• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Classification of Positive Ground State Solutions with Different Morse Indices for Nonlinear N-Coupled Schr¨odinger System

    2021-06-29 02:14:28JunchengWeiandMaodingZhen
    Analysis in Theory and Applications 2021年2期

    Juncheng Weiand Maoding Zhen

    1 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2,Canada

    2 School of Mathematics,Hefei University of Technology,Hefei,Anhui 230009,China

    Abstract. In this paper,we study the following N-coupled nonlinear Schr¨odinger system

    Key Words: Nonlinear Schr¨odinger system, unique ground state solution, variational method,Morse indices.

    1 Introduction

    In this paper,we study the followingN-coupled nonlinear Schr¨odinger system

    wheren ≤3,N ≥3,μj> 0 are constants andβi,j=βj,i> 0 are coupling parameters(βj,j=μj). This paper is concerned with the uniqueness of ground state solution in the general caseN ≥3.

    This system arises as standing wave solutions of the time-dependentN-coupled Schr¨odinger systems of the form

    and these systems are also known as coupled Gross-Pitaevskii equations. In the past fifteen years,a great attention has been focused on the study of two coupled systems with nonlinear terms, both for their interesting theoretical structure and their concrete applications, such as in nonlinear optics and in Bose-Einstein condensates for multi-species condensates. By using variational methods or Lyapunov-Schmidt reduction methods,there are lots of results about existence, multiplicity and qualitative properties of nontrivial solutions of two coupled elliptic system. Since it seems almost impossible for us to provided a complete list of references,we refer the readers only to[1–11,18–20,25–27]and reference therein.

    ForN-coupled system with mixed couplings,J.Wei and T.Lin[16]established some general theorems for the existence and nonexistence of ground state solution and showed that when allβi,jare positive and the matrix B is positively definite,there exist a ground state solution which is radially symmetric. However, if allβi,jare negative, or one ofβi,jis negative and the matrix B is positively definite, there is no ground state solution.Recently, J. Wei and Y. Wu [28] gave a systematic and an (almost) complete study on the existence of ground state solution for N-coupled system when the system admits mixed couplings. By dividing this system into repulsive-mixed and total-mixed cases,they proved the nonexistence of ground state solution for repulsive-mixed case and gave an necessary condition for the existence of ground state solution for total-mixed cases.Peng et al.[21]use a construction argument for singularly perturbed elliptic problems to obtain vector solutions with some of the components synchronized between them while being segregated with the rest of the components simultaneously.

    Inspired by the above-mentioned works, especially by [14,22,28], in this paper our goal is two-folds. One is to give a complete classification of ground state solution with different Morse indices for three-coupled Schr¨odinger system under suitable conditions.Another goal of the paper is to give a different approach from [14] to get the existence of ground state solutions for N-coupled system. The difficulty is that we can’t use the method introduced in [14], where the authors considered the ground state solution with Morse indexNon bounded domain of Rn, when the parameter satisfies?λ1(Ω)<λ1=···λN=λ< 0. The novelty is that in order to obtain the unique minimum point ofg(τ1,···,τN),(2.6b),it is not feasible to use the method in[22]by directly calculate the second derivative to determine the unique minimum values, so we use the method of Lagrange’s multiplier, implicit function theorem and the Cramer’s Rule to show there exists a unique(τ1,min,···,τN,min),τi,min> 0,i= 1,···,N,such thatg(τ1,min,···,τN,min) =g(t1,···,tN)min(see details in Lemma 3.3). Then we give a complete classification of ground state solutions with Morse index 1 for system (1.1) under suitable conditions. We prove that all the ground state solutions of(1.1)must be the form of(c1w,···,cNw),wherewis the unique positive ground state solution of(1.5). Finally,we generalize our results to fractionalN-coupled Schr¨odinger system.

    Before we state our main results we introduce some notations. LetH1(Rn) be the Hilbert space of functions in Rnendowed with the standard scalar product and norm

    The energy functional associated with(1.1)is given by

    Define two Nehari manifolds

    foru=(u1,···,uN)∈H and H=(H1(Rn))N.

    We say thatuis a ground state solution of(1.1),ifuj> 0,j= 1,···,N,usolves(1.1)andE(u)=ai,i=1,N. Ifuis a nontrivial solution of(1.1),thenuis inMl,l=1,N. It is easy to see thatMl/= ?. In fact,if we take?j ∈C∞c(Rn),j=1,···,N,with?j/≡0 and

    then there existst1,···,tN>0,such that(t1?1,···,tN?N)∈Ml.

    To state our results,we introduce the matrix B and B?as following,where B?is the inverse matrix of B

    From[15],we can letwbe the unique positive solution of following problem

    By Lemma 1 and Lemma 2 in[16],wis also the unique positive ground solution of above problem.

    2 Statement of main results

    Before we present the results in the general caseN ≥3,we first explain the key ideas and main results whenN=3.

    We first study the following three-coupled nonlinear Schr¨odinger system

    wheren ≤3,μj> 0 are constants andβi,j=βj,i> 0,i,j= 1,2,3. By the method of moving plane,we can assume that all solutions to(2.1)are radially symmetric.

