• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Index Iteration Theory for Brake Orbit Type Solutions and Applications

    2021-06-29 02:15:02ChungenLiuYimingLongandDuanzhiZhang
    Analysis in Theory and Applications 2021年2期

    Chungen Liu,Yiming Long and Duanzhi Zhang

    1 School of Mathematics and Information Science,Guangzhou University,Guangzhou,Guangdong 510006,China

    2 Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071,China

    3 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071,China

    Abstract. In this paper, we give a survey on the index iteration theory of an index theory for brake orbit type solutions and its applications in the study of brake orbit problems including the Seifert conjecture and the minimal period solution problems in brake orbit cases.

    Key Words: Hamiltonian system,Index theory,Iteration theory,Lagrangian boundary problem,Seifert conjecture,Brake orbits.

    1 Introduction

    Since 1990,the iteration theory of the Maslov-type index theory for symplectic paths has been systematically developed by Long and his research group[54–56]. It has become a powerful tool in the study of various problems on periodic solutions(or orbits)of nonlinear Hamiltonian systems including: existence, multiplicity, and stability of periodic solution orbits [57,59,67,68] and closed geodesic [5,13,14], stability problems of periodic orbits ofn-body problems [35–37], Rabinowitz’s minimal periodic solution conjecture[12,50–52],Conley’s conjecture on sub-harmonic periodic orbits for second as well as first order Hamiltonian systems[27,32]. Recently,Long,Duan,and Zhu published a survey paper[15]on this topic. Interested readers are referred to this paper and references therein.

    Since the paper of[57]of Long,Zhang,and Zhu in 2006,motivated by the study of the existence,multiplicity and stability of brake orbit type periodic solutions of Hamiltonian systems,in order to get more precise information,the index theory and its iteration theory of the Maslov-type index for symplectic paths under brake orbit boundary conditions have been systematically developed. This index and its iteration theory can be used to study brake orbits problems of reversible Hamiltonian systems[47,48,57,73,74]as well as other related problems including Conley conjecture and minimal periodic solution problems in brake orbit case[42,72].

    In this survey,we shall give an introduction to this Maslov-type index theory and its relationship with the Maslov index theory in Section 1. In Section 2,we shall describe the main results in the iteration theory of such an index theory. For applications,in Section 3, we shall introduce recent developments on brake orbit problem for compact convex reversible hypersurfaces inR2n, which yields some partial answer to the Seifert conjecture on the multiplicity of brake orbits proposed by Seifert in 1948[64]. In Section 4,we shall briefly summarize the study of the minimal period solution problems of reversible Hamiltonian systems in brake orbit case.

    In this paper,letN,R,Z,QandCdenote the sets of natural integers,integers,rational numbers,real numbers and complex numbers respectively. LetUbe the unit circle of the complex planeC,i.e.,U={z ∈C||z|=1}.

    2 A review on the Maslov-type index theory iL for symplectic paths under Lagrangian boundary condition

    2.1 The iω index theory for symplectic paths

    We firstly give the definition ofiωindex for symplectic paths which was first introduced by Long in [54] of 1999, all the materials here with historical notes can be found in [56]of 2002 and the recent survey paper[15]. Let(R2n,ω0)be the standard symplectic vector space with coordinates(x1,···,xn,y1,···,yn)and the standard symplectic form

    Let

    be the standard symplectic matrix, whereInis the identity matrix inRn. The real symplectic group Sp(2n)is defined by

    whose topology is induced from that ofR4n2, whereMTis the transpose of matrixM.The set of symplectic paths in Sp(2n)starting from the identity matrix is defined by

    whose topology is induced from Sp(2n). Denote the set of all 2n×2nreal matrices byL(R2n) and its subset of symmetric ones byLs(R2n). For anyM ∈Ls(R2n), we denote the dimensions of the maximal positive definite subspace, negative definite subspace,and kernel ofMbym+(M),m?(M)andm0(M),respectively.

    Forω ∈UandM ∈Sp(2n),the function

    was defined and proved to be real by Long in [53] of 1999. Following [53] and [54], for anyω ∈U,we define

    For any two continuous pathsξandη: [0,τ]→Sp(2n)withξ(τ) =η(0),we define their joint path by

    For any two 2ki×2kimatrices of square block form

    withi= 1,2 as in[56],the◇-sum ofM1andM2is defined by the following 2(k1+k2)×2(k1+k2)matrix

    We denote byM◇kthek-time self◇-sum ofMfor anyk ∈N.

    Define a special pathξn ∈Pτ(2n)by

    Definition 2.1([54,56]).For any ω ∈Uand M ∈Sp(2n),define

    For any τ>0and γ ∈Pτ(2n),let

    If γ ∈P?τ,ω(2n),then we define

    where the right-hand side of(2.1)is the usual homotopy intersection number and the orientation of γ ?ξn is its positive time direction under homotopy with fixed endpoints.

    If ω= 1,simply denote by i(γ)instead of i1(γ). If γ(τ)∈P0τ,ω(2n),let F(γ)be the set of all open neighborhoods of γ in Pτ(2n),and define

    Then(iω(γ),νω(γ))∈Z×{0,1,···,2n}is called the index function of γ at ω.

    For anyM ∈Sp(2n),following[54]we define

    Denote by Ω0(M)the path-connected component of Ω(M)containingM,and call it the homotopy component ofM ∈Sp(2n).

    Definition 2.2([54,56]).For any M ∈Sp(2n)and ω ∈U,we define the splitting number of M by

    for any path γ ∈Pτ(2n)with γ(τ)=M.

    2.2 The Maslov type iL-index theory associated with a Lagrangian subspace for symplectic paths

    In this section,we give a brief introduction to the Maslov typeiL-index theory. We refer to the papers[40,41,47,48,57]for more details.

    A Lagrangian subspaceLof the standard symplectic space(R2n,ω0)with

    is anndimensional subspace satisfyingω0|L= 0. The set of all Lagrangian subspaces in(R2n,ω0)is denoted by Λ(n).

    Whenτ= 1, we write simplyP(2n) instead ofP1(2n). For a symplectic pathγ ∈Pτ(2n),we write it in the following form

    Since the space Sp(2n)is path connected,and the set ofn×nnon-degenerate matrices has two path connected components consisting of matrices with positive and negative determinants respectively,we denote by

    Definition 2.3([40,57]).We define the L0-nullity of any symplectic path γ ∈Pτ(2n)by

    with the n×n matrix function V(t)defined in(2.2).

