張良波 王旋 錢成旭 劉志雄
摘?要:?為了探索甜蕎FUL同源基因參與花與籽粒發(fā)育調(diào)控的分子機(jī)制,該文采用同源克隆的方法從甜蕎(Fagopyrum esculentum)長(zhǎng)花柱和長(zhǎng)雄蕊突變體(lpls)中克隆到1個(gè)長(zhǎng)837 bp 的FeFUL2基因(GenBank登錄號(hào)為MG779493.1),其包含長(zhǎng)690 bp的完整開放閱讀框,編碼1個(gè)由229個(gè)氨基酸殘基組成的MADS-box轉(zhuǎn)錄因子。通過(guò)對(duì)FeFUL2進(jìn)行分子系統(tǒng)發(fā)生、同源蛋白比對(duì)與轉(zhuǎn)錄因子結(jié)構(gòu)分析,結(jié)果顯示FeFUL2與核心真雙子葉植物AP1/FUL亞家族轉(zhuǎn)錄因子中的euFUL進(jìn)化系聚于1個(gè)進(jìn)化分支,屬甜蕎euFUL型MADS-box轉(zhuǎn)錄因子,且包含1個(gè)57個(gè)氨基酸殘基長(zhǎng)的高度保守的MADS結(jié)構(gòu)域、1個(gè)69個(gè)氨基酸殘基長(zhǎng)的次級(jí)保守的K結(jié)構(gòu)域,其C末端轉(zhuǎn)錄激活區(qū)在序列長(zhǎng)度和氨基酸殘基組成上與其他euFUL型轉(zhuǎn)錄因子差異較大,但仍含有2個(gè)euFUL型轉(zhuǎn)錄因子特有的保守基元:FUL motif和paleo AP1 motif。用qPCR檢測(cè)基因表達(dá)的組織特異性顯示:FeFUL2基因在甜蕎lpls突變體的根、莖、葉、花被片、雄蕊、雌蕊和發(fā)育4 d的幼果中均有表達(dá),但其在花被片中表達(dá)量極顯著高于該基因在其他器官中的表達(dá)量(LSD, P<0.01)。綜合轉(zhuǎn)錄因子的結(jié)構(gòu)與基因的表達(dá)模式推測(cè),F(xiàn)eFUL2基因與其他euFUL型基因的功能可能存在一定差異,其在花發(fā)育過(guò)程中可能主要參與甜蕎花被片的發(fā)育調(diào)控。
關(guān)鍵詞: 蕎麥, 花發(fā)育, FRUITFULL, MADS-box, 基因表達(dá)
中圖分類號(hào):?Q943.2
文獻(xiàn)標(biāo)識(shí)碼:?A
文章編號(hào):?1000-3142(2021)04-0591-07
Abstract:?In order to uncover the molecular mechanisms of FRUITFULL (FUL) homologous genes involving in regulating flower and fruit development in buckwheat, an 837 bp of FeFUL2 cDNA containing a 690 bp full ORF (Open Reading Frame) encoding 229 amino acids (GenBank Accession Number MG779493.1) was isolated from a Fagopyrum esculentum mutant line with long pistil and long stamen (lpls) through homologous cloning. Moreover, the FeFUL2 cDNA contains a 30 bp 5′UTR (untranslated region, UTR) and a 117 bp 3′UTR including poly-A. The results showed that the buckwheat FeFUL2 was classified into the core eudicot euFUL lineages of AP1/FUL subfamily MADS-box transcription factors through phylogenetic, protein alignment and sequence analyses. In addition, FeFUL2 was classified transcription contained a highly conservation MADS-box domain (1-57) with 57 amino acids (aa), a secondary conserved K domain (91-159) with 69 aa, as well as two conserved motifs: FUL motif and paleo AP1 motif lying variable C terminal region. The highly conserved MADS domain was responsible for DNA binding, dimerization and nuclear localization of MADS-domain transcription factors. The secondary conserved K domain was involved in the formation of amphipathic helices and responsible for protein dimerization and multimeric complex formation protein-protein interactions. Finally, the C domain was important for transcriptional activation and multimeric complex formation. Moreover, the C terminal region of FeFUL2 was variable in sequence and length comparing with other euFUL-like transcriptors, which suggested that FeFUL2 may play different roles regulating flower and fruit development with FUL-like homologs from other species. qPCR revealed that FeFUL2 expression was detectable in all tissues including root, stem, leaf, tepal, stamen, gynoecium and 4-day-old juvenile fruit. However, FeFUL2 expression level in tepal was significantly higher than those in?other organs (LSD, P<0.01). In addition, FeFUL2 expression level in stamen, gynoecium and 4-day-old juvenile fruit displayed no significant differences(LSD,P>0.05), but FeFUL2 expression level in stem and leaf was significantly higher than root (LSD,P<0.05). However, FeFUL2 expression level in stem and leaf showed no significant differences(LSD,P>0.05). Above all, our data suggest that the function of FeFUL2 may show a difference with other euFUL-like gene, and FeFUL2 play a major role involving in perianth development.
