• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground States to the Generalized Nonlinear Schr¨odinger Equations with Bernstein Symbols

    2021-06-11 07:45:44JinmyoungSeokandYounghunHong
    Analysis in Theory and Applications 2021年2期

    Jinmyoung Seokand Younghun Hong

    1 Department of Mathematics,Kyonggi Univeristy,Suwon 16227,Korea

    2 Department of Mathematics,Chung-Ang University,Seoul 06974,Korea

    Abstract. This paper concerns with existence and qualitative properties of ground states to generalized nonlinear Schr¨odinger equations (gNLS) with abstract symbols.Under some structural assumptions on the symbol,we prove a ground state exists and it satisfies several fundamental properties that the ground state to the standard NLS enjoys.Furthermore,by imposing additional assumptions,we construct,in small mass case,a nontrivial radially symmetric solution to gNLS with H1-subcritical nonlinearity,even if the natural energy space does not control the H1-subcritical nonlinearity.

    Key Words: Generalized NLS,solitary waves,variational methods,Bernstein symbols.

    1 Introduction

    We consider the generalized nonlinear Schr¨odinger equation (NLS for abbreviation) of the form

    In this article,we are concerned with the ground state solution to the generalized NLS(1.1). By a ground state,we mean a standing wave solution of the form

    which minimizes the value of the action integral. A rigorous definition of a ground state shall be given in Section 4. As for the standard NLS,i.e.,the caseP(λ)=λ,inserting the standing wave ansatz(1.2)into(1.1),we get the standard stationary NLS

    In this case, the theory of ground states has been almost completed during several decades. A criteria for their existence and nonexistence, depending on the range ofμandp, is established in [1,22,23]. Qualitative properties of ground states, such as positiveness,radial symmetry,monotonicity,and uniqueness have been proved in[4,13,14].

    With a general symbolP,the stationary generalized NLS is given by

    In this paper,we are interested in finding general conditions on the symbolPwhich allow ground states to the generalized NLS (1.4) to have the same kinds of qualitative properties. We propose the following structural assumptions for the symbolP:

    (H1)P:[0,∞)→[0,∞)is continuous on[0,∞)and smooth on(0,∞);

    (H2)Pis a Bernstein function,i.e.,P′is totally monotone(see Section 2 for definition);

    Our first theorem states that by assuming(H1)–(H3),one can construct a ground state to(1.4)that fulfills desired qualitative properties.

    Theorem 1.1(Existence of a ground state).Suppose(H1)–(H3).Let p ∈(1,(d+s)/(d ?s))be given. Then for anyμ>0,the generalizedNLS

    possesses a ground state u ∈HP+μwhich is positive,radially symmetric and monotone decreasing in the radial direction.

    The sign-definiteness of a ground state is naturally expected for the original NLS as a result of Hopf maximum principle enjoyed by second order elliptic PDEs. Here, we show that the minimizing property of a ground state and the strict positiveness of the fundamental solution of the operatorP(?Δ)+μgives the same consequence.

    Theorem 1.2 (Sign-definiteness of a ground state).Suppose(H1)–(H3). Let p ∈(1,(d+s)/(d ?s))be given and u ∈HPμ be a ground state to(1.4).Then u0is either positive everywhere or negative everywhere.

    The radial symmetry of a ground state is usually shown by the moving plain method [13] for standard NLS or by strict Riesz rearrangement inequality [17] for fractional NLS and pseudo-relativistic NLS.These methods do not seem to work without the explicit form ofP. As for uniqueness,a standard argument requires spectral information for the linearized operator at the ground state(see[4]). In[16],Lenzmann showed by a perturbative method that a(radial)ground state to pseudo-relativistic nonlinear Hartree equations (NLH for abbreviation) is unique for the small mass case. In [8], the authors developed,in a similar point of view,some perturbative arguments that show the uniqueness,up to a translation,of a(possibly non-radial)ground state to higher-order NLH.In the same spirit,we are able to show the symmetry and uniqueness of a ground state under more restrictive assumptions onPandpwhenμis sufficiently small. More precisely,we require that

    We note that the choices ofP(0)=0 andP′(0)=1 in(H4)are just for numerical simplicity. Indeed,the assumption(H4)can be relaxed to

    by a simple reformulation of Eq.(1.4).

    Theorem 1.3 (Uniqueness of a ground state).Suppose(H1)–(H4). Let p ∈(1,d/(d ?s))be given and u ∈HPμ be a positive ground state to(1.4). Then there exists μ0> 0such that ifμ∈(0,μ0)then u is unique up to a translation.

    The uniqueness result asserted in Theorem 1.3 is perturbative in nature. Indeed,the smallness of the massμis transferred to the smallness of?>0 in the equation plays an indispensable role in the proof.

    Theorem 1.4(Existence of a radial solution forH1subcritical range ofp).Suppose(H1)–(H4). For any p ∈(1,(d+2)/(d ?2))and any q>d/s, there exists μ0> 0such that ifμ∈(0,μ0)then there exists a radially symmetric nontrivial solution u ∈Ws,q(Rd)to(1.4).