    We first give an almost complete classification of ground state solution with different Morse indices for 3-coupled system under suitable conditions. We will show that any positive ground state solution with different Morse indices must be the form of(c1w,c2w,c3w), wherewis the unique positive ground state solution of (1.5). As far as we know, there are some results about the existence and nonexistence of ground state solution. J. Wei and Y. Wu [28] gave an (almost) complete study on the existence and nonexistence of ground state solution with different Morse indices of (2.1) under different conditions by the idea of block decomposition and measure the total interaction between different blocks for 3-coupled system when the system admits mixed couplings.For other results about the existence and nonexistence of ground state solution for threecoupled system,see[16,17,23]and references therein.

    We state our main results now. By the the definition of Morse index,it is well-known that if the ground state solution of (2.1) is defined on Nehari manifoldM1(see(1.2a)),then the ground state solution has Morse index 1. If the ground state solution of (2.1)is defined on Nehari manifoldM3(see(1.2b)),then the ground state solution has Morse index≤3. If the ground state solution of(2.1)is defined on Nehari manifoldM2defined below

    which implies that the Morse index ofvis greater than or equals to 3. Thus,vis a ground state with Morse index 3. The other cases is similar as the proof of Morse index 3,so we omit the details here.

    For ground state solution with Morse index 1,we define a multivariate function

    We first prove that iff(τ1,τ2,τ3) has a unique positive minimum point(τ1,min,τ2,min,τ3,min) under suitable conditions, then we show that (ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)is the unique positive ground state solution of(2.1)(whereηminis some positive constant defined later). For ground state solution with Morse index 3,the key step is to show(d1w,d2w,d3w) is a ground state solution of(2.1)when matrix B and B?(see(1.4))satisfy suitable conditions,wheredi,i=1,2,3 satisfy

    Then by the same arguments as above step, we can show that if (u1,0,u2,0,u3,0) be any positive ground state solution of(2.1),then(u1,0,u2,0,u3,0)=(d1w,d2w,d3w).

    For ground state solution with Morse index 2, we first prove (d1w,md1w,d3w) is a ground state solution of(2.1),whered1,d3satisfy following equation,

    Then we prove that if (u12,0,mu12,0,u3,0) be any positive ground state solution of (2.1)with Morse index 2 on Nehari manifoldM2,then(u12,0,mu12,0,u3,0)=(d1w,md1w,d3w).

    Let the matrix B and B?be defined at(1.4)andf(τ1,τ2,τ3) be defined at(2.3). Our first result on three-component system is the following on classification of ground state solutions with Morse index 1.

    Theorem 2.1.Assume βi,j ≥0,if(τ1,0,τ2,0,τ3,0)satisfies ?f(τ1,τ2,τ3) =0,then(η0τ1,0w,η0τ2,0w,η0τ3,0w)is a positive solution of(2.1),where

    Conversely,under the condition that β?j< 2,for all j= 1,2,3and thatdet B/= 0, f has a unique global minimum(τ1,min,τ2,min,τ3,min),τi,min>0,i=1,2,3,and

    is the unique positive ground state solution of(2.1)with the Morse index 1,where

    Here, uj are the ground state state solution of two-coupled system. If j= 3, then(u1,u2)is a ground state solution of system(2.1)when u3=0. The other cases are similar.

    Furthermore all ground state solutions to(2.1)must be

    The next theorem classifies ground state solutions with Morse index 3.

    Conversely,(d1w,d2w,d3w)is the unique positive ground state solution of(2.1)with Morse index 3.

    The last result on three-component system classifies the ground state solutions with Morse index 2.

    Theorem 2.3.Assume βi,j ≥0,βk,k> 0,?k,i/=j,det D/= 0,D?is an inverse matrix ofDand(1+m2)D11+D21≥0, (1+m2)D12+D22≥0.If(u12,0,mu12,0,u3,0)be any positive ground state solution of(2.1)with Morse index 2 on Nehari manifoldM2, then(u12,0,mu12,0,u3,0)=(d1w,md1w,d3w),where d1,d3satisfy following equation,

    Theorem 2.1 can be extended toN-component system as follows.

    Theorem 2.4.Assume βi,j ≥0,if(τ1,0,τ2,0,···,τN,0)satisfies ?g(τ1,τ2,···,τN)=0,then

    is a positive solution of(1.1),where

    Conversely,under the condition that β?j< 2,for all j= 1,···,N and thatdet B/= 0, g has a unique global minimum(τ1,min,τ2,min,···,τN,min),τi,min>0,i=1,···,N,and

    is the unique positive ground state solution of(2.1)with the Morse index 1,where

    Furthermore,all ground state solutions to(2.1)must be

    Similarly Theorem 2.2 can be extended toN?component systems:

    Theorem 2.5.Assume βi,j ≥0,βk,k> 0,?k,i/=j,det B/= 0and∑Ni=1βi,k ≥0,for all k= 1,···,N.Then(d1w,d2w,···,dNw)is a positive ground state solution of(1.1)with Morse index N,where di>0for all i=1,2···,N and satisfy

    Conversely(d1w,d2w,···dNw)is the unique positive ground state solution of(1.1)with Morse index N.

    Remark 2.1.The similar results as Theorem 2.5 can be found in Guo et al. in[14],where the authors considered the ground state solution with Morse index N for N-coupled system on bounded domain of Rn, when the parameter satisfy?λ1(Ω)<λ1=···λN=λ<0.

