• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground States to the Generalized Nonlinear Schrdinger Equations with Bernstein Symbols

    2021-06-29 02:14:48JinmyoungSeokandYounghunHong
    Analysis in Theory and Applications 2021年2期

    Jinmyoung Seokand Younghun Hong

    1 Department of Mathematics,Kyonggi Univeristy,Suwon 16227,Korea

    2 Department of Mathematics,Chung-Ang University,Seoul 06974,Korea

    Abstract. This paper concerns with existence and qualitative properties of ground states to generalized nonlinear Schr¨odinger equations (gNLS) with abstract symbols.Under some structural assumptions on the symbol,we prove a ground state exists and it satisfies several fundamental properties that the ground state to the standard NLS enjoys.Furthermore,by imposing additional assumptions,we construct,in small mass case,a nontrivial radially symmetric solution to gNLS with H1-subcritical nonlinearity,even if the natural energy space does not control the H1-subcritical nonlinearity.

    Key Words: Generalized NLS,solitary waves,variational methods,Bernstein symbols.

    1 Introduction

    We consider the generalized nonlinear Schr¨odinger equation (NLS for abbreviation) of the form

    In this article,we are concerned with the ground state solution to the generalized NLS(1.1). By a ground state,we mean a standing wave solution of the form

    which minimizes the value of the action integral. A rigorous definition of a ground state shall be given in Section 4. As for the standard NLS,i.e.,the caseP(λ)=λ,inserting the standing wave ansatz(1.2)into(1.1),we get the standard stationary NLS

    In this case, the theory of ground states has been almost completed during several decades. A criteria for their existence and nonexistence, depending on the range ofμandp, is established in [1,22,23]. Qualitative properties of ground states, such as positiveness,radial symmetry,monotonicity,and uniqueness have been proved in[4,13,14].

    With a general symbolP,the stationary generalized NLS is given by

    In this paper,we are interested in finding general conditions on the symbolPwhich allow ground states to the generalized NLS (1.4) to have the same kinds of qualitative properties. We propose the following structural assumptions for the symbolP:

    (H1)P:[0,∞)→[0,∞)is continuous on[0,∞)and smooth on(0,∞);

    (H2)Pis a Bernstein function,i.e.,P′is totally monotone(see Section 2 for definition);

    Our first theorem states that by assuming(H1)–(H3),one can construct a ground state to(1.4)that fulfills desired qualitative properties.

    Theorem 1.1(Existence of a ground state).Suppose(H1)–(H3).Let p ∈(1,(d+s)/(d ?s))be given. Then for anyμ>0,the generalizedNLS

    possesses a ground state u ∈HP+μwhich is positive,radially symmetric and monotone decreasing in the radial direction.

    The sign-definiteness of a ground state is naturally expected for the original NLS as a result of Hopf maximum principle enjoyed by second order elliptic PDEs. Here, we show that the minimizing property of a ground state and the strict positiveness of the fundamental solution of the operatorP(?Δ)+μgives the same consequence.

    Theorem 1.2(Sign-definiteness of a ground state).Suppose(H1)–(H3). Let p ∈(1,(d+s)/(d ?s))be given and u ∈HPμ be a ground state to(1.4).Then u0is either positive everywhere or negative everywhere.

    The radial symmetry of a ground state is usually shown by the moving plain method [13] for standard NLS or by strict Riesz rearrangement inequality [17] for fractional NLS and pseudo-relativistic NLS.These methods do not seem to work without the explicit form ofP. As for uniqueness,a standard argument requires spectral information for the linearized operator at the ground state(see[4]). In[16],Lenzmann showed by a perturbative method that a(radial)ground state to pseudo-relativistic nonlinear Hartree equations (NLH for abbreviation) is unique for the small mass case. In [8], the authors developed,in a similar point of view,some perturbative arguments that show the uniqueness,up to a translation,of a(possibly non-radial)ground state to higher-order NLH.In the same spirit,we are able to show the symmetry and uniqueness of a ground state under more restrictive assumptions onPandpwhenμis sufficiently small. More precisely,we require that

    We note that the choices ofP(0)=0 andP′(0)=1 in(H4)are just for numerical simplicity. Indeed,the assumption(H4)can be relaxed to

    by a simple reformulation of Eq.(1.4).