    The matrixQ(t)is unitary for anyt ∈[0,τ]. We denote by

    By the definition,we see that the symplectic path ˉγstarts from?M+and ends at eitherM+orM?. As above,we define

    for

    We can choose a continuous function ˉΔ(t)on[0,τ]such that

    In the general situation,letL ∈Λ(n). It is well known that Λ(n) =U(n)/O(n),this means that for any linear subspaceL ∈Λ(n),there is an orthogonal symplectic matrix

    Definition 2.6([40]).We define the L-nullity of any symplectic path γ ∈Pτ(2n)by

    the n×n matrix function Vc(t)is defined in(2.2)with the symplectic path γ replaced by γc,i.e.,

    Definition 2.7([40]).For a symplectic path γ ∈Pτ(2n),we define the L-index of γ by

    Remark 2.1.(1) The Definitions 2.6 and 2.7 do not depend on the special choice ofP.(2) In [57] of 2006, Long, Zhang and Zhu studied the multiple solutions of the brake orbit problem on a convex hypersurface, they introduced indices (μ1(γ),ν1(γ)) and(μ2(γ),ν2(γ)) for any symplectic pathγ. The indicesμ1(γ) andμ2(γ) are special cases of theL-indexiL(γ) for Lagrangian subspacesL0={0}×RnandL1=Rn×{0}respectively up to a constantn. In[63]of 1993,Robbin and Salamon defined a half integer valued index for symplectic paths with Lagrange boundary conditions.

    TheiLindex can also be defined by Maslov indices of the corresponding Lagrangian subspace pair paths.There is a good introduction on Maslov indices of the corresponding real Lagrangian subspace pair paths in[11]of 1994 by Cappel,Lee and Miller,which can be extended to complex Lagrangian subspace pair paths [58]. Recently the first author of this paper defined also aniL-index theory for general symplectic curves in the monograph[43],such an index theory satisfies an axioms characterization in terms of the affine scale invariance,homotopy invariance,path additivity,symplectic additivity,symplectic invariance and normalization.

    We denote by

    equipped with the standard inner product(·,·)and define the symplectic structure ofFby

    We denote by Lag(F)the set of Lagrangian subspaces ofF,and equip it with the topology as a subspace of the Grassmannian of all 2n-dimensional subspaces ofF.

    It is easy to check that,for anyM ∈Sp(2n)its graph

    is a Lagrangian subspace ofF.

    Let

    Proposition 2.1([47,59]).For any continuous path γ ∈Pτ(2n),there hold

    where we denote by iCLMF(V,W,[a,b])the Maslov index for Lagrangian subspace path pair(V,W)in F on[a,b]defined by Cappell, Lee, and Miller in [11]. For any M ∈Sp(2n)and j=0,1,we also denote by νLj(M)=dim(MLj ∩Lj).

    In[16],Duistermaat introduced the H¨ormander index which expresses the difference of Maslov index of the same symplectic path under different lagrangian boundary conditions as signature of corresponding quadratic form in nondegenerate case. In [75] of 2018, Zhou, Wu, and Zhu extended the H¨ormander index into degenerate case. By the computation of the H¨ormander index,in[57]of 2006,Long,Zhang and Zhu proved

    Theorem 2.1([57]).For any continuous path γ ∈Pτ(2n),there hold

    More precisely,for anyP ∈Sp(2n)andε ∈R,set

    In[72],Zhang proved

    Theorem 2.2([72]).For γ ∈Pτ(2n)with τ>0,we have

    wheresgnMε(γ(τ))is the signature of the symmetric matrix Mε(γ(τ))and ε>0is sufficiently small.

    We also have,

    where ε<0and|ε|is sufficiently small.

    The key ingredients in the proof of Theorem 3.2 below are some ideas from [47,57]and the following estimate,where the iteration pathγ2will be defined in Section 2 below.

    Theorem 2.3([48]).For γ ∈Pτ(2n), let P=γ(τ). If iL0(γ)≥0, iL1(γ)≥0, i(γ)≥n,γ2(t)=γ(t ?τ)γ(τ)for all t ∈[τ,2τ],then

    3 The iteration theory for iL0 and iL1 index

    In many problems related to nonlinear Hamiltonian systems, it is necessary to study iterations of periodic solutions. In order to distinguish two geometrically distinct periodic solutions,one way is to study the Maslov-type indices of the iteration paths of the fundamental solutions of the corresponding linearized Hamiltonian systems. Forγ ∈Pτ(2n),we define ?γ(t)=γ(t ?j)γ(1)j,j ≤t ≤j+1,j ∈{0}∪N,and thek-times iteration path ofγbyγk= ?γ|[0,k]for anyk ∈N. In the paper[54]of Long in 1999,the following result was proved

    In[55]of 2000,Long established the precise index iteration formula for the Maslov-type indices. From these results, various iteration index formulas were obtained and were used to study the multiplicity and stability problems of periodic solutions related to the nonlinear Hamiltonian systems. We refer to the book[56]of Long in 2002 and the references therein for these topics.

    In order to study the brake orbit problem, it is necessary to study iterations of the brake orbits. In order to do this, one way is to study theL0-index of the iteration pathγkof the fundamental solutionγof the corresponding linear system for anyk ∈N. In this case, theL0-iteration pathγkofγis different from that of the general periodic case mentioned above. Its definition is given below.

    In 1956, Bott in [10] established the famous iteration formula of the Morse index for closed geodesics on Riemannian manifolds. For convex Hamiltonian systems, Ekeland developed the similar Bott-type iteration index formulas for the Ekeland index theory[17]of 1990. In[54]of 1999,Long established the Bott-type iteration formulas for the Maslov-type index theory. Motivated by the above results, in [47] of Liu and Zhang in 2014,the following Bott-type iteration formulas for theL0-index was established. In[70]of 2018,Wu and Zhu extended the iteration formula to weak symplectic Hilbert spaces.

    Define the involution matrix of(R2n,ω0)by

    It is anti-symplectic,i.e.,NJ=?JN. The fixed point set ofNand?Nare the Lagrangian subspacesL0={0}×RnandL1=Rn×{0}of(R2n,ω0),respectively.