Key words: buckwheat, flower development, FRUITFULL, MADS-box, gene expression
甜蕎(Fagopyrum esculentum)是蓼科(Polygonaceae)蕎麥屬食用和保健兼用的糧食作物,其籽粒含有豐富的賴氨酸、膳食纖維、蘆丁和抗氧化活性物等,具有很高的營(yíng)養(yǎng)和保健功效(Quinet et al., 2004; Li et al., 2017);作為典型的二型花柱作物,甜蕎自然群體中thrum型(短花柱長(zhǎng)雄蕊)和pin型(長(zhǎng)花柱短雄蕊)花植株按1∶1分離,自花或相同花型植株間授粉不親和,僅異型花植株間相互授粉才能正常結(jié)實(shí),產(chǎn)量低,不利于開展雜交育種工作,成為制約這一重要經(jīng)濟(jì)作物推廣應(yīng)用的瓶頸(Li et al., 2017)。尋找和選育親和性好的甜蕎新品系(種),對(duì)增加甜蕎種質(zhì)資源多樣性,開展雜交育種均具有重要的意義。甜蕎長(zhǎng)花柱和長(zhǎng)雄蕊突變體(long pistil and long stamen, lpls)是課題組從甜蕎品種‘北早生群體中篩選獲得的自然變異的株系,其具有雌雄蕊等長(zhǎng)、同型花間授粉能結(jié)實(shí),且與pin型和thrum型植株雜交也顯示出良好的親和性,是開展甜蕎雜交育種的理想材料(圖版 I)。弄清甜蕎lpls突變株系花序發(fā)育、開花以及籽粒發(fā)育過(guò)程與調(diào)控機(jī)制,是合理利用該材料開展雜交工作的前提和基礎(chǔ)。
前人在研究模式植物擬南芥(Arabidopsis thaliana)花和角果的發(fā)育規(guī)律與調(diào)控機(jī)制發(fā)現(xiàn),F(xiàn)RUITFULL(FUL)基因編碼MADS-box基因家族中APETALA1 (AP1)/FUL進(jìn)化系轉(zhuǎn)錄因子, 其在擬南芥總狀花序分生組織、花芽原基、雌蕊、莖和莖生葉中都有表達(dá),參與促進(jìn)開花、花序、花芽的發(fā)育與分化,莖生葉和長(zhǎng)角果的發(fā)育(McCarthy et al., 2015)。為弄清甜蕎FUL同源基因的結(jié)構(gòu)以及在花和果實(shí)發(fā)育調(diào)控中功能是否保守,本研究通過(guò)同源克隆分離甜蕎FUL同源基因FeFUL2,在分析其編碼轉(zhuǎn)錄因子結(jié)構(gòu)的基礎(chǔ)上,結(jié)合qPCR檢測(cè)該基因在甜蕎lpls突變體植株中表達(dá)的組織特異性,從而預(yù)測(cè)該基因在參與調(diào)控lpls突變體植株花和瘦果發(fā)育過(guò)程中的作用與功能, 在豐富甜蕎lpls突變體花和瘦果發(fā)育調(diào)控資料的同時(shí),能為開展甜蕎雜交育種工作和基因工程育種積累資料。
1?材料與方法
1.1 實(shí)驗(yàn)材料
2018年8月底,將甜蕎lpls突變體株系的種子播種于長(zhǎng)江大學(xué)作物遺傳育種研究所實(shí)驗(yàn)基地的塑膠花盆(21 cm × 14 cm × 20 cm),常規(guī)水肥管理,待9—10月開花、坐果后分別將花盆搬回實(shí)驗(yàn)室,在超凈臺(tái)上用RNAase-free的尖嘴鑷子剝?nèi)√鹗wlpls突變體的花序、花被片、雄蕊、雌蕊和發(fā)育4 d的幼果,置于2 mL RNAase-free的EP管中,經(jīng)液氮速凍,-80 ℃保存?zhèn)溆谩O扔盟疀_出甜蕎lpls突變體植株的根系,快速用吸水紙吸取根上水分,然后用RNA free的小剪刀剪取甜蕎根尖、幼葉和幼莖,最后用錫箔紙包好,經(jīng)液氮速凍于-80 ℃保存?zhèn)溆谩?/p>