    Theorem 1.3(Uniqueness of a ground state).Suppose(H1)–(H4). Let p ∈(1,d/(d ?s))be given and u ∈HPμ be a positive ground state to(1.4). Then there exists μ0> 0such that ifμ∈(0,μ0)then u is unique up to a translation.

    The uniqueness result asserted in Theorem 1.3 is perturbative in nature. Indeed,the smallness of the massμis transferred to the smallness of?>0 in the equation plays an indispensable role in the proof.

    Theorem 1.4(Existence of a radial solution forH1subcritical range ofp).Suppose(H1)–(H4). For any p ∈(1,(d+2)/(d ?2))and any q>d/s, there exists μ0> 0such that ifμ∈(0,μ0)then there exists a radially symmetric nontrivial solution u ∈Ws,q(Rd)to(1.4).

    The rest of this paper is organized as follows.In Section 2,we introduce the concept of Bernstein functions and the properties of Fourier multiplier operators made by Bernstein symbols. In Section 3, we construct a nontrivial radial solution to (1.4) for small massμ>0 by using perturbation argument. Section 4 is devoted to the study of existence and qualitative properties on ground states to(1.4).

    2 Preliminaries

    2.1 Bernstein functions

    A continuous functionf: [0,∞)→[0,∞)is said to betotally monotoneif it is smooth on(0,∞),and

    for all nonnegative integernandλ> 0, wheref(n)is then-th derivative off. Totally monotone functions are an important class of functions in many areas of analysis. We refer the book[21]for a comprehensive overview. As for totally monotone functions,an important theorem is Bernstein’s theorem. It asserts that a totally monotone function is the Laplace transform of a Borel measure.

    Theorem 2.1(Bernstein’s theorem[2]).If f:[0,∞)→[0,∞)is totally monotone,then there exists a non-negative Borel measureμon[0,∞)such that

    From now on,we assume thatf: [0,∞)→[0,∞)andf′is totally monotone. Such a function is called aBernstein function. Note that the symbols(λ+m2)s ?m2s,0

    This function space is equipped with the inner product

    First,we prove that the symmetric decreasing rearrangement reduces the norm.

    Proposition 2.1(P′olya-Szeg¨o inequality).Suppose that f: [0,∞)→[0,∞)is a Bernstein function. Then,for any non-negative function u ∈Hf(Rd;R),we have

    where u?is the symmetric decreasing rearrangement of u.

    Proof.We claim that iffis a Bernstein function,thene?f(λ)is totally monotone. For the claim,it suffices to show that then-th derivative ofe?f(λ)is of the form(?1)ne?f(λ)gn(λ),wheregnis a(non-negative)totally monotone function. Whenn=0,it is obviously true withg0= 1. Suppose that the claim holds whenn=k. Then,the next order derivative ofe?f(λ)is(?1)k+1e?f(λ)gk+1(λ),where

    By functional calculus,we write

    Note that by the claim and Bernstein’s theorem,for eachs ≥0,there exists a non-negative Borel measureμssuch that

    Hence, insertingλ=?Δ, we see that the operatore?s f(?Δ)is the convolution of the radially symmetric,non-negative and decreasing function

    Thus we complete the proof.

    Next,we prove the symmetry and the positivity of the fundamental solution.

    Proposition 2.2(Positivity of the fundamental solution).If f: [0,∞)→[0,∞)is a Bernstein function, then the fundamental solutionΦ = Φf for the differential operator f(?Δ)is radially symmetric,strictly positive and decreasing.Proof.It follows from

    (2.1)and the heat kernel.

    We also show that a real-valued function inHfcan be orthogonally decomposed into two functions having different signs.

    Proposition 2.3(Orthogonal decomposition).Suppose that f: [0,∞)→[0,∞)is a Bernstein function. Then, for any u ∈ Hf(Rd;R), there exist u± ∈ Hf(Rd;R)such that u=u+?u?,u± ≥0a.e. and〈u+,u?〉Hf(Rd;R)=0.