    The rest of this paper is organized as follows.In Section 2,we introduce the concept of Bernstein functions and the properties of Fourier multiplier operators made by Bernstein symbols. In Section 3, we construct a nontrivial radial solution to (1.4) for small massμ>0 by using perturbation argument. Section 4 is devoted to the study of existence and qualitative properties on ground states to(1.4).

    2 Preliminaries

    2.1 Bernstein functions

    A continuous functionf: [0,∞)→[0,∞)is said to betotally monotoneif it is smooth on(0,∞),and

    for all nonnegative integernandλ> 0, wheref(n)is then-th derivative off. Totally monotone functions are an important class of functions in many areas of analysis. We refer the book[21]for a comprehensive overview. As for totally monotone functions,an important theorem is Bernstein’s theorem. It asserts that a totally monotone function is the Laplace transform of a Borel measure.

    Theorem 2.1(Bernstein’s theorem[2]).If f:[0,∞)→[0,∞)is totally monotone,then there exists a non-negative Borel measureμon[0,∞)such that

    From now on,we assume thatf: [0,∞)→[0,∞)andf′is totally monotone. Such a function is called aBernstein function. Note that the symbols(λ+m2)s ?m2s,0

    This function space is equipped with the inner product

    First,we prove that the symmetric decreasing rearrangement reduces the norm.

    Proposition 2.1 (P′olya-Szeg¨o inequality).Suppose that f: [0,∞)→[0,∞)is a Bernstein function. Then,for any non-negative function u ∈Hf(Rd;R),we have

    where u?is the symmetric decreasing rearrangement of u.

    Proof.We claim that iffis a Bernstein function,thene?f(λ)is totally monotone. For the claim,it suffices to show that then-th derivative ofe?f(λ)is of the form(?1)ne?f(λ)gn(λ),wheregnis a(non-negative)totally monotone function. Whenn=0,it is obviously true withg0= 1. Suppose that the claim holds whenn=k. Then,the next order derivative ofe?f(λ)is(?1)k+1e?f(λ)gk+1(λ),where

    By functional calculus,we write

    Note that by the claim and Bernstein’s theorem,for eachs ≥0,there exists a non-negative Borel measureμssuch that Hence, insertingλ=?Δ, we see that the operatore?s f(?Δ)is the convolution of the radially symmetric,non-negative and decreasing function

    Thus we complete the proof.

    Next,we prove the symmetry and the positivity of the fundamental solution.

    Proposition 2.2(Positivity of the fundamental solution).If f: [0,∞)→[0,∞)is a Bernstein function, then the fundamental solutionΦ = Φf for the differential operator f(?Δ)is radially symmetric,strictly positive and decreasing.Proof.It follows from

    (2.1)and the heat kernel.

    We also show that a real-valued function inHfcan be orthogonally decomposed into two functions having different signs.

    Proposition 2.3 (Orthogonal decomposition).Suppose that f: [0,∞)→[0,∞)is a Bernstein function. Then, for any u ∈ Hf(Rd;R), there exist u± ∈ Hf(Rd;R)such that u=u+?u?,u± ≥0a.e. and〈u+,u?〉Hf(Rd;R)=0.

    Proof.LetKbe the set of non-negative functions inHf(Rd;R),which is a closed convex non-empty cone inHf(Rd;R). Then, by Theorem 3.4 in [12] (see [19] for the original work),there exists a unique decompositionu=u1+u2,withu1∈Kandu2∈K?,such that〈u1,u2〉Hf(Rd;R)=0,whereK?is the dual cone ofKdefined by

    It remains to show that everyw ∈K?is non-positive. Indeed,ifu ∈C∞c(Rd;R)is nonnegative,then by Proposition 2.2,so is Φ?u. Therefore,for anyw ∈K?,we have

    However,sinceuis arbitrary,this proves thatwis non-positive.

    2.2 Assumptions on the symbol P and its properties

    Here we recall the structural assumptions for the symbolP:

    (H1)P:[0,∞)→[0,∞)is continuous on[0,∞)and smooth on(0,∞);

    (H2)Pis a Bernstein function,i.e.,P′is totally monotone;

    (H4)P(0)=0,P′(0)=1 andP′′(0)exists.

    The advantage of assuming (H2) is to provide a nice integral representation of the symbol from which several important properties in our analysis are deduced.

    Lemma 2.1(Integral representation of the symbol).Suppose that the symbol P:[0,∞)→Rsatisfies(H2). Then,there exists a unique measureμon[0,∞)such that

    As a consequence,if we further assume(H4),then the zeroth and the first moments of the measure is finite and

    Proof.By the fundamental theorem of calculus,we have

    By(H2),it follows from Bernstein’s theorem for complete monotone functions[21,Theorem 1.4]that

    for some unique measureμon[0,∞). Therefore,inserting the integral formula forP′(λ)and then integrating in?,we obtain(2.2).

    By(H2),the symbolPis sub-linear,and differentiation reduces the degree of the symbol.

    Lemma 2.2(Properties of the symbol).Suppose that P:[0,∞)→Rsatisfies(H2).