    Remark 2.2.We should point out that Theorem 2.1 to Theorem 2.5 are also true for corresponding fractional Laplacian system,since for the following subcritical fractional equation

    R. L. Frank and E. Lenzmann [12] showed the unique positive radial least energy solutions for one dimension case and R.L.Frank,E.Lenzmann and L.Silvestre[13]showed the general unique ground state solution for dimension greater than one.

    Remark 2.3.In order to obtain the unique minimum point ofg(τ1,···,τN), (2.6b)it is not feasible to use the method in [22] by directly calculate the second derivative to determine the unique minimum values, so we use the method of Lagrange’s multiplier, implicit function theorem and the Cramer’s Rule to show there exists a unique (τ1,min,···,τN,min),τi,min> 0,i= 1,···,N, such thatg(τ1,min,···,τ1,min) =g(t1,···,tN)min(see details in Lemma 3.3).

    The paper is organized as follows. In section 3,we introduce some preliminaries that will be used to prove theorems. In Section 4,we prove Theorem 2.1 and Theorem 2.4. In Section 5,we prove Theorem 2.2 and Theorem 2.5. Finally,Theorem 2.3 will be proved in Section 6.

    3 Some preliminaries

    The energy functional associated with(2.1)is given by

    Recall the Nehari manifoldsM1,M2,M3as defined in(1.2a),(1.2b)and(2.2)respectively.Consider the minimization problems

    Define

    We first have the following lemma.

    Lemma 3.1.For

    where

    Proof.For any? ∈H1(Rn){0},letf(τ1,min,τ2,min,τ3,min)=f(τ1,τ2,τ3)minand

    Then by the definition ofS3,we have

    Hence

    On the other hand, let (u1,n,u2,n,u3,n)∈H be a minimizing sequence ofS3. Letzi,n=ti,nui,n,i=1,2,3,where

    wherewis the unique positive solution of Eq. (1.5). By H¨older inequality and (3.4), we have

    Therefore,by(3.5)andzi,n=ti,nui,n,i=1,2,3,we can deduce that

    Letn →+∞. We have that

    By(3.3)and(3.6),we get

    The case ofN ≥4 is similar.

    T

    o prove the existence and uniqueness of ground state solution,we study the properties off(τ1,τ2,τ3). To this end we first have following simple lemma

    Lemma 3.2.If ?f(τ1,τ2,τ3)=0,and

    then(ητ1w,ητ2w,ητ3w)is a positive solution of(2.1).

    Similarly,if ?g(τ1,τ2,···,τN)=0,and

    then(ητ1w,ητ2w,···,ητNw)is a positive solution of(1.1).

    Proof.By direct calculation,we have

    where

    Similarly,we have

    where

    ThusHi(τ1,τ1,τ3)=0,i=1,2,3,which implies that

    If(ητ1w,ητ2w,ητ3w)is a positive solution of(2.1),then

    It is easy to see that(3.7)and(3.8)are equivalent.Hence,we complete the proof of Lemma 3.2. The proof in the case ofg(τ1,···,τN)is similar and thus omitted.

    Then

    By a standard argument,we can see that

    Thus,h3can be attained by someτi,min≥0 for alli= 1,2,3 andτi,min> 0 for somei. By the method of Lagrange’s multiplier,τi,min≥0 for alli= 1,2,3 also satisfies the following system

    Next,we proveτi,min>0 for alli=1,2,3.

    To show thatτ3,min> 0,we just need to prove thatc1

    such that(t(s)u1,t(s)u2,t(s)sφ)∈M1fors>0 small enough.

    So,

    forβ?3<2 ands>0 is small enough. Thus,we haveτ3,min>0.

    Similarly we can use the condition thatβ?j<2, for allj=1,2,3 to show thatτi,min>0 for alli=1,2,3.

    Letsi=τ2i,min. Then(3.9)is equivalent to the following linear system

    By the Cramer’s Rule and the fact that det B/= 0, the linear system (3.10) has a unique solutions=(s1,s2,s3).

    The proof of second part of this lemma are similar to the first part of this lemma. To showτi,min> 0 for alli= 1,···,N,we letm= 1,···,N ?1 andlm={l1,l2,···,lm} ?{1,···,N ?1}withl1

    where

    If we can show

    with

    then we can see thatτi,min> 0 for alli= 1,···,N. Without loss of generality, we assumecN?1=min{clm,m}and it is attained by(u1,u2,···,uN?1). By the implicit function theorem,there exists a unique

    such that(t(s)u1,t(s)u2,···,t(s)uN?1,t(s)sφ)∈M1fors>0 small enough. So,

    sinceβ?i,N< 2 ands> 0 is small enough. Thus,we haveτN,min> 0. The other cases are similar.

    4 Proof of Theorem 2.1 and Theorem 2.4

    Proof of Theorem2.1and Theorem2.4.By Lemma 3.2, (η0τ1,0w,η0τ2,0w,η0τ3,0w) is a positive solution of(2.1),where

    and(τ1,0,τ2,0,τ3,0)satisfies?f(τ1,τ2,τ3)=0.