1.2 實(shí)驗(yàn)方法
1.2.1 甜蕎FeFUL2基因克隆?稱取上述8種組織各100 mg,用EASYspin植物RNA快速提取試劑盒(艾德萊生物科技, 北京)分別提取其總RNA,操作參照試劑盒說(shuō)明書上的程序。經(jīng)電泳、紫外分光光度計(jì)檢測(cè)RNA的質(zhì)量和完整性后,參照Li et al.(2017)的方法合成第一鏈cDNA,根據(jù)課題組前期分離的FaeseuFUL基因(Genbank登錄號(hào): KM386626.1)的cDNA序列,引入適宜的酶切位點(diǎn)設(shè)計(jì)引物,從甜蕎lpls突變體中克隆FeFUL2基因,PCR擴(kuò)增的上、下游引物分別為FeFUL2F和FeFUL2R。引物(表1)合成和DNA測(cè)序均委托生工生物工程(上海)股份有限公司完成。
1.2.2 蛋白同源序列比對(duì)與分子系統(tǒng)發(fā)生分析?將FeFUL2基因編碼的蛋白序列在NCBI數(shù)據(jù)庫(kù)中執(zhí)行Protein Blast同源搜索比對(duì)。選取來(lái)源于不同被子植物類群中的同源序列,用MEGA 5.0軟件,選鄰接法(neighbour joining,NJ)構(gòu)建分子系統(tǒng)進(jìn)化樹,所建樹經(jīng)1 000次的自展重復(fù)(bootstrap replicate)檢驗(yàn),確定FeFUL2基因的進(jìn)化分支,以及與其他物種的FUL同源蛋白的演化關(guān)系(Tamura et al., 2011)。同時(shí)用BioEdit 7.0.9軟件,選 ClustalW 程序?qū)eFUL2轉(zhuǎn)錄因子進(jìn)行結(jié)構(gòu)分析和功能預(yù)測(cè)。
1.2.3 FeFUL2基因的表達(dá)分析?分別提取甜蕎lpls突變體的根、莖、葉、花被片、雄蕊、雌蕊和發(fā)育4 d幼果的總RNA,檢測(cè)其質(zhì)量與完整性后,合成第一鏈cDNA。通過(guò)實(shí)時(shí)熒光定量PCR(real-time quantitative PCR, qPCR)技術(shù)檢測(cè)FeFUL2基因在甜蕎上述7種組織中表達(dá)的特異性和表達(dá)量的差異。qPCR檢測(cè)所用的基因的上、下游特異性引物分別為qFeFUL2F和qFeFUL2R(表1); qPCR檢測(cè)所用的陽(yáng)性對(duì)照內(nèi)參基因?yàn)樘鹗w的Feactin基因(Genbank登錄號(hào): HQ398855.1),檢測(cè)特異性引物分別為qFeactinF和qFeactinR(表1)。qPCR 在Line-Gene 9600 Plus Real-time PCR Detection System 中進(jìn)行,每個(gè)樣品3個(gè)生物學(xué)重復(fù),實(shí)時(shí)熒光定量采用兩步法PCR擴(kuò)增標(biāo)準(zhǔn)程序: 95 ℃預(yù)變性30 s, PCR反應(yīng)為 95 ℃變性 10 s, 60 ℃ 延伸30 s,40個(gè)循環(huán)。 溶解曲線分析為95 ℃ 15 s, 60 ℃ 60 s, 和95 ℃ 15 s。
2?結(jié)果與分析
2.1 甜蕎FeFUL2基因全長(zhǎng)cDNA的序列結(jié)構(gòu)與登錄