    (i) For all λ1,λ2≥0,we have P(λ1+λ2)≤P(λ1)+P(λ2).

    (ii) For any integer k ≥0and λ ≥0,we have|P(k)(λ)|λ?kP(λ).

    Proof.(i)By(2.2),we have

    (ii)Differentiating(2.2)ktimes,we write

    and then apply the elementary inequality

    Thus we complete the proof.

    3 Construction of a radial solution to the generalized NLS in H1 subcritical range of p

    This section is devoted to prove Theorem 1.4. Consider a one-parameter family of nonlinear elliptic equations

    whereP?(λ) =P(?λ)/λ. IfP′(0) exists, Eq. (3.1) formally converges to the nonlinear elliptic equation

    We remark that Eq.(3.1)is possibly supercritical,since the differential operator may have a lower order than the Laplacian(see Lemma 2.2(i)).

    In this section, we impose the hypotheses (H1)–(H4) on the symbolPto establish existence of a non-trivial solution to (3.1) by the contraction mapping argument in [6]provided that?is sufficiently small.

    The following two lemmas will be employed in the contraction mapping argument.The first lemma asserts a certain coercivity of the Fourier multiplierP?(?Δ).

    Lemma 3.1(Coercivity).Suppose that(H1)–(H3)hold for some s ∈(0,2]. Letμ> 0. Then,for any1

    where‖·‖L(Lq;Ws,q)denotes the standard operator norm from Lq to Ws,q.

    Proof.By the H¨ormander-Mikhlin theorem,it suffices to show that for all integerk ≥0,

    withj1+···jm=k. We prove the claim by induction. The zeroth step is trivial. If the claim is true for thek-th step, then the (k+1)-th step follows, because when the derivative hits one of the fractions,it generates fractions of the same kind. Precisely,we have

    The second lemma claims the convergenceP?(?Δ)→?Δ in the norm resolvent sense.

    Lemma 3.2(Norm resolvent convergence ofP?).Suppose that(H1)–(H4)hold for some s ∈(0,2]. Letμ>0. Then,for any1

    Proof.By the H¨ormander-Mikhlin theorem again,it suffices to show that

    and by(3.4),we have

    It is obvious that

    and we have shown that

    (see(3.4)). Thus,it remains to consider the last factor(λ ?P?(λ)). Indeed,differentiating(2.2)and using(2.3),one can show that

    Therefore,collecting all,we complete the proof of(3.7).

    3.1 Construction of a non-trivial solution

    Now,we seek for a solution of the form near the ground state to the limit equation. Note that Theorem 3.1 below obviously includes Theorem 1.4.

    Theorem 3.1(Existence and local uniqueness of a non-trivial solution).Suppose that(H1)–(H4)for some s ∈(0,2]. Assuming(3.3),let u0be the unique radially symmetric solution to the limit equation(3.2). Then,there exists small ?0>0such that Eq.(3.1)has a non-trivial radially symmetric solution u?∈Ws,q for all r ≥2. Moreover, u?is a unique radial solution in the neighborhood of u0with respect to the norm‖·‖Ws,q.

    We insertu?=u0+w?,assuming that the differencew?is small. Then,reorganizing in the linearized form,the equation forw?is derived as

    We claim that the linearized operator on the left hand side is invertible.

    Lemma 3.3(Invertibility of the linearized operator).Suppose that(H1)–(H4)hold for some s ∈(0,2]. Then,for any q ∈[2,∞),there exists small ?0> 0such that if0

    Proof.We write

    where

    Therefore,

    is invertible onLqr, and its inverse is uniformly bounded. Therefore, inverting(3.9)and applying Lemma 3.1,we complete the proof.

    We aim to find a solution to (3.10) by a contraction mapping argument. The following elementary inequality is helpful to handle the nonlinearity in the equation.

    Lemma 3.4.If a>0and p>1,then

    Proof.By the fundamental theorem of calculus,

    If 1

    we obtain the desired bound. Ifp> 2, we apply the fundamental theorem of calculus again to get

    Therefore, there exists small?0> 0 (depending on the functionu0) such that for?∈(0,?0],

    while ifp>2,

    Collecting all, we conclude that Φ is contractive onBδ(0). Therefore, Eq. (3.10) (consequently,(3.1))has a unique solution inBδ(0).

    4 Ground state for the generalized lower-order NLS

    In this section we prove Theorems 1.1–1.3. Throughout this section,μdenotes a positive constant.

    4.1 Variational settings

    For a symbolPsatisfying(H1)–(H3),we consider the Hilbert spaceHP+μ=HP+μ(Rd;R).We note thatP+μis a Bernstein function because so isP. By(P2)and Sobolev embedding,one has a natural embedding

    Then the functionalIgiven by

    is well-defined andC1onHP+μ. It is clear that (1.4) is the Euler-Lagrange equation of(4.1).

    We sayu0∈HP+μis a ground state to(1.4)ifu0is a critical point ofIandI(u0)≤I(v)for any nontrivial critical pointv ∈HP+μofI.