    Next, we show that (ηminτ1,minw,ηminτ2,mimw,ηminτ3,minw) is the unique positive ground state solution of(2.1),where

    and(τ1,min,τ2,min,τ3,min)satisfies

    Since(ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)is a positive solution of(2.1),we have

    Since?f(τ1,min,τ2,min,τ3,min)=0,from(3.7)in Lemma 3.2,we have

    Thus,by(4.1)and direct calculation,we have

    So

    On the one hand, for any (u1,u2,u3)∈M1and by the definition ofS3(see (3.2b)), we have

    Hence

    On the other hand,by(4.2)and(ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)∈M1,we have

    So,

    Consequently, (ηminτ1,minw,ηminτ2,minw,ηminτ3,minw) is a positive ground state solution of (2.1). If (τ1,min,τ2,min,τ3,min) is the unique minimum point off(τ1,τ2,τ3), then(ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)is the unique positive ground state solution of(2.1)of the form(c1w,c2w,c3w).

    By Lemma 3.3 and above arguments, we complete the proof. The proof of Theorem 2.4 are similar to Theorem 2.1,we only need to replacei=3 toi=Nand use the second part of Lemma 3.2,we omit the details here. Next,we prove the second part of Theorem 2.1 and Theorem 2.4.

    Let (ηminτ1,minw,ηminτ2,minw,ηminτ3,minw) be the unique positive ground state solution of (2.1) of the form (c1w,c2w,c3w) and let (u1,0,u2,0,u3,0) be any positive ground state solution of(2.1)of Morse index 1. We first claim that

    To prove(4.3a)and(4.3b),we use implicit function theorem.We first consider the following 3-coupled system,whereμ1is replaced byμin system(2.1):

    and the following function

    where

    Thus(μ,τ1,τ2,τ3)=0,i=1,2,3,which implies that

    Since(τ1,min,τ2,min,τ3,min)is the minimum point off(τ1,τ2,τ3)(see(2.3)),we have

    By direct calculation,we have

    where

    By(4.6),we have

    Since(τi,min,τ2,min,τ3,min)is the minimum point off(τ1,τ2,τ3)(see(2.3)),then

    Let G=[Gi,j]3×3be the matrix defined above,then det G/=0 and so

    By the implicit function theorem,we know

    is alsoC1forμ ∈(μ1??,μ1+?). Thus, the energy functional associated with (4.4) is given by

    Next,we show that

    Indeed,by the definition ofc1(μ),for any?>0,we can take a(u1,u2,u3)/≡(0,0,0),such that

    Thus,

    On the other hand,by the definition of

    we can take a(u1,u2,u3)/≡(0,0,0)such that

    and(tuu1,tuu2,tuu3)satisfies(4.8),which implies that

    whereM1,μis a Nehari manifold whenμ1was replaced byμin Nehari manifoldM1.Thus

    So the proof of(4.7)is complete. Thus,there existst(μ)>0 such that

    wheret(μ)>0 satisfiesF(μ,t(μ))=0 and

    Since

    by implicit function theorem, there existsδ> 0 such thatt(μ1) = 1,t(μ1)∈C1(μ1?δ,μ1+δ)and

    By Taylor expansion,we have

    thus,

    Since

    then,by(4.9)-(4.11),we have

    Thus

    so

    Similarly,

    and

    Hence

    Since(ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)is the ground state solution of(2.1),we have

    Thus,

    Thus,by(4.3a),(4.3b),we have

    Next,we prove

    Since(ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)is a ground state solution of(2.1),we have

    Let

    then,by(4.12)and(4.13),we have

    Hence,

    Since(u1,0,u2,0,u3,0)and(ηminτ1,minw,ηminτ2,minw,ηminτ3,minw)are both the ground state solution of(2.1),we obtain

    which implies that

    So,ui,i=1,2,3 are positive ground state solutions of(1.5). Since(u1,0,u2,0,u3,0)satisfies(2.1)and

    we have

    So

    Since(1.5)has a unique positive ground state solutionw,thus,we have

    The proof is thus completed.

    The proof of second part of Theorem 2.4 is similar to the proof second part of Theorem 2.1. We choose auxiliary function as following

    So

    where

    The other part of the proof is similar as the proof of the second part of Theorem 2.1.

    5 Proof of Theorem 2.2 and Theorem 2.5

    Proof of Theorem2.2and Theorem2.5.We follow some ideas from [10] and recent work[29],where two-coupled system was considered. Indeed,by Lemma 1 and Lemma 2 in[16],wis the unique function attainingS.Thus,

    On the one hand,ifd1,d2,d3satisfy(2.5),it is easy to see that

    satisfies(2.1)and belongs toM3. So

    On the other hand,let(u1,n,u2,n,u3,n)∈M3be a minimizing sequence forc3,that is

    Define

    then by the definition ofS(see(3.2a))and H¨older inequality,we have

    Thus

    Similarly,we have

    Since

    we have

    Thus

    By(2.5),(5.2)to(5.4),we obtain

    We claim

    Indeed,from(5.5),we have

    where

    Next,we show

    Since B?is the invertible matrix of B,we let

    where

    By(5.5)and(5.6),we have

    Thus,

    So

    Combining(5.1)with(5.7),we have Thus, (d1w,d2w,d3w) is a positive ground state solution of (2.1). The proof of Theorem 2.5 are similar to above proof.

    To proof the uniqueness of positive ground state solution of (2.1), we show that if(u1,0,u2,0,u3,0)be any ground state solution of(2.1),then

    Let (u1,0,u2,0,u3,0) be any ground state solution of (2.1), then by strong maximum principle,we haveuj,0>0,j=1,2,3. We claim

    To proof the claim,we consider the following system,whereμ1is replaced byμin system(2.1).

