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 亚洲国产欧美网| 亚洲七黄色美女视频| 国产精品免费视频内射| 麻豆成人午夜福利视频| 波多野结衣av一区二区av| 国产欧美日韩精品亚洲av| 又大又爽又粗| 亚洲专区中文字幕在线| 99久久综合精品五月天人人| 香蕉av资源在线| 成人欧美大片| 日本免费a在线| 亚洲欧美精品综合一区二区三区| 99在线视频只有这里精品首页| 亚洲精品在线观看二区| 亚洲国产中文字幕在线视频| 中文字幕人妻丝袜一区二区| 波多野结衣巨乳人妻| 搡老妇女老女人老熟妇| 黄网站色视频无遮挡免费观看| 亚洲成人久久爱视频| 在线视频色国产色| 亚洲国产精品久久男人天堂| 哪里可以看免费的av片| av电影中文网址| 亚洲精华国产精华精| 老司机靠b影院| 国产区一区二久久| 两个人免费观看高清视频| 国产在线精品亚洲第一网站| 听说在线观看完整版免费高清| 岛国在线观看网站| 在线观看免费日韩欧美大片| 日本五十路高清| 国产精品久久电影中文字幕| 国产av不卡久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品成人综合色| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 免费看a级黄色片| 午夜成年电影在线免费观看| 长腿黑丝高跟| 超碰成人久久| 两性夫妻黄色片| 国产男靠女视频免费网站| 精品日产1卡2卡| 深夜精品福利| 成人永久免费在线观看视频| 久久精品91无色码中文字幕| 久久精品人妻少妇| 国产成人啪精品午夜网站| 深夜精品福利| 久久精品国产综合久久久| cao死你这个sao货| 国产一级毛片七仙女欲春2 | 黄色女人牲交| 日日夜夜操网爽| 国产黄色小视频在线观看| 在线观看66精品国产| 免费在线观看黄色视频的| 美女午夜性视频免费| 我的亚洲天堂| 制服丝袜大香蕉在线| 亚洲人成网站在线播放欧美日韩| 午夜老司机福利片| 男女做爰动态图高潮gif福利片| 窝窝影院91人妻| 两个人视频免费观看高清| 国产午夜福利久久久久久| 国产97色在线日韩免费| 亚洲,欧美精品.| 国产亚洲精品一区二区www| 又大又爽又粗| 女人高潮潮喷娇喘18禁视频| 中文在线观看免费www的网站 | 精品无人区乱码1区二区| 欧美黑人精品巨大| 麻豆一二三区av精品| 男女视频在线观看网站免费 | 90打野战视频偷拍视频| 亚洲欧美精品综合一区二区三区| 三级毛片av免费| 国产av一区二区精品久久| 一区二区三区国产精品乱码| 在线观看日韩欧美| 午夜福利在线在线| 法律面前人人平等表现在哪些方面| 久久香蕉国产精品| 欧美精品亚洲一区二区| 美女 人体艺术 gogo| 久久精品夜夜夜夜夜久久蜜豆 | 欧美性长视频在线观看| tocl精华| 国产不卡一卡二| 可以在线观看毛片的网站| cao死你这个sao货| 亚洲 国产 在线| 国产av一区在线观看免费| 淫秽高清视频在线观看| 黑人巨大精品欧美一区二区mp4| 日本撒尿小便嘘嘘汇集6| 色综合亚洲欧美另类图片| 日日夜夜操网爽| 一级片免费观看大全| 亚洲av成人不卡在线观看播放网| 成人18禁在线播放| 国产精品爽爽va在线观看网站 | 亚洲av熟女| 欧美一区二区精品小视频在线| www.精华液| 露出奶头的视频| 久久香蕉精品热| 性欧美人与动物交配| 十八禁网站免费在线| 色老头精品视频在线观看| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美网| 十八禁人妻一区二区| 亚洲欧美日韩无卡精品| 精品国内亚洲2022精品成人| 亚洲黑人精品在线| 久久久久亚洲av毛片大全| 观看免费一级毛片| 18禁美女被吸乳视频| 久久久久久人人人人人| 欧美国产日韩亚洲一区| 国产一区二区三区在线臀色熟女| 欧美三级亚洲精品| 久久久久国产一级毛片高清牌| 国产午夜精品久久久久久| 亚洲专区国产一区二区| 欧美丝袜亚洲另类 | 亚洲中文字幕一区二区三区有码在线看 | 免费高清在线观看日韩| 亚洲国产高清在线一区二区三 | 国产精品久久久久久亚洲av鲁大| 最新美女视频免费是黄的| 亚洲精品中文字幕一二三四区| 国产爱豆传媒在线观看 | 亚洲中文字幕日韩| 性欧美人与动物交配| 在线天堂中文资源库| 久热爱精品视频在线9| 成年免费大片在线观看| 久久精品影院6| 国产精品免费视频内射| 欧美丝袜亚洲另类 | 在线永久观看黄色视频| 亚洲专区字幕在线| 一区二区三区精品91| 免费看a级黄色片| 日本三级黄在线观看| 黄色视频不卡| 亚洲自偷自拍图片 自拍| 禁无遮挡网站| 欧美av亚洲av综合av国产av| 久久人妻av系列| 色综合站精品国产| 欧美日韩瑟瑟在线播放| 一本一本综合久久| 日本五十路高清| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 一级毛片高清免费大全|