    4.2 Existence of a ground state

    In this subsection,we construct a ground state for the generalized NLS,which is positive,radially symmetric and monotone decreasing up to translation. We shall be done by establishing existence of a minimizer for the variational problem

    Such a minimizer is of course a ground state for the generalized NLS,since every critical point ofIsatisfies the constraint.

    The following lemma is trivial, but we write it as a lemma, because it will be used frequently.

    Lemma 4.1.Suppose that u is admissible for the variational problem(4.2),i.e.,u/=0and

    We assume that

    Then,there exists t ∈(0,1]such that t?u is admissible and

    If we further assume that either the inequality(4.3a)or(4.3b)holds strictly,then

    Proof.Since

    there existst ∈(0,1]such thatt?uis admissible,i.e.,

    Therefore,by(4.3a),it follows that

    If either(4.3a)or(4.3b)holds strictly,thent<1 andI(t?u)

    Proof of Theorem1.1.By the constraint,

    for admissibleu. Let{un}∞n=1?HP+μbe a minimizing sequence. For eachn, applying Proposition 2.3, we writeun=un,+?un,?such thatun,± ∈HP+μ,u± ≥0 and〈un,+,un,?〉HP+μ= 0. We define a new sequence{?un}∞n=1by ?un=un,++un,?≥|un|.Then,we have

    Thus,it follows from Lemma 4.1 that there exists{tn}∞n=1?(0,1]such that{tn?un}∞n=1is also a minimizing sequence. Replacingunbytn?un,we assume thatunis nonnegative.

    Letu?n, wheref?is the symmetric decreasing rearrangements off ≥0. Then, by P′olya-Szeg¨o inequality(Proposition 2.1)and the measure preserving property of the rearrangement,

    Hence,by Lemma 4.1 again,we can find a sequence{tn}∞n=1?(0,1]such that{tnu?n}∞n=1is also a minimizing sequence. Replacingunbytnu?n,we assume thatunis radially symmetric and monotone decreasing.

    We now have a minimizing sequence{un}∞n=1of nonnegative radially symmetric functions monotone decreasing in the radial direction. Hence,passing to a subsequence,{un}weakly converges to someuinHP+μ,which implies that

    and{un}converges toua.e. This shows thatuis also nonnegative radial symmetric function monotone decreasing in radial direction.

    This implies a positive lower bound of‖un‖HP+μ, which makes a contradiction. Thus,choosing appropriatet ∈(0,1]by Lemma 4.1 as above,we can maketuadmissible,and

    Therefore,we conclude thattuis a minimizer.

    We once more redefiningtuasuso thatuis a nonnegative ground state to(1.4)which is radially symmetric and decreasing in radial direction. It remains to show thatuis strictly positive everywhere. Let ΦP+μbe the fundamental solution of the differential operatorP(?Δ)+μ. By Proposition 2.2,it is strictly positive. Since the ground stateuis represented by

    we see thatuis strictly positive. This completes the proof.

    4.3 Sign-definiteness of a ground state

    This subsection is devoted to prove Theorem 1.2,the sign-definiteness of a ground state to(1.4).

    Proof of Theorem1.2.By Proposition 2.3,there are non-negativeu± ∈HP+μsuch thatu=u+?u?,〈u+,u?〉HP+μ= 0. We observe thatu+(x)u?(x) = 0 for allx ∈Rd. In other words,u+andu?have disjoint supports,

    Indeed,if(4.4)does not hold,the function ?u=u++u?obeys‖?u‖2HP+μ=‖u‖2HP+μand

    where the inequality holds strictly due to cross terms. Thus, it follows from Lemma 4.1 that there existst ∈(0,1]such thattuis admissible andI(tu)

    Next,we claim that

    To prove the claim,we note that by(4.4),the equality holds in(4.5).As a consequence,the function ?udefined previously is also a minimizer, so it is a solution to (1.4). Moreover,?u=|u|. For contradiction, we assume thatu+/= 0 andu?/= 0. Observe from the orthogonality ofu+andu?that

    Then either

    The strict inequality is due to the assumption thatu?/= 0. Sinceuis a minimizer, this makes a contradiction and the claim is proved. Finally, we have already seen in the proof of Theorem 1.1 that a nonnegative (nonpositive) minimizer is positive (negative)everywhere since the fundamental solution ΦP+μofP+μis strictly positive. This ends the proof.

    4.4 Uniqueness of a ground state

    Here, we prove Theorem 1.3. Throughout this subsection, we assume(H1)–(H4)on the symbolPhold. We fix arbitrarily chosenp ∈(1,d/(d ?s))and denote byu0the unique radial positive ground state to the original NLS,

    As mentioned in Section 3,the generalized NLS

    is equivalently transformed to

    Lemma 4.2 (Convergence).Let v?∈HP?+1be a positive ground state to(4.9). Then there exists{a?}?Rd such that

    Proof.The lemma is a natural consequence of energy minimality of the ground statesv?to(4.9). We refer to Proposition 2.3 in[8],with which their proof follows the exactly same lines. We omit the proof for avoiding the paper too lengthy.