    The corresponding energy functional is given by

    It is easy to see

    The next steps are same as the proof of Theorem 2.1 and Theorem 2.4. Thus, we have proof

    Thus,we complete the proof.

    6 Proof of Theorem 2.3

    So

    it is easy to see that(d1w,md1w,d3w)satisfies(2.1)and belongs toM2. So

    On the other hand,let(u12,n,mu12,n,u3,n)∈M2be a minimizing sequence forc2,that is

    Define

    then by the similar arguments as(5.2),we have

    Since

    So

    Thus,by(6.1),(6.3a),(6.3b)and(6.4),we have

    Next,we claim

    From(6.5),we have

    where

    Next,we show

    SinceD?is the invertible matrix of D,we let

    where

    If we let

    then

    So,

    Thus,

    So,

    Thus,

    So when

    (d1w,d2w,d3w)is a positive ground state solution of(2.1).

    Step 2. We show that if(u12,0,mu12,0,u3,0)be any ground state solution of(2.1),then

    The next steps are similar as we proof Theorem 2.1,for readers conveniences,we give the details here.

    Let(u12,0,mu12,0,u3,0)be any ground state solution of(2.1),then by strong maximum principle,we haveu12,0>0,u3,0>0. We claim

    To proof the claim,we consider the following system,whereμ1is replaced byμin system(2.1).

    The corresponding energy functional is given by

    It is easy to see

    Thus,there existst(μ)>0 such that

    wheret(μ)>0 satisfiesF(μ,t(μ))=0 andF(μ,t)is defined as following

    then

    by implicit function theorem, there existsδ> 0 such thatt(μ1) = 1,t(μ1)∈C1(μ1?δ,μ1+δ)and

    By Taylor expansion,we have

    thus,

    Since

    then,by(6.7)-(6.9),we have Thus,by(6.6a),(6.6c),we have

    Next,we prove

    Since(d1w,md1w,d3w)is a ground state solution of(2.1),we have

    Let

    then,by(6.10)and(6.11),we have

    Similar,we have

    Hence,

    Since(u12,0,mu12,0,u3,0)and(d1w,md1w,d3w)are both the ground state solution of(2.1),we obtain

    which implies that

    So

    Since(1.5)has a unique positive ground state solutionw,thus

    This completes the proof.

    Acknowledgements

    This paper was completed when M.Zhen was visiting the University of British Columbia.He is grateful to the members in the department of Mathematics at University of British Columbia for their invitation and hospitality.The research of J.Wei is partially supported by NSERC of Canada. The first author was partially supported by NSERC of Canada.