    For simplicity,we supposeγ ∈P1(2n),i.e.,we takeτ= 1. Forj ∈N,we define thej-times iteration pathγj:[0,j]→Sp(2n)ofγby

    and in general,fork ∈N,we defineγ(2)=Nγ(1)?1Nγ(1)and

    Forγ ∈Pτ(2n),we define

    Theorem 3.1([47] of Liu and Zhang in 2014).Suppose γ ∈Pτ(2n), for the iteration symplectic paths γk,when k is odd,there hold

    when k is even,there hold

    From the Bott-type formulas in Theorem 3.1, the abstract precise iteration index formula ofiL0was given in [47]. We recall the definition ofE(a) = min{k ∈Z|k ≥a}fora ∈R.

    Theorem 3.2([47]).Let γ ∈Pτ(2n), γk is defined by as above, and M=γ2(2τ). Then for every k ∈2N?1,there holds

    where C(M)is defined by

    and S±M(ω)is the splitting number of the symplectic matrix M at ω for ω ∈Udefined in Subsection 1.1. For every k ∈2N,there holds

    and for even k,we have

    For any given compact strictly convex (or star-shaped)C2hypersurface Σ inR2n, a closed characteristic(τ,y)on Σ is a solution of the problem

    wherenΣ(y)is the outward normal vector of Σ atynormalized by the conditionnΣ(y)·y=1. Herea·bdenotes the standard inner product ofa,b ∈R2n.

    In the study of closed characteristics problems and closed geodesics,the common index jump theorem[59]of Long and Zhu in 2002 and the enhanced common index jump theorem[13]of Duan,Long and Wang in 2016 for a finite collection of symplectic paths starting from identity with positive mean indicesi1(γj) play important roles. The common index jump theorem of theiL0-index for a finite collection of symplectic paths starting from identity with positive meaniL0-indices was established in[47]. In the following of this paper, we write (iL0(γ,k),νL0(γ,k)) = (iL0(γk),νL0(γk)) for any symplectic pathγ ∈Pτ(2n)andk ∈N. From Theorems 3.1 and 3.2,we know that the mean indices

    are well defined and we have

    for any symplectic pathγ ∈Pτ(2n).

    Then there exist infinitely many(R,m1,m2,···,mq)∈Nq+1such that

    for nj ∈N.

    4 Applications, brake orbits on given reversible hypersurfaces in R2n

    TheiLindex theory is suitable for studying the Lagrangian boundary value problems(Lsolution,for short)related to nonlinear Hamiltonian systems. A typical application is to study the Seifert conjecture for the multiplicity of brake orbits.

    4.1 The Seifert conjecture

    Let us recall the famous conjecture proposed byH. Seifert in his pioneer work [64] of 1948 concerning the multiplicity of brake orbits in certain Hamiltonian systems inR2n.We assume thatH ∈C2(R2n,R)possesses the following form

    wherep,q ∈Rn,A(q) is aC2positive definiten×nsymmetric matrix inq ∈RnandV ∈C2(Rn,R)is the potential energy. The solution of the following Hamiltonian system

    is called a brake orbit. Moreover, ifhis the total energy of a brake orbit (p,q), i.e.,H(p(t),q(t)) =handV(q(0)) =V(q(τ)) =h. Thenq(t)∈ˉΩ≡{q ∈Rn|V(q)≤h}for allt ∈R.

    In [64] of 1948, Seifert studied the existence of brake orbits for system (4.2a)-(4.2b)with the Hamiltonian functionHbeing in the form of(4.1)and proved that the setJb(Σ)of brake orbits on the energy surface Σ =H?1(h)is not empty,i.e.,Jb(Σ)/= ?providedV′/=0 on?Ω,Vis analytic and ˉΩ is bounded and homeomorphic to the unit ballBn1(0)inRn. Denoted by ?Jb(Σ)the set of geometrically distinct brake orbits on the energy surface Σ. The precise sense of the setsJb(Σ) and ?Jb(Σ) are explained in the next subsection.Then in the same paper he proposed the following conjecture#?Jb(Σ)≥nfor Σ described as above.

    We note that for the Hamiltonian function

    whereai/aj ∈RQfor alli/=jandq=(q1,q2,···,qn),there are exactlyngeometrically distinct brake orbits on the energy hypersurface Σ=H?1(h).

    4.2 The generalized Seifert conjecture for reversible hypersurfaces

    In general, we suppose thatH ∈C2(R2n{0},R)∩C1(R2n,R) satisfies the following reversible condition

    For givenh> 0,we consider the following fixed energy problem of nonlinear Hamiltonian system with Lagrangian boundary conditions

    It is clear that a solution (τ,x) of (4.4a)-(4.4c) is a characteristic chord on the contact submanifold Σ :=H?1(h)={y ∈R2n|H(y)=h}of(R2n,ω0)and satisfies

    In general, this kind ofτ-periodic characteristic (τ,x) is called a brake orbit on the hypersurface Σ. We note that the problem(4.2a)-(4.2b)with the Hamiltonian functionHdefined in(4.1)is a special case of the problem(4.4a)-(4.4c).We denote byJb(Σ,H)the set of all brake orbits on Σ. Two brake orbits(τi,xi)∈Jb(Σ,H)withi= 1,2,are equivalent,if the two brake orbits are geometrically the same,i.e.,x1(R)=x2(R).We denote by[(τ,x)]the equivalence class of(τ,x)∈Jb(Σ,H) in this equivalence relation and by ?Jb(Σ,H)the set of [(τ,x)] for all (τ,x)∈Jb(Σ,H). In fact ?Jb(Σ,H) is the set of geometrically distinct brake orbits on Σ,which is independent of the choice ofH. So from now on we simply denote it by ?Jb(Σ)and in the notation[(τ,x)]we always mean thatxhas the minimal periodτ. We also denote by ?J(Σ)the set of all geometrically distinct closed characteristics on Σ. The number of elements in a setSis denoted by#S. It is well known that# ?Jb(Σ)(and also#?J(Σ))depends only on Σ,that is to say,for simplicity we takeh= 1,ifHandGare twoC2functions satisfying (4.3) and ΣH:=H?1(1) = ΣG:=G?1(1),then#Jb(ΣH) =#Jb(ΣG). So we can consider the brake orbit problem in a more general setting. Let Σ be aC2compact hypersurface inR2nbounding a compact setCwith nonempty interior. Suppose Σ has non-vanishing Gaussian curvature and satisfies the reversible conditionN(Σ?x0) = Σ?x0:={x ?x0|x ∈Σ}for somex0∈C. Without loss of generality, we may assumex0= 0. We denote the set of all such hypersurfaces inR2nbyHb(2n). Forx ∈Σ, letnΣ(x) be the outward unit normal vector atx ∈Σ as in (3.3). Note that here by the reversible condition there holdsnΣ(Nx) =NnΣ(x). We consider the dynamics problem of findingτ> 0 and aC1smooth curvex: [0,τ]→R2nsuch that