    Lemma 4.3 (Nondegeneracy).Let {v?} ?HP?+1be a family positive ground state to(4.9)such that{v?}converges to u0in HP?+1as ?→0. Define the linearized operator by

    Then there exists a constant β>0independent of small ?>0such that

    for any g ∈HP?+1which is HP?+1orthogonal to ?xiv?for each i=1,···,d.

    Proof.This lemma can be proved in the same spirit with Lemma 3.3 but one should take care on the change of function spaces from the radial function space (Ws,qr →span{?xiv?|i= 1,···,d}⊥). This can be easily done by repeating the proof of Proposition 3.3 in[8]. We omit it.

    Proof of Theorem1.3.Let{v?},{?v?} ?HP?+1be two families of positive radially symmetric ground states to (4.9). By Lemma 4.2, we may assume that both of{v?}and{?v?}converge tou0inHP?+1as?→0 by taking translations if necessary. This means that

    Let{a?}?Rdbe a family of vectors such that

    Then one has

    since

    We redefine ?v?(·?a?)by ?v?so that ?v?is still a ground state, ?v??v?is orthogonal to?xiv?inHP?+1and lim?→0‖v???v?‖HP?+1=0 by definition ofa?.

    Let us definer?= ?v??v?. From Eq.(4.9),one has

    so that by Lemma 4.3,

    It is easy to see from (H3) that there exists a uniform constantC> 0 independent of?∈(0,1)such that

    Then we invoke Lemma 3.4 and H¨older inequality to obtain

    Combining this with(4.16)and using the fact that lim?→0‖r?‖HP?+1=0,we getr?=0 for sufficiently small?>0. This shows ?v?=v?and ends the proof.

    Acknowledgements

    This research of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(NRF-2020R1A2C4002615). This research of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2020R1C1C1A01006415)