    Proof.LetKbe the set of non-negative functions inHf(Rd;R),which is a closed convex non-empty cone inHf(Rd;R). Then, by Theorem 3.4 in [12] (see [19] for the original work),there exists a unique decompositionu=u1+u2,withu1∈Kandu2∈K?,such that〈u1,u2〉Hf(Rd;R)=0,whereK?is the dual cone ofKdefined by

    It remains to show that everyw ∈K?is non-positive. Indeed,ifu ∈C∞c(Rd;R)is nonnegative,then by Proposition 2.2,so is Φ?u. Therefore,for anyw ∈K?,we have

    However,sinceuis arbitrary,this proves thatwis non-positive.

    2.2 Assumptions on the symbol P and its properties

    Here we recall the structural assumptions for the symbolP:

    (H1)P:[0,∞)→[0,∞)is continuous on[0,∞)and smooth on(0,∞);

    (H2)Pis a Bernstein function,i.e.,P′is totally monotone;

    (H4)P(0)=0,P′(0)=1 andP′′(0)exists.

    The advantage of assuming (H2) is to provide a nice integral representation of the symbol from which several important properties in our analysis are deduced.

    Lemma 2.1(Integral representation of the symbol).Suppose that the symbol P:[0,∞)→Rsatisfies(H2). Then,there exists a unique measureμon[0,∞)such that

    As a consequence,if we further assume(H4),then the zeroth and the first moments of the measure is finite and

    Proof.By the fundamental theorem of calculus,we have

    By(H2),it follows from Bernstein’s theorem for complete monotone functions[21,Theorem 1.4]that

    for some unique measureμon[0,∞). Therefore,inserting the integral formula forP′(λ)and then integrating in?,we obtain(2.2).

    By(H2),the symbolPis sub-linear,and differentiation reduces the degree of the symbol.

    Lemma 2.2(Properties of the symbol).Suppose that P:[0,∞)→Rsatisfies(H2).

    (i) For all λ1,λ2≥0,we have P(λ1+λ2)≤P(λ1)+P(λ2).

    (ii) For any integer k ≥0and λ ≥0,we have|P(k)(λ)|λ?kP(λ).

    Proof.(i)By(2.2),we have

    (ii)Differentiating(2.2)ktimes,we write

    and then apply the elementary inequality

    Thus we complete the proof.

    3 Construction of a radial solution to the generalized NLS in H1 subcritical range of p

    This section is devoted to prove Theorem 1.4. Consider a one-parameter family of nonlinear elliptic equations

    whereP?(λ) =P(?λ)/λ. IfP′(0) exists, Eq. (3.1) formally converges to the nonlinear elliptic equation

    We remark that Eq.(3.1)is possibly supercritical,since the differential operator may have a lower order than the Laplacian(see Lemma 2.2(i)).

    In this section, we impose the hypotheses (H1)–(H4) on the symbolPto establish existence of a non-trivial solution to (3.1) by the contraction mapping argument in [6]provided that?is sufficiently small.

    The following two lemmas will be employed in the contraction mapping argument.The first lemma asserts a certain coercivity of the Fourier multiplierP?(?Δ).

    Lemma 3.1(Coercivity).Suppose that(H1)–(H3)hold for some s ∈(0,2]. Letμ> 0. Then,for any1

    where‖·‖L(Lq;Ws,q)denotes the standard operator norm from Lq to Ws,q.

    Proof.By the H¨ormander-Mikhlin theorem,it suffices to show that for all integerk ≥0,

    withj1+···jm=k. We prove the claim by induction. The zeroth step is trivial. If the claim is true for thek-th step, then the (k+1)-th step follows, because when the derivative hits one of the fractions,it generates fractions of the same kind. Precisely,we have

    The second lemma claims the convergenceP?(?Δ)→?Δ in the norm resolvent sense.