    A solution (τ,x) of the problem (4.6a)-(4.6b) determines a brake orbit on Σ. Now the generalized Seifert conjecture can be represented as

    The Generalized Seifert Conjecture:For any Σ∈Hb(2n),there holds

    We can view the above estimate as a result on the number of Lagrangian intersection(more precisely the Legendre intersection,since Σ∩L0is a Legendre submanifold of the contact manifold Σ)of“reversible”Hamiltonian map?b:

    The famous Arnold conjecture is related to the Lagrangian boundary problem, it says that the number of Lagrangian intersection of a Hamiltonian map on a closed symplectic manifoldMcan be estimated from below by the Betti number ofMin the non-degenerate case and by the cuplength ofM[4]of 1965. In this direction readers are referred to[22,34,39]of 1989,1998,and 2005 respectively.

    4.3 Some related results since 1948

    As a special case, lettingA(q) =Iin (4.1), the problem (4.2a)-(4.2b) corresponds to the following classical fixed energy problem of the second order autonomous Hamiltonian system

    whereV ∈C2(Rn,R)andhis a constant such that Ω≡{q ∈Rn|V(q)

    A solution(τ,q) of(4.7a)-(4.7c)is still called a brake orbit in ˉΩ. Two brake orbitsq1andq2:R→Rnare geometrically distinct ifq1(R)/=q2(R). We denote byO(Ω,V)and ?O(Ω)the sets of all brake orbits and geometrically distinct brake orbits in ˉΩ respectively.

    Remark 4.1.It is well known that via

    x=(p,q)andp= ˙q,the elements inO(Ω,V)and the solutions of(4.4a)-(4.4c)are one to one correspondent.

    After 1948,various studies have been carried out for the brake orbit problem. Bolotin proved in [8] of 1978 the existence of brake orbits in general setting. Hayashi in [31] of 1983, Gluck and Ziller in [28] of 1983, and Benci in [6] of 1984 proved#?O(Ω)≥1, ifVisC1, ˉΩ ={V ≤h}is compact, andV′(q)/= 0 for allq ∈?Ω. Rabinowitz in [62] of 1978 proved that ifHsatisfies(4.3),Σ≡H?1(h)is star-shaped,andx·H′(x)/= 0 for allx ∈Σ, then#?Jb(Σ)≥1. Benci and Giannoni gave a different proof of the existence of one brake orbit in [7] of 1989. In 2005, it was pointed out in [24] of Giamb`o, Giannoni and Piccione that the problem of finding brake orbits is equivalent to find orthogonal geodesic chords on manifold with concave boundary. Giamb`o, Giannoni and Piccione in [25] of 2010 proved the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. For the multiplicity of the brake orbit problems, Weinstein in [69] of 1973 proved a local result: AssumeHsatisfies(4.3). For anyhsufficiently close toH(z0)withz0being a nondegenerate local minimum ofH,there exist at leastngeometrically distinct brake orbits on the energy surfaceH?1(h). In[9]of 1978 of Bolotin and Kozlov and in[28]of 1983 of Gluck and Ziller,the existence of at leastnbrake orbits was proved under assumptions of Seifert in [64]and an additional assumption on the energy integral such that different minimax critical levels correspond to geometrically distinct brake orbits. Szulkin in [65] of 1989 proved that#?Jb(H?1(h))≥n,ifHsatisfies conditions in[62]of 1978 of Rabinowitz and the energy hypersurfaceH?1(h)is 2-pinched. Groesen in[29]of 1985 and Ambrosetti,Benci and Long in[1]of 1993 also proved#?O(Ω)≥nunder different pinching conditions.

    4.4 Recent progress on the Seifert conjecture

    Definition 4.1.We denote by

    Without any pinching conditions,Long,Zhang and Zhu in[57]of 2006 established a Maslov-type index theory for brake orbits and proved

    In order to show the role of iteration theory ofiLindex,we give a sketch of the proof of Theorem 4.2 below by applying Theorem 3.4 and the estimate in Theorem 2.3. More details can be found in[48].

    For anyxτbeing aτ-periodic brake orbit solution, letγxτbe the symplectic path associated toxτ. We define

    we obtain a sufficient large integerRand the iteration timesm1,m2,···,mp+q,mp+q,mp+q+1,···,mp+2qsatisfying(i)-(vi)of Theorem 3.4.

    By the proofs in [57] of Long, Zhang and Zhu in 2006 and the fact thatxand?xhave the sameiL0andνL0index,we can define a mapφwith

    such that 1≤k(s)≤p+qand

    Step 2Let

    We shall prove that

    In fact,by the strict convexity of Σ,we haveiL0(xk(s))≥0. Hence by(4.8a)and(iii)of Theorem 3.4,for everys=1,2,···,n,there holds

    (4.11)and(ii)of Theorem 3.4 would yield

    Note that the convex assumption of the hypersurface Σ implies that theiL0(x,j)andiL0(x,j)+νL0(x,j) are both strictly increasing in the iteration timejfor any brake orbitxon Σ.

    Hence by(4.10),(4.12),we obtain

    Hence(4.9)holds.

    Step 3(4.8b)and(4.9)imply#S1≤p. By similar arguments,we obtain

    which yields#S2≤2q. So we have

    The proof of Theorem 4.2 is completed.

    Remark 4.2.Theorem 4.2 is a kind of multiplicity result related to the Arnold chord conjecture. The Arnold chord conjecture is an existence result which was proved by Mohnke in[60]of 2001. Another kind of multiplicity result related to the Arnold chord conjecture was proved by Guo and Liu in[30]of 2008.

    Ifrj/rk ∈RQwheneverj/=k,one can easily see that there are preciselyngeometrically distinct symmetric brake orbits onEn(r)and all of them are nondegenerate.