    日韩欧美三级三区| 黄色女人牲交| 波多野结衣巨乳人妻| 国产av麻豆久久久久久久| 精品久久久久久久久久久久久| www.精华液| 精品一区二区三区四区五区乱码| 日韩有码中文字幕| 亚洲九九香蕉| 亚洲美女黄片视频| 亚洲国产精品合色在线| 欧美中文综合在线视频| 欧美日韩福利视频一区二区| 国产精品 欧美亚洲| 亚洲国产欧美人成| 午夜a级毛片| 国产爱豆传媒在线观看 | 久久人妻av系列| 在线观看免费午夜福利视频| 亚洲欧美一区二区三区黑人| 亚洲精品色激情综合| 亚洲国产精品合色在线| 女人被狂操c到高潮| 一边摸一边抽搐一进一小说| www.999成人在线观看| 人人妻,人人澡人人爽秒播| www国产在线视频色| 一进一出好大好爽视频| 脱女人内裤的视频| 搡老妇女老女人老熟妇| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线美女| 午夜老司机福利片| 日韩欧美精品v在线| 人妻久久中文字幕网| 丰满的人妻完整版| 国产成人av激情在线播放| 91成年电影在线观看| 超碰成人久久| 免费看十八禁软件| 黄色 视频免费看| 免费在线观看成人毛片| 国产区一区二久久| 国产成人aa在线观看| 欧美成人性av电影在线观看| 国产精品一区二区三区四区久久| 亚洲成人精品中文字幕电影| 国产真人三级小视频在线观看| 亚洲国产高清在线一区二区三| 精品久久久久久久久久免费视频| 国产69精品久久久久777片 | 亚洲av电影在线进入| 一二三四社区在线视频社区8| 亚洲九九香蕉| 欧美日韩中文字幕国产精品一区二区三区| 九色成人免费人妻av| 久久99热这里只有精品18| 亚洲精品国产精品久久久不卡| 日韩三级视频一区二区三区| 亚洲av熟女| 欧美成狂野欧美在线观看| 国产熟女午夜一区二区三区| 亚洲精品色激情综合| 美女免费视频网站| 午夜福利高清视频| 国产精品免费视频内射| 久久久久久久久免费视频了| 国产成人aa在线观看| 日韩av在线大香蕉| 九九热线精品视视频播放| 国产一区二区在线av高清观看| 舔av片在线| 香蕉丝袜av| 国产精品久久久久久亚洲av鲁大| 一级毛片高清免费大全| 黄色片一级片一级黄色片| 成在线人永久免费视频| 好男人电影高清在线观看| 国产av麻豆久久久久久久| 国产麻豆成人av免费视频| 哪里可以看免费的av片| 国内少妇人妻偷人精品xxx网站 | 啦啦啦韩国在线观看视频| 啦啦啦韩国在线观看视频| 高潮久久久久久久久久久不卡| 午夜精品一区二区三区免费看| 黄色视频,在线免费观看| 国产成+人综合+亚洲专区| 亚洲黑人精品在线| 国产成人精品久久二区二区免费| 国产黄a三级三级三级人| 啦啦啦观看免费观看视频高清| 欧美一区二区国产精品久久精品 | 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 天天一区二区日本电影三级| 人人妻人人看人人澡| e午夜精品久久久久久久| 大型av网站在线播放| 黄色女人牲交| 久热爱精品视频在线9| 精品国产乱子伦一区二区三区| 亚洲欧美日韩高清专用| 亚洲九九香蕉| 国产精品免费一区二区三区在线| 久久久久久九九精品二区国产 | avwww免费| 一区二区三区激情视频| 国产精品免费视频内射| 亚洲成av人片在线播放无| 精品第一国产精品| www.精华液| 成熟少妇高潮喷水视频| 国内精品久久久久久久电影| 好男人在线观看高清免费视频| www.www免费av| 老鸭窝网址在线观看| 最近最新中文字幕大全免费视频| 黄色视频,在线免费观看| 亚洲av日韩精品久久久久久密| 久久精品影院6| 亚洲精品色激情综合| 岛国视频午夜一区免费看| 国产精品一区二区三区四区久久| 色综合亚洲欧美另类图片| 中文字幕人成人乱码亚洲影| 国产亚洲精品第一综合不卡| 精品人妻1区二区| 成人国产一区最新在线观看| 老司机靠b影院| 在线观看www视频免费| 熟女电影av网| 一级黄色大片毛片| 成人国产综合亚洲| 欧美精品啪啪一区二区三区| 无限看片的www在线观看| 久久精品亚洲精品国产色婷小说| 91九色精品人成在线观看| 色综合婷婷激情| 色综合婷婷激情| 黑人操中国人逼视频| 欧美高清成人免费视频www| 人人妻人人看人人澡| 欧美高清成人免费视频www| 久久久久久久久中文| 天堂av国产一区二区熟女人妻 | 国内精品一区二区在线观看| www日本在线高清视频| 在线十欧美十亚洲十日本专区| 亚洲专区字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 日本熟妇午夜| 日韩精品中文字幕看吧| 亚洲熟女毛片儿| 国产精品久久久久久亚洲av鲁大| 亚洲 国产 在线| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 叶爱在线成人免费视频播放| 一级作爱视频免费观看| 天天一区二区日本电影三级| 9191精品国产免费久久| АⅤ资源中文在线天堂| 免费无遮挡裸体视频| 久久精品亚洲精品国产色婷小说| 亚洲av片天天在线观看| 91麻豆av在线| 亚洲性夜色夜夜综合| 麻豆一二三区av精品| 精品国产乱子伦一区二区三区| 九色国产91popny在线| 男女床上黄色一级片免费看| 欧美黑人精品巨大| 国产精品av视频在线免费观看| 最好的美女福利视频网| av中文乱码字幕在线| 久热爱精品视频在线9| 国产精品98久久久久久宅男小说| 国产精品一区二区精品视频观看| 激情在线观看视频在线高清| 黄色毛片三级朝国网站| 最近最新中文字幕大全电影3| 久久人妻av系列| 脱女人内裤的视频| 看免费av毛片| 好看av亚洲va欧美ⅴa在| 天天一区二区日本电影三级| 三级男女做爰猛烈吃奶摸视频| 国产黄片美女视频| 亚洲中文字幕日韩| 国产高清视频在线播放一区| 18禁观看日本| 久久精品91蜜桃| 久久婷婷成人综合色麻豆| ponron亚洲| 国产精品影院久久| 少妇人妻一区二区三区视频| 99re在线观看精品视频| 国产一区在线观看成人免费| 男女做爰动态图高潮gif福利片| 少妇人妻一区二区三区视频| 亚洲精品色激情综合| 久久中文看片网| www日本黄色视频网| 他把我摸到了高潮在线观看| av有码第一页| 午夜福利免费观看在线| 91成年电影在线观看| 少妇裸体淫交视频免费看高清 | 少妇熟女aⅴ在线视频| 天天一区二区日本电影三级| 熟妇人妻久久中文字幕3abv| 色老头精品视频在线观看| 久热爱精品视频在线9| 