通過(guò)同源克隆方法,直接從甜蕎lpls突變體花序中分離到FeFUL2基因cDNA全長(zhǎng)。序列結(jié)構(gòu)分析表明:甜蕎FeFUL2基因cDNA序列全長(zhǎng)為837 bp,包括30 bp的5′UTR (untranslated region)、690 bp的完整ORF(Open Reading Frame)和117 bp的3′UTR,編碼229個(gè)氨基酸殘基和1個(gè)終止密碼子。其與擬南芥中AtFUL基因(Genbank登錄號(hào): NM_125484.4 )同源性最高,命名為FeFUL2 (Fagopyrum esculentum FUL),GenBank登錄號(hào)為MG779493.1。
2.2 甜蕎FeFUL2轉(zhuǎn)錄因子的結(jié)構(gòu)分析與功能預(yù)測(cè)
轉(zhuǎn)錄因子分子系統(tǒng)發(fā)育與進(jìn)化樹重建(圖1)顯示:甜蕎FeFUL2屬核心真雙子葉植物AP1/FUL亞家族轉(zhuǎn)錄因子中的euFUL進(jìn)化系,與核心真雙子葉植物euFUL型轉(zhuǎn)錄因子聚于1個(gè)進(jìn)化分支,與菠菜(Spinacia oleracea)的SpFUL親緣關(guān)系較近,同時(shí)與擬南芥的euFUL型轉(zhuǎn)錄因子的氨基酸序列相似性高達(dá)54.55%,并與核心真雙子葉植物AP1/FUL亞家族轉(zhuǎn)錄因子中的AP1和AGL79進(jìn)化系分開,經(jīng)典分類學(xué)中同源蛋白所屬植物種屬間的進(jìn)化關(guān)系也在樹上得以很好地呈現(xiàn)(圖1)。 蛋白同源序列比對(duì)(圖2)顯示:甜蕎FeFUL2轉(zhuǎn)錄因子包含1個(gè)57個(gè)(1~57)氨基酸殘基長(zhǎng)的高度保守MADS-box結(jié)構(gòu)域,一個(gè)由69個(gè)(91~159)氨基酸殘基組成的次級(jí)保守的K結(jié)構(gòu)域,其C末端轉(zhuǎn)錄激活區(qū)由70個(gè)(160~229)氨基酸殘基組成,雖然該區(qū)域序列長(zhǎng)度和氨基酸殘基的組成上同其他euFUL型轉(zhuǎn)錄因子差異較大,但該區(qū)域上仍存在2個(gè)十分保守的euFUL型轉(zhuǎn)錄因子特有的基元:FUL motif和paleo AP1 motif(Litt & Irish,2003; Shan et al., 2007)。綜上來(lái)看,F(xiàn)eFUL2屬甜蕎MADS-box轉(zhuǎn)錄因子家族中的euFUL型轉(zhuǎn)錄因子,其M、K 和C區(qū)關(guān)鍵結(jié)構(gòu)域的保守性說(shuō)明該轉(zhuǎn)錄因子調(diào)控花和果實(shí)發(fā)育的功能會(huì)呈現(xiàn)一定的保守性,但轉(zhuǎn)錄激活區(qū)序列長(zhǎng)度和氨基酸殘基的組成變異會(huì)使其功能呈現(xiàn)一定的分化。
2.3 FeFUL2基因在甜蕎中表達(dá)的組織特異性
qPCR檢測(cè)FeFUL2基因在甜蕎7種器官中表達(dá)的特異性發(fā)現(xiàn)(圖3):甜蕎lpls突變體的根、莖、葉、花被片、雄蕊、雌蕊和發(fā)育4 d的幼果中均能檢測(cè)到FeFUL2基因的轉(zhuǎn)錄信號(hào)。進(jìn)一步分析FeFUL2基因在這7種器官中的相對(duì)表達(dá)量發(fā)現(xiàn),其在花被片中的表達(dá)量最高,極顯著高于該基因在其他6種器官中的表達(dá)量(LSD,P<0.01)。另外,F(xiàn)eFUL2基因在雄蕊、雌蕊和發(fā)育4 d的幼果等生殖結(jié)構(gòu)中的表達(dá)量無(wú)顯著差異(LSD,P>0.05);但在甜蕎根、莖和葉等營(yíng)養(yǎng)器官中,F(xiàn)eFUL2基因在莖和葉中的相對(duì)表達(dá)量顯著高于根(LSD,P<0.05),但莖與葉中的相對(duì)表達(dá)量無(wú)顯著性差異(LSD,P>0.05)。
3?討論與結(jié)論