    The following two important results are direct consequences of Theorem 4.2.

    Corollary 4.1([48]).If H(p,q)defined by(4.1)is even and convex,then Seifert conjecture holds.Corollary 4.2([48]).Suppose V(0) = 0, V(q)≥0, V(?q) =V(q)and V′′(q)is positive definite for all q ∈Rn{0}. Then for any given h> 0andΩ≡{q ∈Rn|V(q)

    In 2015,by non-smooth Lyusternik-Schnirelmann theory,Giamb`o,Giannoni and Piccione proved the following result which means Seifert conjecture holds in the casen=2 while it is still open forn ≥3.

    Theorem 4.3([26]).Under Seifert’s condition with A and V weakened to C2, for n ≥2, there holds

    We call a compact star-shaped reversible hypersurface Σ∈R2nbeing dynamically convex,if for any brake orbit(τ,x)on Σ,there holds

    We call Σ isL0-nondegenerate if every brake orbits on it is nondegenerate.

    In a preprint of 2018,using the equivariant wrapped Floer homology theory and the Common Index Jump Theorem 3.4,Kim,Kim and Kwon proved,

    Theorem 4.4([38]).For any L0-nondegenerate compact dynamically convex reversible hypersurfaceΣ∈R2n,there holds

    The conclusion of Theorem 4.2 can be extended to dynamically convex case.

    Theorem 4.5([49] of Z. Liu and Zhang).For any compact symmetric dynamically convex reversible hypersurfaceΣ∈R2n,there holdsIn 2006,Zhang considered the multiplicity of symmetric brake orbits and proved,

    For stability of brake orbits, there are only few results, since information obtained from variational methods is not easy to be used. In 2017,Fan and Zhang proved,

    4.5 Related results

    Then all of the n closed characteristics onΣare symmetric brake orbits after suitable time translation.

    Note that for the hypersurface

    we have

    where we have denoted by ?Jsb(Σ) the set of all symmetric brake orbits on Σ. We also note that on the hypersurface Σ ={x ∈R2n||x| = 1}there are some non-brake closed characteristics.

    Forn= 2,it was proved in[33]of Hofer,Wysocki and Zehnder that#?J(Σ)is either 2 or+∞for anyC2compact convex hypersurface Σ inR4. In the brake orbit case,in[23]of 2016, Frauenfelder and Kang proved that#?Jb(Σ) is either 2 or +∞for anyC2compact dynamically convex reversible hypersurface Σ inR4. So it is natural to propose the following conjecture:

    Conjeture:#?Jb(Σ)is eithernor+∞for anyC2compact convex reversible hypersurface Σ inR2n.

    The multiplicity of closed characteristics on a fixed energy hypersurface inR2nis a very important problem in nonlinear Hamiltonian systems. Similar to Seifert conjecture,there is a long standing(more than 100 years)conjecture that on every compact convex hypersurface inR2n, there exist at leastnclosed characteristics. An important progress was made by Long and Zhu in [59] of 2002, by using the iteration theory of Maslovtype index of symplectic paths and establishing the common index jump theorem. They proved that

    Then in 2002,Liu,Long and Zhu in[45]proved that

    provided Σ is a convex compact symmetric hypersurface inR2n.

    It is also interesting to ask the following question:Can we prove the above conjecture on closed characteristics if the hypersurface is additionally reversible?

    5 Applications,minimal period solution problems in the brake orbit case

    For the nonlinear Hamiltonian system:

    in his pioneering paper[61]of 1978,Rabinowitz proved the following famous result via a variational method. SupposeHsatisfies the following conditions:

    (H1′)H ∈C1(R2n,R).

    (H2)There exist constantsμ>2 andr0>0 such that

    (H3)H(x)=o(|x|2)atx=0.

    (H4)H(x)≥0 for allx ∈R2n.

    Then for anyT>0,the system(5.1)possesses a non-constantT-periodic solution.

    Because aT/kperiodic function is also aT-periodic function,in[61]Rabinowitz proposed the conjecture that under conditions (H1′) and (H2)-(H4), there is a periodic solution of (5.1) withTas its minimal period for anyT> 0. Since 1978, this conjecture has been deeply studied by many mathematicians. A significant progress was made by Ekeland and Hofer in their celebrated paper [18] of 1985, where they confirmed Rabinowitz’s conjecture for the strictly convex Hamiltonian systems. For Hamiltonian systems with convex or weakly convex assumptions,we refer to[2,3,12,17,44,56]and references therein for more details. For the seconder order case without any convex condition we refer to[50–52], and Chapter 13 of[56]as well as references therein. In[12]of 1997,Dong and Long gave the first index theoretical proof of the Ekeland-Hofer theorem,and discovered the deep connection between the minimal period and the index theory.

    It is natural to consider the minimal period solution problem of brake orbits in reversible first order nonlinear Hamiltonian systems. The key tool is the iteration theory ofiLindex. Motivated by [12,20,21,50,51] we consider the case that the systems are semipositive,i.e.,the HessianH′′(x)has no negative eigenvalues at anyx ∈R2n,which guarantees the existence of a lower bound ofiLindices of brake orbits of the system.

    It is natural to supposeHsatisfies the following reversible and semipositive conditions:

    (H5)H(Nx)=H(x)for allx ∈R2n.

    (H6)H′′(x)is semipositive definite for allx ∈R2n.

    We also suppose the following smooth condition:

    (H1)H ∈C2(R2n,R).

    In order to introduce our results more conveniently, we define the following (B1)condition. Since the Hamiltonian systems considered here are reversible, this condition is natural.

    (B1)Condition. For anyτ>0 andB ∈C([0,τ],Ls(R2n)of then×nmatrix square block form satisfyingB12(0) =B21(0) = 0 =B12(τ) =B21(τ), we callBsatisfying the condition

    (B1).

    For anyB ∈C([0,τ],Ls(R2n)),denote byγBthe fundamental solution of the following problem

    For readers’ convenience we give the idea of Theorem 5.2 below as an example to show how to estimate the minimal period by the index iteration theory,more details can be found in[72]of Zhang in 2015.