    国产成人aa在线观看| 91狼人影院| tube8黄色片| 女性被躁到高潮视频| av不卡在线播放| 久久精品久久精品一区二区三区| av在线播放精品| 最近的中文字幕免费完整| 熟女人妻精品中文字幕| 国产视频内射| 少妇熟女欧美另类| 极品教师在线视频| 香蕉精品网在线| 久久久久久久国产电影| 免费少妇av软件| 亚洲精品乱码久久久v下载方式| 99久久人妻综合| 亚洲精品456在线播放app| 少妇精品久久久久久久| 国产欧美日韩一区二区三区在线 | h日本视频在线播放| av天堂中文字幕网| 你懂的网址亚洲精品在线观看| 国产高清不卡午夜福利| 精品酒店卫生间| 女人久久www免费人成看片| 精品国产露脸久久av麻豆| 哪个播放器可以免费观看大片| 我的女老师完整版在线观看| 免费大片18禁| 久久久久精品性色| 少妇熟女欧美另类| 国产大屁股一区二区在线视频| 国产欧美日韩精品一区二区| 尾随美女入室| 十八禁网站网址无遮挡 | 亚洲人成网站高清观看| 人妻 亚洲 视频| 在线观看人妻少妇| 熟妇人妻不卡中文字幕| 又爽又黄a免费视频| 啦啦啦中文免费视频观看日本| 成人特级av手机在线观看| 美女xxoo啪啪120秒动态图| 18禁裸乳无遮挡免费网站照片| 国产爽快片一区二区三区| 久久久久久久久久成人| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 国产亚洲一区二区精品| 国产成人freesex在线| 日本av免费视频播放| 18禁在线播放成人免费| 国产91av在线免费观看| 亚洲成色77777| 少妇人妻 视频| 一边亲一边摸免费视频| 日韩中文字幕视频在线看片 | 日韩中字成人| 黑人猛操日本美女一级片| 日韩成人av中文字幕在线观看| 国产亚洲精品久久久com| 在线免费十八禁| 国产亚洲一区二区精品| 中文字幕免费在线视频6| 欧美日韩亚洲高清精品| 久久精品久久精品一区二区三区| 男女边摸边吃奶| 欧美3d第一页| 亚洲av国产av综合av卡| 高清午夜精品一区二区三区| 色网站视频免费| 高清午夜精品一区二区三区| 日产精品乱码卡一卡2卡三| 两个人的视频大全免费| 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 日韩一区二区三区影片| 成年免费大片在线观看| 乱系列少妇在线播放| 国产精品99久久99久久久不卡 | av在线观看视频网站免费| 久久久久人妻精品一区果冻| 狠狠精品人妻久久久久久综合| 色综合色国产| 国产成人91sexporn| 午夜老司机福利剧场| videos熟女内射| 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 99久久精品国产国产毛片| 日日啪夜夜爽| 乱码一卡2卡4卡精品| 观看av在线不卡| 久久99精品国语久久久| 亚洲欧美精品专区久久| 少妇人妻 视频| 国产一区亚洲一区在线观看| 亚洲色图综合在线观看| 狂野欧美激情性bbbbbb| 久久久久久人妻| 美女中出高潮动态图| 日韩国内少妇激情av| 亚洲av日韩在线播放| 日韩中字成人| 精品少妇久久久久久888优播| 亚洲精品第二区| 精品视频人人做人人爽| 91精品一卡2卡3卡4卡| 色5月婷婷丁香| 三级国产精品欧美在线观看| www.色视频.com| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜福利在线在线| 美女国产视频在线观看| 丰满人妻一区二区三区视频av| 欧美一区二区亚洲| av卡一久久| 欧美成人a在线观看| 韩国高清视频一区二区三区| 大又大粗又爽又黄少妇毛片口| 大陆偷拍与自拍| 亚洲精品,欧美精品| 2018国产大陆天天弄谢| 免费观看的影片在线观看| 极品教师在线视频| 欧美一级a爱片免费观看看| 久久女婷五月综合色啪小说| 亚洲天堂av无毛| 亚洲内射少妇av| 最近中文字幕高清免费大全6| 大香蕉97超碰在线| 男人爽女人下面视频在线观看| 久久人人爽人人片av| 午夜激情福利司机影院| 简卡轻食公司| a 毛片基地| 亚洲人成网站高清观看| 久久久a久久爽久久v久久| 一级毛片aaaaaa免费看小| 麻豆成人av视频| 国产伦理片在线播放av一区| 亚洲欧美日韩东京热| 亚洲性久久影院| 国产高清三级在线| 国产欧美日韩一区二区三区在线 | 亚洲欧美成人综合另类久久久| 亚洲国产av新网站| 成人特级av手机在线观看| 日本av手机在线免费观看| 少妇人妻精品综合一区二区| 亚洲av在线观看美女高潮| 97在线人人人人妻| 国产精品不卡视频一区二区| 久久久久久久久久成人| 日韩人妻高清精品专区| 亚洲精品自拍成人| 亚洲伊人久久精品综合| 欧美另类一区| 好男人视频免费观看在线| 下体分泌物呈黄色| 美女视频免费永久观看网站| 国产v大片淫在线免费观看| 乱码一卡2卡4卡精品| 亚洲人成网站在线观看播放| 五月开心婷婷网| 天堂中文最新版在线下载| 国产黄频视频在线观看| 久久人人爽人人爽人人片va| videossex国产| 亚洲精品乱码久久久v下载方式| 18+在线观看网站| 国产无遮挡羞羞视频在线观看| 国产深夜福利视频在线观看| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 欧美高清成人免费视频www| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片 | 亚洲人成网站在线观看播放| 亚洲国产高清在线一区二区三| 两个人的视频大全免费| 精华霜和精华液先用哪个| 97超视频在线观看视频| 欧美另类一区| 欧美成人a在线观看| 成人二区视频| 青春草视频在线免费观看| 亚洲av二区三区四区| 亚洲欧美精品自产自拍| 久久久午夜欧美精品| 欧美bdsm另类| 有码 亚洲区| 人人妻人人添人人爽欧美一区卜 | 少妇人妻精品综合一区二区| av在线app专区| 国产av一区二区精品久久 | 国产精品一区二区性色av| 免费高清在线观看视频在线观看| 欧美bdsm另类| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 久久99蜜桃精品久久| 日韩强制内射视频| 一二三四中文在线观看免费高清| 丰满少妇做爰视频| 丝袜脚勾引网站| 欧美 日韩 精品 国产| 久久久a久久爽久久v久久| 亚洲av中文字字幕乱码综合| 