欧美日韩黄片免| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 日韩免费av在线播放| 久久精品人妻少妇| 婷婷精品国产亚洲av在线| 亚洲乱码一区二区免费版| 亚洲精品在线美女| 精品国产亚洲在线| 夜夜看夜夜爽夜夜摸| 成人特级黄色片久久久久久久| 久久香蕉精品热| 亚洲 国产 在线| 男女午夜视频在线观看| 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| 国产又色又爽无遮挡免费看| 一进一出好大好爽视频| 久久精品综合一区二区三区| 欧美性猛交黑人性爽| 一夜夜www| 久久久久国内视频| 国产麻豆成人av免费视频| 亚洲avbb在线观看| 看免费av毛片| 国产免费男女视频| 老司机在亚洲福利影院| 中文亚洲av片在线观看爽| 国产一区二区三区视频了| 无遮挡黄片免费观看| 在线永久观看黄色视频| 天堂√8在线中文| 久久久精品欧美日韩精品| 国产欧美日韩精品亚洲av| 亚洲九九香蕉| av超薄肉色丝袜交足视频| 18禁裸乳无遮挡免费网站照片| 欧美成人性av电影在线观看| a级毛片在线看网站| 国产精品美女特级片免费视频播放器 | 两性夫妻黄色片| 一进一出抽搐动态| 国产久久久一区二区三区| 黄色a级毛片大全视频| 黑人欧美特级aaaaaa片| 亚洲午夜理论影院| 老司机在亚洲福利影院| 91字幕亚洲| 久久亚洲精品不卡| 免费高清视频大片| 性色av乱码一区二区三区2| 国产成人影院久久av| 亚洲人成伊人成综合网2020| 老司机午夜福利在线观看视频| 亚洲国产精品久久男人天堂| www.精华液| 国产在线精品亚洲第一网站| 国产伦一二天堂av在线观看| 国产一区二区三区视频了| 国产在线观看jvid| 女生性感内裤真人,穿戴方法视频| 亚洲欧美一区二区三区黑人| 久99久视频精品免费| 在线播放国产精品三级| 亚洲欧美日韩高清在线视频| 香蕉久久夜色| 精品欧美一区二区三区在线| 蜜桃久久精品国产亚洲av| 精品国产乱子伦一区二区三区| 成人永久免费在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 婷婷精品国产亚洲av在线| 国产精品,欧美在线| 亚洲狠狠婷婷综合久久图片| 18美女黄网站色大片免费观看| 久久午夜亚洲精品久久| 成年免费大片在线观看| 真人做人爱边吃奶动态| 一二三四在线观看免费中文在| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品亚洲美女久久久| 欧美日韩精品网址| 亚洲精品中文字幕在线视频| 色在线成人网| 美女高潮喷水抽搐中文字幕| 亚洲欧美一区二区三区黑人| 国产精华一区二区三区| 久久这里只有精品19| 午夜成年电影在线免费观看| 黑人操中国人逼视频| av免费在线观看网站| 欧美+亚洲+日韩+国产| 一进一出好大好爽视频| 一个人免费在线观看电影 | 黄色视频不卡| 黄频高清免费视频| 国产成人av教育| 午夜精品一区二区三区免费看| 激情在线观看视频在线高清| 不卡一级毛片| www.999成人在线观看| 桃色一区二区三区在线观看| 国产免费男女视频| 亚洲精品久久成人aⅴ小说| 久久性视频一级片| 精品国内亚洲2022精品成人| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 人妻丰满熟妇av一区二区三区| 美女大奶头视频| 制服诱惑二区| 亚洲av中文字字幕乱码综合| 国产爱豆传媒在线观看 | 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 午夜精品在线福利| 国产免费男女视频| 国产精品久久久久久精品电影| 一个人免费在线观看电影 | 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 男女床上黄色一级片免费看| 国产单亲对白刺激| 精品少妇一区二区三区视频日本电影| 亚洲精品美女久久av网站| 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 1024香蕉在线观看| 欧美色视频一区免费| 黑人欧美特级aaaaaa片| 大型黄色视频在线免费观看| 69av精品久久久久久| 淫妇啪啪啪对白视频| 精品人妻1区二区| 国产亚洲精品久久久久5区| 午夜福利成人在线免费观看| 国产精品免费视频内射| 琪琪午夜伦伦电影理论片6080| 欧美另类亚洲清纯唯美| 不卡一级毛片| 国产一区二区激情短视频| 操出白浆在线播放| 色综合婷婷激情| 久久精品国产亚洲av香蕉五月| 精品欧美国产一区二区三| 国产亚洲精品av在线| 亚洲片人在线观看| 免费搜索国产男女视频| 国产在线精品亚洲第一网站| 欧美又色又爽又黄视频| 两个人视频免费观看高清| 九色国产91popny在线| 成人国产一区最新在线观看| 久久中文字幕人妻熟女| 日韩欧美在线二视频| 亚洲成人免费电影在线观看| 两个人免费观看高清视频| 免费观看人在逋| 特大巨黑吊av在线直播| 中文字幕av在线有码专区| 天天躁夜夜躁狠狠躁躁| 99精品欧美一区二区三区四区| 少妇的丰满在线观看| www日本在线高清视频| ponron亚洲| 亚洲黑人精品在线| 国产1区2区3区精品| 亚洲自拍偷在线| 1024视频免费在线观看| 好看av亚洲va欧美ⅴa在| 久久精品国产清高在天天线| 最新在线观看一区二区三区| 日本黄大片高清| 99久久无色码亚洲精品果冻| 免费在线观看日本一区| 国产真人三级小视频在线观看| 91国产中文字幕| 99久久99久久久精品蜜桃| 国产蜜桃级精品一区二区三区| 真人一进一出gif抽搐免费| 久久 成人 亚洲| 五月伊人婷婷丁香| 国产精品久久视频播放| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 最近在线观看免费完整版| 国产亚洲精品一区二区www| 美女免费视频网站| 给我免费播放毛片高清在线观看| 看片在线看免费视频| 亚洲美女黄片视频| 国产高清有码在线观看视频 | 夜夜躁狠狠躁天天躁| 国产免费男女视频| 他把我摸到了高潮在线观看| 给我免费播放毛片高清在线观看| 怎么达到女性高潮| 亚洲成人精品中文字幕电影| 亚洲成av人片免费观看| 国产亚洲精品一区二区www| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久久久久| 