在被子植物MADS-box轉(zhuǎn)錄因子中,M區(qū)主要負(fù)責(zé)DNA序列的識(shí)別與結(jié)合、蛋白二聚體形成和轉(zhuǎn)錄因子核定位,K區(qū)主要參與蛋白二聚體和多聚體的特異性結(jié)合,C末端結(jié)構(gòu)域主要負(fù)責(zé)轉(zhuǎn)錄激
活和參與蛋白多聚體復(fù)合物形成,這3個(gè)關(guān)鍵的結(jié)構(gòu)域在維持轉(zhuǎn)錄因子活性、發(fā)揮正常功能起重要作用(Theien et al., 2016)。與來(lái)源于其他植物euFUL型轉(zhuǎn)錄因子結(jié)構(gòu)相比,甜蕎FeFUL2蛋白的M區(qū)和K區(qū)在氨基酸組成和序列長(zhǎng)度上十分保守,但其C末端轉(zhuǎn)錄激活區(qū)在氨基酸殘基的組成和序列長(zhǎng)度上呈現(xiàn)較大的變異,推測(cè)該轉(zhuǎn)錄因子在調(diào)控花和果實(shí)的發(fā)育時(shí)功能會(huì)呈現(xiàn)一定的保守性,同時(shí)也會(huì)呈現(xiàn)一定的分化。
前人在研究模式植物擬南芥和金魚草(Antirrhinum majus)花發(fā)育調(diào)控發(fā)現(xiàn),MADS-box基因的表達(dá)模式與其功能有明顯的相關(guān)性;因此,在其他植物中,可通過(guò)MADS-box基因的表達(dá)模式來(lái)預(yù)測(cè)其功能(Ma & dePamphilis, 2000)。在薔薇類(rosids)植物擬南芥中,F(xiàn)UL基因編碼MADS-box基因家族中AP1/FUL進(jìn)化系轉(zhuǎn)錄因子, 其在花序分生組織、花芽原基、雌蕊、莖和莖生葉中均有表達(dá),參與促進(jìn)花序、花芽的分化、雌蕊中胚珠的發(fā)育與開花,同時(shí)還參與調(diào)控莖生葉和果實(shí)的發(fā)育(McCarthy et al., 2015);擬南芥近緣種油菜(Brassica napus)的FUL-like基因則具有參與調(diào)控長(zhǎng)角果開裂的功能(Peng et al., 2015)。豆科(Leguminosae)植物苜蓿(Medicago truncatula)有3個(gè)FUL-like型基因,序列相似性高的MtFULa 和 MtFULb在營(yíng)養(yǎng)生長(zhǎng)和生殖發(fā)育階段均有表達(dá),但在開花前表達(dá)量最高,主要參與促進(jìn)植物開花,MtFULc在開花后表達(dá)量最高,主要參與促進(jìn)花的發(fā)育(Jaudal et al., 2015);大豆(Glycine max)的FUL同源基因GmFULa在根、莖、葉、莖頂端分生組織、花和莢果中均有表達(dá),但其在花中的表達(dá)量最高,主要參與調(diào)控植物的成花轉(zhuǎn)變和開花(Jia et al., 2015);雞蛋果(Passiflora edulis)的FUL-like基因PeFUL不僅在所有花器官和果實(shí)中有表達(dá),其在營(yíng)養(yǎng)器官中也有表達(dá),但其在幼果中的表達(dá)量最高,主要參與果實(shí)的發(fā)育調(diào)控(Scorza et al., 2017)。在菊類(asterids)植物番茄(Solanum lycopersicum)中,F(xiàn)UL-like基因TDR4在雄蕊和果實(shí)開始發(fā)育時(shí)表達(dá),且在成熟漿果中的表達(dá)量最高,但另一個(gè)FUL-like基因SlFUL2在所有花器官、果實(shí)中均有表達(dá),兩者均參與調(diào)控果實(shí)的發(fā)育和成熟(Bemer et al., 2012;Maheepala et al., 2019)。