    Idea of the proof of Theorem5.2.For anyτ> 0, by the Galerkin approximation and the variational argument, we obtain aτ-periodic brake orbit solutionxτof (5.1) such thatiL0(xτ)≤1. Suppose its minimal period isT,thenτ/T ≡kis a positive integer andxτ=xkTwithxT=xτ|[0,T]. In the variational argument we also haveiL1(xT)+νL1(xT)≥1. By the semipositive assumption we have andiL0(γxT)+νL0(γxT)≥0 which implies

    Next we consider the minimal period problem for

    whereB0∈Ls(R2n).

    Theorem 5.3([72]).Let B0= diag(B11,B22)be a2n×2n real semipositive matrix with B11and B22being n×n matrices. Assume

    Remark 5.1.In[72],it was proved that ifB0is semipositive,theniL0(B0)+νL0(B0)≥0.Theorem 5.4([72]).Suppose that H satisfies the conditions(H1)-(H6)and

    (H7)H(?x)=H(x)for all x ∈R2n.

    Then for any τ> 0, the system(5.1)possesses a symmetric brake orbit with minimal period belonging to{τ,τ/3}.

    Acknowledgements

    The first author is partially supported by the NSFC Grants (No. 11790271), Guangdong Basic and Applied basic Research Foundation (No. 2020A1515011019), Innovation and Development Project of Guangzhou University. The second author is partially supported by National Key R&D Program of China(No.2020YFA0713300),NSFC Grants Nos. 11671215 and 11790271, LPMC of Ministry of Education of China, Nankai University, Nankai Zhide Foundation, Wenzhong Foundation, and the Beijing Center for Mathematics and Information Interdisciplinary Sciences at Capital Normal University. The third author is partially supported by National Key R&D Program of China(No.2020YFA0713300),NSFC Garnts Nos.11790271 and 11171341,and LPMC of Nankai University.