亚洲在久久综合| 黄色配什么色好看| 国产免费福利视频在线观看| 国产精品国产三级专区第一集| 久久久久久久久大av| 国产精品爽爽va在线观看网站| 亚洲,一卡二卡三卡| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 日日摸夜夜添夜夜添av毛片| 久久女婷五月综合色啪小说| 这个男人来自地球电影免费观看 | 我要看日韩黄色一级片| 亚洲国产最新在线播放| 国产精品麻豆人妻色哟哟久久| 国产人妻一区二区三区在| 99久久精品一区二区三区| 久久久亚洲精品成人影院| 国产精品爽爽va在线观看网站| 国产精品一区www在线观看| 欧美成人精品欧美一级黄| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 午夜免费观看性视频| 老司机影院毛片| 国产精品无大码| 国产成人精品婷婷| 性色avwww在线观看| 久热久热在线精品观看| 亚洲性久久影院| av在线观看视频网站免费| 午夜激情久久久久久久| 性色avwww在线观看| 久久久久久人妻| 国产成人精品福利久久| 亚洲精品aⅴ在线观看| 99久久中文字幕三级久久日本| 成人特级av手机在线观看| 在现免费观看毛片| 老师上课跳d突然被开到最大视频| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 激情 狠狠 欧美| 免费在线观看成人毛片| h视频一区二区三区| 亚洲av日韩在线播放| 久久99蜜桃精品久久| 日韩三级伦理在线观看| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 成人毛片a级毛片在线播放| 国产伦精品一区二区三区视频9| 最近中文字幕高清免费大全6| 亚洲人与动物交配视频| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 久久精品国产鲁丝片午夜精品| 亚洲中文av在线| 国产黄频视频在线观看| 有码 亚洲区| 亚洲国产色片| 成年女人在线观看亚洲视频| 国产成人精品久久久久久| 18禁裸乳无遮挡动漫免费视频| 美女内射精品一级片tv| 久久精品国产亚洲网站| 欧美一级a爱片免费观看看| av网站免费在线观看视频| 日韩三级伦理在线观看| 少妇熟女欧美另类| 久久久久国产网址| xxx大片免费视频| 国产老妇伦熟女老妇高清| 免费看不卡的av| 亚洲熟女精品中文字幕| 偷拍熟女少妇极品色| 久久久久久人妻| 国产午夜精品一二区理论片| 国产有黄有色有爽视频| 永久网站在线| 亚洲欧美一区二区三区黑人 | 热99国产精品久久久久久7| 老女人水多毛片| 最近中文字幕2019免费版| 久久精品国产自在天天线| 视频中文字幕在线观看| 最近的中文字幕免费完整| 国产成人精品一,二区| 岛国毛片在线播放| 国产精品偷伦视频观看了| 免费久久久久久久精品成人欧美视频 | 超碰97精品在线观看| 午夜视频国产福利| 精品熟女少妇av免费看| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 黄片无遮挡物在线观看| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看 | 人妻一区二区av| av福利片在线观看| 久久人人爽人人爽人人片va| 亚洲精品成人av观看孕妇| 国产成人一区二区在线| 99re6热这里在线精品视频| 国产午夜精品一二区理论片| 熟女电影av网| 亚洲av男天堂| av国产精品久久久久影院| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 交换朋友夫妻互换小说| 日本wwww免费看| 中国国产av一级| 亚洲欧美一区二区三区国产| 男女无遮挡免费网站观看| 亚洲电影在线观看av| 少妇丰满av| 久久99热这里只频精品6学生| 男人狂女人下面高潮的视频| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 国产 精品1| 熟女av电影| 国产一区二区三区av在线| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线 | 一级a做视频免费观看| 国产中年淑女户外野战色| 黄色一级大片看看| 国产成人精品婷婷| 少妇人妻精品综合一区二区| 午夜视频国产福利| 哪个播放器可以免费观看大片| 久久 成人 亚洲| 又黄又爽又刺激的免费视频.| 男的添女的下面高潮视频| 美女xxoo啪啪120秒动态图| 国产一级毛片在线| 免费看光身美女| 国产精品一及| 国产片特级美女逼逼视频| 久久亚洲国产成人精品v| 视频区图区小说| 国产亚洲精品久久久com| 国产成人午夜福利电影在线观看| 婷婷色麻豆天堂久久| 欧美另类一区| 美女高潮的动态| 亚洲成人av在线免费| 少妇人妻 视频| 大片免费播放器 马上看| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 国产精品免费大片| 国产视频内射| 成人亚洲精品一区在线观看 | av一本久久久久| 视频中文字幕在线观看| 免费黄网站久久成人精品| 肉色欧美久久久久久久蜜桃| 久久ye,这里只有精品| 亚洲av不卡在线观看| 亚洲成色77777| 国产精品av视频在线免费观看| 大香蕉97超碰在线| 熟女av电影| 精品久久久久久久久av| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| av在线播放精品| 久久这里有精品视频免费| 久久国产乱子免费精品| 亚洲四区av| 色5月婷婷丁香| 七月丁香在线播放| 国产精品久久久久久精品古装| 亚洲久久久国产精品| 成人国产麻豆网| 性色avwww在线观看| 国产成人精品福利久久| 97在线视频观看| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 婷婷色综合www| 大香蕉久久网| 亚洲内射少妇av| 老熟女久久久| 精品人妻视频免费看| 一本一本综合久久| 少妇高潮的动态图| 菩萨蛮人人尽说江南好唐韦庄| 欧美丝袜亚洲另类| 久久久久久久久久人人人人人人| 日韩强制内射视频| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 