在山茶(Camellia japonica)中,F(xiàn)UL-like基因CjAPL1(CjFUL1)在所有花器官中均有表達(dá),但其在心皮中的表達(dá)量最高,主要參與促進(jìn)開花和果實(shí)的發(fā)育,而且其在重瓣品種的表達(dá)量明顯高于單瓣,說(shuō)明其可能也參與花被片的發(fā)育調(diào)控(Sun et al., 2014;Lyu et al., 2019)。上述研究發(fā)現(xiàn),核心真雙子葉植物FUL-like基因的表達(dá)模式和功能呈現(xiàn)出明顯的多樣性。薔薇類和菊類作為核心真雙子葉植物最大的2個(gè)進(jìn)化分支(Zeng et al., 2014),其不同類群的植物,甚至同一科不同植物的FUL-like基因,表達(dá)模式會(huì)隨序列結(jié)構(gòu)的變化而呈現(xiàn)一定的差異,但主要參與其表達(dá)量最高的組織發(fā)育與調(diào)控。在甜蕎中,F(xiàn)eFUL2在營(yíng)養(yǎng)器官和生殖結(jié)構(gòu)中均有表達(dá),其表達(dá)模式與其近緣種菠菜的SpFUL基類類似(Sather & Golenberg, 2009),但其在花被片中的表達(dá)量最高,推測(cè)甜蕎FeFUL2基因可能主要參與花被片的發(fā)育調(diào)控。
前人研究發(fā)現(xiàn),核心真雙子葉植物euFUL型基因是由祖先類型的FUL-like基因通過(guò)1次主要的基因重復(fù)后產(chǎn)生(Shan et al., 2007)。基因重復(fù)前的FUL-like基因通常表現(xiàn)出更廣泛的表達(dá)模式,基部真雙子葉植物懸鈴木(Platanus acerifolia)的FUL-like基因在營(yíng)養(yǎng)器官和生殖結(jié)構(gòu)中均有表達(dá),主要參與開花和花發(fā)育調(diào)控(Zhang et al., 2019);罌粟科(Papaveraceae)植物罌粟(Papaver somniferum)是較為原始的基部真雙子葉植物,其FUL-like基因具真雙子葉植物中euAP1和euFUL型基因所有的功能,主要參與促進(jìn)開花、花分生組織特性決定、花被片和果實(shí)發(fā)育等(Pabón-Mora et al., 2012)。可見(jiàn),F(xiàn)UL-like基因通過(guò)基因重復(fù)事件產(chǎn)生的euFUL型基因在核心真雙子葉植物中發(fā)生了明顯的亞功能化,但其表達(dá)模式和功能會(huì)伴隨被子植物的系統(tǒng)發(fā)育與演化發(fā)生改變(Litt & Irish, 2003)。甜蕎屬早期分化的核心真雙子葉植物(Brockington et al., 2012),其與菊類植物中菠菜和山茶的親緣關(guān)系較近(Zeng et al., 2014),我們的分子系統(tǒng)發(fā)生分析也支持了前人分類學(xué)的結(jié)果,同時(shí),山茶的FUL-like基因也具有參與調(diào)控花被片發(fā)育的功能(Sun et al., 2014),F(xiàn)eFUL2基因參與調(diào)控花被片發(fā)育的功能可能是其在伴隨物種演化過(guò)程中,對(duì)祖先類型基因功能的保留,其在甜蕎花發(fā)育中的具體作用和生理功能仍有待進(jìn)一步研究。
參考文獻(xiàn):
BEMER M, KARLOVA R, BALLESTER AR, et al., 2012. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening[J]. Plant Cell, 24(11):4437-4451.