    中国美白少妇内射xxxbb| 久久久午夜欧美精品| 日日撸夜夜添| 深爱激情五月婷婷| 成人无遮挡网站| 色视频www国产| 成人午夜精彩视频在线观看| 欧美日韩综合久久久久久| 亚洲成人中文字幕在线播放| 亚洲最大成人av| 亚洲av免费高清在线观看| 欧美极品一区二区三区四区| 欧美+日韩+精品| 久久精品人妻少妇| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 欧美成人免费av一区二区三区| 在线播放无遮挡| 天天躁夜夜躁狠狠久久av| 亚洲国产精品专区欧美| 免费搜索国产男女视频| 欧美成人精品欧美一级黄| 亚洲av中文字字幕乱码综合| 大话2 男鬼变身卡| 最新中文字幕久久久久| 深爱激情五月婷婷| 中文字幕精品亚洲无线码一区| 久久精品夜色国产| 午夜精品一区二区三区免费看| 久久久久久久久久久免费av| 村上凉子中文字幕在线| 国产 一区精品| 亚洲国产欧美人成| 最近视频中文字幕2019在线8| 国产在视频线精品| 别揉我奶头 嗯啊视频| 日本熟妇午夜| 久久国产乱子免费精品| 99九九线精品视频在线观看视频| 日韩 亚洲 欧美在线| 成人美女网站在线观看视频| 九九在线视频观看精品| 久久99热这里只有精品18| av视频在线观看入口| 干丝袜人妻中文字幕| 久久久久久久久中文| 91久久精品电影网| 国产精品人妻久久久影院| 一级毛片我不卡| 国产av一区在线观看免费| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 免费黄色在线免费观看| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 亚洲18禁久久av| 午夜福利视频1000在线观看| av在线老鸭窝| 精品熟女少妇av免费看| 黑人高潮一二区| 亚洲精品国产av成人精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲经典国产精华液单| 热99在线观看视频| 亚洲婷婷狠狠爱综合网| 日本三级黄在线观看| 国产黄片美女视频| 草草在线视频免费看| 日韩av在线大香蕉| 成年av动漫网址| 岛国毛片在线播放| 免费播放大片免费观看视频在线观看 | 国产免费福利视频在线观看| 亚洲精品色激情综合| 亚洲精品国产av成人精品| av在线老鸭窝| av在线蜜桃| 高清av免费在线| 国产淫片久久久久久久久| 中文字幕久久专区| 两个人的视频大全免费| 精品久久久久久久久av| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 欧美又色又爽又黄视频| 青春草亚洲视频在线观看| 久久精品国产亚洲网站| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 乱人视频在线观看| 女人被狂操c到高潮| 一个人看视频在线观看www免费| 成人三级黄色视频| 99国产精品一区二区蜜桃av| 亚洲美女搞黄在线观看| 一级黄色大片毛片| 日韩大片免费观看网站 | 伊人久久精品亚洲午夜| 欧美bdsm另类| 菩萨蛮人人尽说江南好唐韦庄 | 欧美+日韩+精品| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 免费黄网站久久成人精品| 亚洲经典国产精华液单| 久久久久久久久久黄片| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 国产精品福利在线免费观看| 免费观看性生交大片5| 欧美另类亚洲清纯唯美| 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 欧美日韩国产亚洲二区| 在线观看一区二区三区| videossex国产| 男女那种视频在线观看| 免费观看在线日韩| 床上黄色一级片| 最近的中文字幕免费完整| 尾随美女入室| 看非洲黑人一级黄片| 午夜福利在线观看吧| 国产日韩欧美在线精品| 久久精品人妻少妇| 国产黄片视频在线免费观看| 久久久久久久久久久丰满| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 国产成人午夜福利电影在线观看| 亚洲成人精品中文字幕电影| 日本爱情动作片www.在线观看| 午夜精品在线福利| 国产伦精品一区二区三区四那| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 高清毛片免费看| 亚洲欧美精品自产自拍| 麻豆国产97在线/欧美| 精品一区二区三区视频在线| 成人二区视频| 久久久久久大精品| 国产亚洲91精品色在线| 高清av免费在线| 午夜福利视频1000在线观看| 国产真实乱freesex| 午夜久久久久精精品| 看黄色毛片网站| 久久久久国产网址| 女人十人毛片免费观看3o分钟| 我要搜黄色片| 午夜激情欧美在线| 啦啦啦观看免费观看视频高清| 欧美激情国产日韩精品一区| 午夜福利高清视频| 亚洲一级一片aⅴ在线观看| 69人妻影院| 韩国av在线不卡| av黄色大香蕉| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费| 日本黄大片高清| 99久久精品热视频| 亚洲av电影在线观看一区二区三区 | 精品久久久久久成人av| 日日摸夜夜添夜夜添av毛片| 国内少妇人妻偷人精品xxx网站| 久久久久久久久大av| 免费搜索国产男女视频| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆 | 成人午夜高清在线视频| 成人综合一区亚洲| 精品人妻视频免费看| 成人无遮挡网站| 久久久欧美国产精品| 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 一个人看视频在线观看www免费| 国产精品一及| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx在线观看| 精品久久久久久成人av| 午夜福利高清视频| 一个人观看的视频www高清免费观看| 大又大粗又爽又黄少妇毛片口| 欧美日韩在线观看h| 亚洲综合精品二区| 在线播放无遮挡| 免费av毛片视频| 最近的中文字幕免费完整| 三级经典国产精品| 国产精品日韩av在线免费观看| 女的被弄到高潮叫床怎么办| 人妻夜夜爽99麻豆av| 日本av手机在线免费观看| 国产在视频线在精品| 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 国产日韩欧美在线精品| 婷婷色综合大香蕉| av女优亚洲男人天堂| 岛国毛片在线播放| 久久久精品94久久精品| 99久久人妻综合| 中文字幕av成人在线电影| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 精华霜和精华液先用哪个| 1024手机看黄色片| 岛国毛片在线播放| 久久久精品94久久精品| 国产又黄又爽又无遮挡在线| 日本色播在线视频| 亚洲国产色片| 亚洲成色77777| 久久精品综合一区二区三区| 亚洲国产精品久久男人天堂| 日日啪夜夜撸| 午夜精品在线福利| 白带黄色成豆腐渣| 国产亚洲最大av| 色尼玛亚洲综合影院| 日韩av在线免费看完整版不卡| 久久午夜福利片| 一级毛片aaaaaa免费看小| 国产午夜福利久久久久久| 国产成人精品婷婷| 最近的中文字幕免费完整| 国产免费男女视频| 日韩欧美三级三区| 国产乱来视频区| 成人亚洲欧美一区二区av| 国产精品人妻久久久影院| 日韩一区二区三区影片| 国产伦一二天堂av在线观看| 亚洲美女视频黄频| 人妻少妇偷人精品九色| 伦精品一区二区三区| 久久这里只有精品中国| 久久久国产成人免费| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 搞女人的毛片| 国产精品综合久久久久久久免费| 99九九线精品视频在线观看视频| 色尼玛亚洲综合影院| 91久久精品电影网| 观看美女的网站| 亚洲av电影不卡..在线观看| 国产精品1区2区在线观看.| 国产一区亚洲一区在线观看| 好男人在线观看高清免费视频| 黄色欧美视频在线观看| 精品不卡国产一区二区三区| 热99在线观看视频| 女人十人毛片免费观看3o分钟| 亚洲美女搞黄在线观看| 中文亚洲av片在线观看爽| 色吧在线观看| 亚洲欧美日韩高清专用| 18+在线观看网站| 国产精品福利在线免费观看| 丝袜美腿在线中文| 99久久成人亚洲精品观看| 全区人妻精品视频| 97超视频在线观看视频| 国产美女午夜福利| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 国产精品久久久久久av不卡| 乱码一卡2卡4卡精品| 91午夜精品亚洲一区二区三区| 成人特级av手机在线观看| 美女高潮的动态| 秋霞伦理黄片| 亚洲欧美精品自产自拍| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区乱码不卡18| av在线老鸭窝| 天天躁夜夜躁狠狠久久av| 我要搜黄色片| 天堂影院成人在线观看| 国产高潮美女av| 天美传媒精品一区二区| 成人美女网站在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲乱码一区二区免费版| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩东京热| 男人舔女人下体高潮全视频| 一本久久精品| 久久人妻av系列| 蜜臀久久99精品久久宅男| 亚洲高清免费不卡视频| 秋霞伦理黄片| 