国产真人三级小视频在线观看| aaaaa片日本免费| 亚洲午夜精品一区,二区,三区| 免费高清视频大片| 欧美中文综合在线视频| 亚洲 国产 在线| 亚洲五月婷婷丁香| 超碰成人久久| 天堂√8在线中文| 蜜桃久久精品国产亚洲av| 精品电影一区二区在线| 久久天躁狠狠躁夜夜2o2o| 中文字幕av在线有码专区| 岛国视频午夜一区免费看| 狂野欧美激情性xxxx| 我的老师免费观看完整版| 欧美日韩乱码在线| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区mp4| 99热只有精品国产| 国产麻豆成人av免费视频| 日韩国内少妇激情av| 美女高潮喷水抽搐中文字幕| 日本一二三区视频观看| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 国产精品久久久久久久电影 | 成年女人毛片免费观看观看9| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 日本在线视频免费播放| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 制服人妻中文乱码| 欧美+亚洲+日韩+国产| cao死你这个sao货| 国内精品久久久久精免费| 大型黄色视频在线免费观看| 国产一区二区激情短视频| 亚洲国产欧美网| 欧美精品亚洲一区二区| 精品久久久久久,| 久久久久久久午夜电影| 欧美zozozo另类| e午夜精品久久久久久久| 国内精品久久久久精免费| 国语自产精品视频在线第100页| 男人舔奶头视频| 哪里可以看免费的av片| 嫁个100分男人电影在线观看| 婷婷丁香在线五月| 亚洲午夜理论影院| 一进一出抽搐gif免费好疼| 两个人免费观看高清视频| 性色av乱码一区二区三区2| 热99re8久久精品国产| 黑人欧美特级aaaaaa片| 三级男女做爰猛烈吃奶摸视频| 99re在线观看精品视频| 少妇裸体淫交视频免费看高清 | 99久久综合精品五月天人人| 亚洲中文字幕一区二区三区有码在线看 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲无线在线观看| 亚洲第一电影网av| 日韩欧美国产一区二区入口| 免费搜索国产男女视频| 免费在线观看日本一区| av国产免费在线观看| 欧美人与性动交α欧美精品济南到| 欧美精品啪啪一区二区三区| 一二三四社区在线视频社区8| 一卡2卡三卡四卡精品乱码亚洲| 不卡一级毛片| 国产成人精品久久二区二区91| 看免费av毛片| 在线观看一区二区三区| 亚洲人与动物交配视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩精品久久久久久密| 国产激情久久老熟女| 日韩精品青青久久久久久| 又大又爽又粗| 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 法律面前人人平等表现在哪些方面| 日本免费一区二区三区高清不卡| 一级片免费观看大全| 在线观看舔阴道视频| 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站| 我的老师免费观看完整版| 夜夜爽天天搞| 黑人操中国人逼视频| 免费电影在线观看免费观看| 亚洲一区高清亚洲精品| 我的老师免费观看完整版| 色精品久久人妻99蜜桃| 不卡av一区二区三区| 哪里可以看免费的av片| 正在播放国产对白刺激| 欧美av亚洲av综合av国产av| 国产熟女午夜一区二区三区| 一二三四在线观看免费中文在| 日韩欧美免费精品| 精品久久久久久久久久久久久| 大型黄色视频在线免费观看| 免费看十八禁软件| 欧美日本视频| 免费高清视频大片| 日韩欧美国产在线观看| 啦啦啦免费观看视频1| 无人区码免费观看不卡| 亚洲国产高清在线一区二区三| 最近最新中文字幕大全免费视频| 丁香六月欧美| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 成人av在线播放网站| 亚洲熟女毛片儿| 69av精品久久久久久| 91在线观看av| 久久精品综合一区二区三区| 两个人看的免费小视频| 亚洲片人在线观看| 精品日产1卡2卡| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 999久久久精品免费观看国产| 午夜福利在线观看吧| 欧美激情久久久久久爽电影| 欧美成人性av电影在线观看| netflix在线观看网站| 变态另类丝袜制服| 黑人欧美特级aaaaaa片| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 操出白浆在线播放| 999精品在线视频| 国产精华一区二区三区| 国产精品免费视频内射| 成人午夜高清在线视频| 好看av亚洲va欧美ⅴa在| 亚洲无线在线观看| 成人欧美大片| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 午夜a级毛片| 色综合欧美亚洲国产小说| 国产精品久久久av美女十八| 国产视频内射| 午夜福利在线在线| 日本一区二区免费在线视频| 欧美一区二区精品小视频在线| 国产欧美日韩一区二区精品| 精品一区二区三区视频在线观看免费| 大型av网站在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品九九99| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 精品第一国产精品| 欧美黄色片欧美黄色片| 最新美女视频免费是黄的| 免费av毛片视频| 人妻久久中文字幕网| 成人三级黄色视频| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 搡老岳熟女国产| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 精品欧美一区二区三区在线| 国产又色又爽无遮挡免费看| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 国产成人啪精品午夜网站| 亚洲美女视频黄频| 高清在线国产一区| 91麻豆精品激情在线观看国产| 法律面前人人平等表现在哪些方面| 黄色女人牲交| 成人一区二区视频在线观看| 香蕉丝袜av| 超碰成人久久|