BROCKINGTON SF, RUDALL PJ, FROHLICH MW,et al., 2012. ‘Living stones reveal alternative petal identity programs within the core eudicots[J]. Plant J, 69(2):193-203.
JAUDAL M, ZHANG L, CHE C, et al., 2015. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis[J]. Front Genet, 6:50.
JIA Z, JIANG BJ, GAO XW, et al., 2015. GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean[J]. Plant Cell Rep, 34(1):121-32.
LI LY, FANG ZW, LI XF, et al., 2017. Isolation and characterization of the C-class MADS-box gene from the distylous pseudo-cereal Fagopyrum esculentum[J]. J Plant Biol, 60(2):189-198.
LITT A, IRISH VF, 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development[J]. Genetics, 165(2):821-833.
LYU T, FAN ZQ, YANG W, et al., 2019. CjPLE, a PLENA-like gene, is a potential regulator of fruit development via activating the FRUITFUL homolog in Camellia[J]. J Exp Bot, doi: 10.1093/jxb/erz142
MA H, DEPAMPHILIS C, 2000. The ABCs of floral evolution[J]. Cell, 101(1):5-8.
MAHEEPALA DC, EMERLING CA, RAJEWSKI A, et al., 2019. Evolution and diversification of FRUITFULL genes in Solanaceae[J]. Front Plant Sci, 10:43.
MCCARTHY EW, MOHAMED A, LITT A, 2015. Functional divergence of APETALA1 and FRUITFULL is due to changes in both regulation and coding sequence[J]. Front Plant Sci, 6:1076.
PABN-MORA N, AMBROSE BA, LITT A, 2012. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development[J]. Plant Physiol, 158(4):1685-704.
PENG PF, LI YC, MEI DS, et al., 2015. Expression divergence of FRUITFULL homeologs enhanced pod shatter resistance in Brassica napus[J]. Genet Mol Res, 14(1):871-885.
QUINET M, CAWOY V, LEFVRE I, et al., 2004. Inflorescence structure and control of flowering time and duration by light in buckwheat (Fagopyrum esculentum Moench)[J]. J Exp Bot, 55(402):1509-1517.
SATHER DN, GOLENBERG EM, 2009. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution[J]. Planta, 229(3):507-521.
SCORZA LCT, HERNANDES-LOPES J, MELO-DE-PINNA GFA, et al., 2017. Expression patterns of Passiflora edulis APETALA1/FRUITFULL homologues shed light onto tendril and corona identities[J]. Evodevo,8:3.
SHAN HY, ZHANG N, LIU CJ, et al., 2007. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes[J]. Mol Phylogenet Evol, 44(1):26-41.
SUN YK, FAN ZQ, LI XL, et al., 2014. The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication[J]. Mol Breed, 33:821-834.
TAMURA K, PETERSON D, PETERSON N, et al., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Mol Biol Evol, 28(10): 2731-2739.
THEIEN G, MELZER R, RMPLER F, 2016. MADS-domain transcription factors and the floral quartet model of flower development: Linking plant development and evolution[J]. Development, 143(18):3259-3271.
ZENG LP, ZHANG Q, SUN RR, et al., 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times[J]. Nat Comm, 5: 4956.
ZHANG SS, LU SJ, YI SS, et al., 2019. Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree[J]. Plant Sci, 280: 206-218.
(責(zé)任編輯?周翠鳴)