欧美bdsm另类| 最后的刺客免费高清国语| 99久久精品一区二区三区| 中文欧美无线码| 久久韩国三级中文字幕| 青春草视频在线免费观看| 亚洲成人精品中文字幕电影| 亚洲国产最新在线播放| 国产精品麻豆人妻色哟哟久久 | 日本-黄色视频高清免费观看| 97在线视频观看| 免费看日本二区| 免费观看在线日韩| 国产亚洲最大av| 内地一区二区视频在线| 插逼视频在线观看| 99在线人妻在线中文字幕| 蜜桃亚洲精品一区二区三区| 日本黄色视频三级网站网址| 91久久精品国产一区二区三区| 久久草成人影院| 永久网站在线| 最近视频中文字幕2019在线8| 亚洲图色成人| 亚洲真实伦在线观看| 午夜福利在线观看吧| 免费av观看视频| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 五月伊人婷婷丁香| 极品教师在线视频| 91av网一区二区| 国产视频内射| 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 午夜福利高清视频| 日韩 亚洲 欧美在线| 一区二区三区高清视频在线| 亚洲国产精品成人久久小说| 中文天堂在线官网| 国产人妻一区二区三区在| 天堂中文最新版在线下载 | 久久久久久久久大av| 99久久人妻综合| 亚洲av成人精品一二三区| 亚洲国产成人一精品久久久| 少妇丰满av| 国产v大片淫在线免费观看| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 亚洲国产精品sss在线观看| 欧美3d第一页| 国产午夜精品久久久久久一区二区三区| 三级毛片av免费| 在线观看av片永久免费下载| 国产精品一区www在线观看| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 1000部很黄的大片| 午夜爱爱视频在线播放| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 汤姆久久久久久久影院中文字幕 | 午夜福利成人在线免费观看| 日韩精品有码人妻一区| 高清毛片免费看| 99久久精品热视频| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久影院| 亚洲在线观看片| 亚洲18禁久久av| 中文字幕久久专区| 久久久久久国产a免费观看| 亚洲av中文字字幕乱码综合| 我要看日韩黄色一级片| 特级一级黄色大片| 99久久人妻综合| 2021天堂中文幕一二区在线观| 国产美女午夜福利| 久久99精品国语久久久| 免费看av在线观看网站| 欧美bdsm另类| 国产av一区在线观看免费| 高清日韩中文字幕在线| 国产免费又黄又爽又色| 久久久精品94久久精品| 国产伦一二天堂av在线观看| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线| 毛片女人毛片| 国产乱人视频| 欧美3d第一页| 国内揄拍国产精品人妻在线| 国产大屁股一区二区在线视频| 爱豆传媒免费全集在线观看| 国产色婷婷99| 亚洲精品国产成人久久av| 国产伦理片在线播放av一区| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 国产亚洲av嫩草精品影院| 午夜福利在线观看免费完整高清在| 精品久久久久久久末码| 国产一级毛片七仙女欲春2| 在线免费十八禁| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 日本与韩国留学比较| 免费看日本二区| 国内揄拍国产精品人妻在线| 久久人妻av系列| 久久精品影院6| a级一级毛片免费在线观看| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 全区人妻精品视频| 国产美女午夜福利| 精品人妻视频免费看| 免费黄网站久久成人精品| 国产成人免费观看mmmm| 欧美97在线视频| 久久久久久大精品| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜爱| 在线观看66精品国产| 免费观看的影片在线观看| 男的添女的下面高潮视频| 久久久久性生活片| 国内揄拍国产精品人妻在线| 成年av动漫网址| 国产精品熟女久久久久浪| 看免费成人av毛片| 乱人视频在线观看| 成人午夜精彩视频在线观看| 亚洲av免费在线观看| 亚洲久久久久久中文字幕| 精品人妻视频免费看| 嘟嘟电影网在线观看| 亚洲国产精品sss在线观看| 最近的中文字幕免费完整| 国产精品一区二区性色av| 久久久久九九精品影院| 欧美不卡视频在线免费观看| 我要搜黄色片| 亚洲成av人片在线播放无| 九色成人免费人妻av| 亚洲在线观看片| av免费在线看不卡| 亚洲不卡免费看| 婷婷色综合大香蕉| 国产v大片淫在线免费观看| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看| 老司机影院毛片| 亚洲国产色片| 美女大奶头视频| 直男gayav资源| 久久精品影院6| 亚洲性久久影院| 亚洲高清免费不卡视频| ponron亚洲| 亚洲精品456在线播放app| 亚洲综合色惰| 人人妻人人看人人澡| 久久6这里有精品| 全区人妻精品视频| 久久久久性生活片| 菩萨蛮人人尽说江南好唐韦庄 | 精品人妻偷拍中文字幕| 免费看日本二区| 高清日韩中文字幕在线| 中文字幕av在线有码专区| 一夜夜www| 岛国毛片在线播放| av视频在线观看入口| 国产成人freesex在线| 中国国产av一级| 欧美高清成人免费视频www| 丰满乱子伦码专区| 成人一区二区视频在线观看| 国产一区二区三区av在线| 午夜爱爱视频在线播放| 美女脱内裤让男人舔精品视频| 日韩强制内射视频| 真实男女啪啪啪动态图| 美女黄网站色视频| 精品人妻一区二区三区麻豆| 免费播放大片免费观看视频在线观看 | 麻豆精品久久久久久蜜桃| 久久欧美精品欧美久久欧美| 国内精品宾馆在线| 亚洲成色77777| 亚洲精品成人久久久久久| 亚洲精品色激情综合| 欧美一级a爱片免费观看看| 亚洲自偷自拍三级| 亚洲天堂国产精品一区在线| 国产精品无大码| 国产黄色视频一区二区在线观看 | 男人的好看免费观看在线视频| 永久网站在线| 久久久久九九精品影院| 国产老妇女一区| 国产精品久久视频播放| 在线观看66精品国产| videossex国产| 精品熟女少妇av免费看| 一个人观看的视频www高清免费观看| 久久精品熟女亚洲av麻豆精品 | 亚洲精品成人久久久久久| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 婷婷色av中文字幕| 精华霜和精华液先用哪个| 中文字幕免费在线视频6| 五月伊人婷婷丁香| 免费看日本二区| 热99在线观看视频| 老女人水多毛片| 男女边吃奶边做爰视频| 亚洲三级黄色毛片| 色综合站精品国产| 国产午夜精品论理片| 日本爱情动作片www.在线观看| 亚洲色图av天堂| videossex国产| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 99视频精品全部免费 在线| 熟女人妻精品中文字幕| 日产精品乱码卡一卡2卡三| 99热6这里只有精品| 中文欧美无线码| 内地一区二区视频在线| 亚洲怡红院男人天堂| 中文在线观看免费www的网站| 男女下面进入的视频免费午夜| videos熟女内射| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| 偷拍熟女少妇极品色| 精品一区二区三区视频在线| 男人舔奶头视频| 日本一二三区视频观看| 国产极品精品免费视频能看的| 插阴视频在线观看视频| 欧美最新免费一区二区三区| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 欧美一区二区精品小视频在线| 最近2019中文字幕mv第一页| 亚洲成人中文字幕在线播放| 真实男女啪啪啪动态图| 狂野欧美激情性xxxx在线观看| 伦理电影大哥的女人| 国产精品嫩草影院av在线观看| 汤姆久久久久久久影院中文字幕 | 91精品伊人久久大香线蕉| 午夜福利在线观看免费完整高清在| 国产美女午夜福利| 日本免费一区二区三区高清不卡| 亚洲一区高清亚洲精品| 亚洲欧美成人综合另类久久久 | 久久精品综合一区二区三区| 少妇熟女aⅴ在线视频| 亚洲四区av| 亚洲成人精品中文字幕电影| 级片在线观看| 国产精品爽爽va在线观看网站| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说 | 亚洲乱码一区二区免费版| 韩国高清视频一区二区三区| 亚洲精品成人久久久久久| 中文在线观看免费www的网站| 亚洲av成人av| 国产在线男女| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 天天躁日日操中文字幕| 日本-黄色视频高清免费观看| 成人av在线播放网站| 国内少妇人妻偷人精品xxx网站| a级毛色黄片| 久久精品久久久久久噜噜老黄 | 精品一区二区免费观看| 国产一区有黄有色的免费视频 | 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 国产一区二区在线av高清观看| 国产成人一区二区在线| 一二三四中文在线观看免费高清| 看免费成人av毛片| 禁无遮挡网站| 蜜臀久久99精品久久宅男| 亚洲久久久久久中文字幕| 精品午夜福利在线看| 中国美白少妇内射xxxbb| 嫩草影院入口| 成人毛片a级毛片在线播放| 成人鲁丝片一二三区免费|