    Lemma 3.2(Norm resolvent convergence ofP?).Suppose that(H1)–(H4)hold for some s ∈(0,2]. Letμ>0. Then,for any1

    Proof.By the H¨ormander-Mikhlin theorem again,it suffices to show that

    and by(3.4),we have

    It is obvious that

    and we have shown that

    (see(3.4)). Thus,it remains to consider the last factor(λ ?P?(λ)). Indeed,differentiating(2.2)and using(2.3),one can show that

    Therefore,collecting all,we complete the proof of(3.7).

    3.1 Construction of a non-trivial solution

    Now,we seek for a solution of the form near the ground state to the limit equation. Note that Theorem 3.1 below obviously includes Theorem 1.4.

    Theorem 3.1(Existence and local uniqueness of a non-trivial solution).Suppose that(H1)–(H4)for some s ∈(0,2]. Assuming(3.3),let u0be the unique radially symmetric solution to the limit equation(3.2). Then,there exists small ?0>0such that Eq.(3.1)has a non-trivial radially symmetric solution u?∈Ws,q for all r ≥2. Moreover, u?is a unique radial solution in the neighborhood of u0with respect to the norm‖·‖Ws,q.

    We insertu?=u0+w?,assuming that the differencew?is small. Then,reorganizing in the linearized form,the equation forw?is derived as

    We claim that the linearized operator on the left hand side is invertible.

    Lemma 3.3(Invertibility of the linearized operator).Suppose that(H1)–(H4)hold for some s ∈(0,2]. Then,for any q ∈[2,∞),there exists small ?0> 0such that if0

    Proof.We write

    where

    Therefore,

    is invertible onLqr, and its inverse is uniformly bounded. Therefore, inverting(3.9)and applying Lemma 3.1,we complete the proof.

    We aim to find a solution to (3.10) by a contraction mapping argument. The following elementary inequality is helpful to handle the nonlinearity in the equation.

    Lemma 3.4.If a>0and p>1,then

    Proof.By the fundamental theorem of calculus,

    If 1

    we obtain the desired bound. Ifp> 2, we apply the fundamental theorem of calculus again to get

    Therefore, there exists small?0> 0 (depending on the functionu0) such that for?∈(0,?0],

    while ifp>2,

    Collecting all, we conclude that Φ is contractive onBδ(0). Therefore, Eq. (3.10) (consequently,(3.1))has a unique solution inBδ(0).

    4 Ground state for the generalized lower-order NLS

    In this section we prove Theorems 1.1–1.3. Throughout this section,μdenotes a positive constant.

    4.1 Variational settings

    For a symbolPsatisfying(H1)–(H3),we consider the Hilbert spaceHP+μ=HP+μ(Rd;R).We note thatP+μis a Bernstein function because so isP. By(P2)and Sobolev embedding,one has a natural embedding

    Then the functionalIgiven by

    is well-defined andC1onHP+μ. It is clear that (1.4) is the Euler-Lagrange equation of(4.1).

    We sayu0∈HP+μis a ground state to(1.4)ifu0is a critical point ofIandI(u0)≤I(v)for any nontrivial critical pointv ∈HP+μofI.

    4.2 Existence of a ground state

    In this subsection,we construct a ground state for the generalized NLS,which is positive,radially symmetric and monotone decreasing up to translation. We shall be done by establishing existence of a minimizer for the variational problem

    Such a minimizer is of course a ground state for the generalized NLS,since every critical point ofIsatisfies the constraint.

    The following lemma is trivial, but we write it as a lemma, because it will be used frequently.

    Lemma 4.1.Suppose that u is admissible for the variational problem(4.2),i.e.,u/=0and

    We assume that

    Then,there exists t ∈(0,1]such that t?u is admissible and

    If we further assume that either the inequality(4.3a)or(4.3b)holds strictly,then

    Proof.Since

    there existst ∈(0,1]such thatt?uis admissible,i.e.,

    Therefore,by(4.3a),it follows that

    If either(4.3a)or(4.3b)holds strictly,thent<1 andI(t?u)

    Proof of Theorem1.1.By the constraint,

    for admissibleu. Let{un}∞n=1?HP+μbe a minimizing sequence. For eachn, applying Proposition 2.3, we writeun=un,+?un,?such thatun,± ∈HP+μ,u± ≥0 and〈un,+,un,?〉HP+μ= 0. We define a new sequence{?un}∞n=1by ?un=un,++un,?≥|un|.Then,we have

    Thus,it follows from Lemma 4.1 that there exists{tn}∞n=1?(0,1]such that{tn?un}∞n=1is also a minimizing sequence. Replacingunbytn?un,we assume thatunis nonnegative.