综合色丁香网| 乱码一卡2卡4卡精品| 精品人妻视频免费看| 国产淫片久久久久久久久| 国产成人精品福利久久| 国产精品免费大片| 精品久久久噜噜| 一区在线观看完整版| 大香蕉97超碰在线| 欧美激情极品国产一区二区三区 | 能在线免费看毛片的网站| 亚洲av二区三区四区| 久久青草综合色| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看| 又爽又黄a免费视频| 在线观看免费日韩欧美大片 | av国产免费在线观看| 少妇猛男粗大的猛烈进出视频| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件| 亚洲精品成人av观看孕妇| 在线观看av片永久免费下载| 美女内射精品一级片tv| 日本黄色日本黄色录像| 最近最新中文字幕免费大全7| 如何舔出高潮| 久久国产乱子免费精品| 国产成人aa在线观看| 99视频精品全部免费 在线| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看 | 亚洲欧洲国产日韩| 高清欧美精品videossex| 熟女电影av网| 午夜免费鲁丝| av视频免费观看在线观看| 久久久成人免费电影| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 亚洲人与动物交配视频| 日韩av在线免费看完整版不卡| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 一级毛片久久久久久久久女| 国产精品人妻久久久久久| 国产精品免费大片| 男人添女人高潮全过程视频| 啦啦啦中文免费视频观看日本| 日本欧美国产在线视频| 成人毛片a级毛片在线播放| 人妻系列 视频| 国产一区二区在线观看日韩| 久久久久久久亚洲中文字幕| 青春草亚洲视频在线观看| 伦理电影大哥的女人| 18禁裸乳无遮挡免费网站照片| 亚洲精品aⅴ在线观看| 国产视频内射| 久久久成人免费电影| 联通29元200g的流量卡| 观看美女的网站| 国产黄片美女视频| 麻豆成人午夜福利视频| 亚洲天堂av无毛| 乱码一卡2卡4卡精品| 多毛熟女@视频| 亚洲,欧美,日韩| av卡一久久| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品古装| 亚洲伊人久久精品综合| 成人午夜精彩视频在线观看| 久久久精品94久久精品| 性高湖久久久久久久久免费观看| 成年人午夜在线观看视频| 免费高清在线观看视频在线观看| 国产爽快片一区二区三区| 中文精品一卡2卡3卡4更新| 少妇精品久久久久久久| 亚洲av电影在线观看一区二区三区| 性高湖久久久久久久久免费观看| 精品一区二区三区视频在线| 亚洲美女黄色视频免费看| 新久久久久国产一级毛片| 高清av免费在线| 内射极品少妇av片p| 欧美成人一区二区免费高清观看| 纵有疾风起免费观看全集完整版| 国产精品久久久久久久久免| 丰满人妻一区二区三区视频av| 大又大粗又爽又黄少妇毛片口| 国产成人精品婷婷| 久久这里有精品视频免费| 久久青草综合色| 一级毛片黄色毛片免费观看视频| av不卡在线播放| 国产精品一区二区性色av| 亚洲精品成人av观看孕妇| 草草在线视频免费看| 成年av动漫网址| 国产精品免费大片| 伦理电影大哥的女人| 下体分泌物呈黄色| 26uuu在线亚洲综合色| 精品一区二区三卡| 精品少妇久久久久久888优播| 亚洲国产高清在线一区二区三| 国产精品一二三区在线看| 日韩制服骚丝袜av| 免费看不卡的av| 精品久久久久久久末码| 日日啪夜夜撸| 老师上课跳d突然被开到最大视频| 噜噜噜噜噜久久久久久91| av福利片在线观看| 麻豆乱淫一区二区| 日韩大片免费观看网站| 伦精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| 国产大屁股一区二区在线视频| 中国国产av一级| 插逼视频在线观看| 色视频www国产| 各种免费的搞黄视频| 欧美激情国产日韩精品一区| 国产精品嫩草影院av在线观看| 亚洲天堂av无毛| 亚洲三级黄色毛片| 亚洲色图综合在线观看| 成人毛片60女人毛片免费| 国产一级毛片在线| 国产男人的电影天堂91| 欧美激情极品国产一区二区三区 | 精品国产一区二区三区久久久樱花 | 欧美 日韩 精品 国产| 午夜激情久久久久久久| 成人免费观看视频高清| 亚洲欧美日韩另类电影网站 | 国产精品久久久久久久久免| 大片电影免费在线观看免费| 日韩成人伦理影院| av在线播放精品| 全区人妻精品视频| 久久久久精品性色| 街头女战士在线观看网站| 亚洲精品中文字幕在线视频 | 欧美日韩精品成人综合77777| 亚洲国产成人一精品久久久| www.色视频.com| 日本欧美视频一区| 一级毛片电影观看| 亚洲久久久国产精品| av卡一久久| 国产精品一区二区性色av| 青春草国产在线视频| 免费观看在线日韩| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 色吧在线观看| 国产69精品久久久久777片| 最新中文字幕久久久久| 成人美女网站在线观看视频| 超碰av人人做人人爽久久| .国产精品久久| 欧美xxxx性猛交bbbb| 少妇丰满av| 夜夜爽夜夜爽视频| 我要看日韩黄色一级片| 大香蕉久久网| 亚洲国产色片| 最黄视频免费看| 大又大粗又爽又黄少妇毛片口| 日韩强制内射视频| 免费av不卡在线播放| 久久韩国三级中文字幕| 身体一侧抽搐| 久久久久国产精品人妻一区二区| 欧美日韩视频精品一区| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 国产精品99久久久久久久久| 一区二区三区乱码不卡18| 男女边摸边吃奶| 狠狠精品人妻久久久久久综合| av又黄又爽大尺度在线免费看| 亚洲欧美成人精品一区二区| 毛片一级片免费看久久久久| av在线蜜桃| 婷婷色av中文字幕| 一级毛片 在线播放| 国产精品不卡视频一区二区| 亚洲色图综合在线观看| 亚洲国产高清在线一区二区三| 亚洲欧美一区二区三区国产| 中文欧美无线码| av线在线观看网站| av又黄又爽大尺度在线免费看| 国产精品人妻久久久久久| 啦啦啦视频在线资源免费观看| 身体一侧抽搐| 免费看av在线观看网站| av免费在线看不卡| 国产成人午夜福利电影在线观看|