    Letu?n, wheref?is the symmetric decreasing rearrangements off ≥0. Then, by P′olya-Szeg¨o inequality(Proposition 2.1)and the measure preserving property of the rearrangement,

    Hence,by Lemma 4.1 again,we can find a sequence{tn}∞n=1?(0,1]such that{tnu?n}∞n=1is also a minimizing sequence. Replacingunbytnu?n,we assume thatunis radially symmetric and monotone decreasing.

    We now have a minimizing sequence{un}∞n=1of nonnegative radially symmetric functions monotone decreasing in the radial direction. Hence,passing to a subsequence,{un}weakly converges to someuinHP+μ,which implies that

    and{un}converges toua.e. This shows thatuis also nonnegative radial symmetric function monotone decreasing in radial direction.

    This implies a positive lower bound of‖un‖HP+μ, which makes a contradiction. Thus,choosing appropriatet ∈(0,1]by Lemma 4.1 as above,we can maketuadmissible,and

    Therefore,we conclude thattuis a minimizer.

    We once more redefiningtuasuso thatuis a nonnegative ground state to(1.4)which is radially symmetric and decreasing in radial direction. It remains to show thatuis strictly positive everywhere. Let ΦP+μbe the fundamental solution of the differential operatorP(?Δ)+μ. By Proposition 2.2,it is strictly positive. Since the ground stateuis represented by

    we see thatuis strictly positive. This completes the proof.

    4.3 Sign-definiteness of a ground state

    This subsection is devoted to prove Theorem 1.2,the sign-definiteness of a ground state to(1.4).

    Proof of Theorem1.2.By Proposition 2.3,there are non-negativeu± ∈HP+μsuch thatu=u+?u?,〈u+,u?〉HP+μ= 0. We observe thatu+(x)u?(x) = 0 for allx ∈Rd. In other words,u+andu?have disjoint supports,

    Indeed,if(4.4)does not hold,the function ?u=u++u?obeys‖?u‖2HP+μ=‖u‖2HP+μand

    where the inequality holds strictly due to cross terms. Thus, it follows from Lemma 4.1 that there existst ∈(0,1]such thattuis admissible andI(tu)

    Next,we claim that

    To prove the claim,we note that by(4.4),the equality holds in(4.5).As a consequence,the function ?udefined previously is also a minimizer, so it is a solution to (1.4). Moreover,?u=|u|. For contradiction, we assume thatu+/= 0 andu?/= 0. Observe from the orthogonality ofu+andu?that

    Then either

    The strict inequality is due to the assumption thatu?/= 0. Sinceuis a minimizer, this makes a contradiction and the claim is proved. Finally, we have already seen in the proof of Theorem 1.1 that a nonnegative (nonpositive) minimizer is positive (negative)everywhere since the fundamental solution ΦP+μofP+μis strictly positive. This ends the proof.

    4.4 Uniqueness of a ground state

    Here, we prove Theorem 1.3. Throughout this subsection, we assume(H1)–(H4)on the symbolPhold. We fix arbitrarily chosenp ∈(1,d/(d ?s))and denote byu0the unique radial positive ground state to the original NLS,

    As mentioned in Section 3,the generalized NLS

    is equivalently transformed to

    Lemma 4.2(Convergence).Let v?∈HP?+1be a positive ground state to(4.9). Then there exists{a?}?Rd such that

    Proof.The lemma is a natural consequence of energy minimality of the ground statesv?to(4.9). We refer to Proposition 2.3 in[8],with which their proof follows the exactly same lines. We omit the proof for avoiding the paper too lengthy.

    Lemma 4.3(Nondegeneracy).Let {v?} ?HP?+1be a family positive ground state to(4.9)such that{v?}converges to u0in HP?+1as ?→0. Define the linearized operator by

    Then there exists a constant β>0independent of small ?>0such that

    for any g ∈HP?+1which is HP?+1orthogonal to ?xiv?for each i=1,···,d.

    Proof.This lemma can be proved in the same spirit with Lemma 3.3 but one should take care on the change of function spaces from the radial function space (Ws,qr →span{?xiv?|i= 1,···,d}⊥). This can be easily done by repeating the proof of Proposition 3.3 in[8]. We omit it.

    Proof of Theorem1.3.Let{v?},{?v?} ?HP?+1be two families of positive radially symmetric ground states to (4.9). By Lemma 4.2, we may assume that both of{v?}and{?v?}converge tou0inHP?+1as?→0 by taking translations if necessary. This means that

    Let{a?}?Rdbe a family of vectors such that

    Then one has

    since

    We redefine ?v?(·?a?)by ?v?so that ?v?is still a ground state, ?v??v?is orthogonal to?xiv?inHP?+1and lim?→0‖v???v?‖HP?+1=0 by definition ofa?.

    Let us definer?= ?v??v?. From Eq.(4.9),one has

    so that by Lemma 4.3,

    It is easy to see from (H3) that there exists a uniform constantC> 0 independent of?∈(0,1)such that

    Then we invoke Lemma 3.4 and H¨older inequality to obtain

    Combining this with(4.16)and using the fact that lim?→0‖r?‖HP?+1=0,we getr?=0 for sufficiently small?>0. This shows ?v?=v?and ends the proof.

    Acknowledgements

    This research of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(NRF-2020R1A2C4002615). This research of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2020R1C1C1A01006415)

    国产激情久久老熟女| 久久人妻福利社区极品人妻图片 | 在线 av 中文字幕| 一级毛片女人18水好多 | 又大又黄又爽视频免费| 精品久久久久久久毛片微露脸 | 中文精品一卡2卡3卡4更新| 嫁个100分男人电影在线观看 | 国产精品亚洲av一区麻豆| 女性生殖器流出的白浆| www.自偷自拍.com| 亚洲av片天天在线观看| 精品久久蜜臀av无| 久久精品成人免费网站| 99re6热这里在线精品视频| 国产无遮挡羞羞视频在线观看| 欧美日韩视频高清一区二区三区二| 久久99精品国语久久久| 九草在线视频观看| 丁香六月天网| 黄色视频在线播放观看不卡| 久久人人爽av亚洲精品天堂| 亚洲色图 男人天堂 中文字幕| 中文字幕制服av| 国产一区二区 视频在线| 国产极品粉嫩免费观看在线| 精品国产乱码久久久久久男人| 日韩精品免费视频一区二区三区| 国产精品一二三区在线看| 看免费av毛片| 爱豆传媒免费全集在线观看| 最黄视频免费看| 国产精品一区二区在线观看99| 国产真人三级小视频在线观看| 亚洲三区欧美一区| 国产亚洲av高清不卡| 老司机亚洲免费影院| 真人做人爱边吃奶动态| www.av在线官网国产| 每晚都被弄得嗷嗷叫到高潮| 国产在视频线精品| 91麻豆av在线| 免费观看人在逋| 男人舔女人的私密视频| 国产片特级美女逼逼视频| 欧美久久黑人一区二区| 制服诱惑二区| 十八禁网站网址无遮挡| 国产精品国产av在线观看| 国产一区有黄有色的免费视频| 每晚都被弄得嗷嗷叫到高潮| 少妇 在线观看| 五月天丁香电影| 人人澡人人妻人| 午夜激情久久久久久久| 十分钟在线观看高清视频www| 最黄视频免费看| 国产成人精品在线电影| 一区福利在线观看| 黄色 视频免费看| 又黄又粗又硬又大视频| 久久热在线av| 亚洲免费av在线视频| 色精品久久人妻99蜜桃| 国产免费现黄频在线看| av欧美777| 久久久精品区二区三区| 久久 成人 亚洲| 亚洲精品乱久久久久久| 久久精品亚洲av国产电影网| 免费看不卡的av| 日韩一区二区三区影片| 一级毛片我不卡| 青青草视频在线视频观看| 99久久精品国产亚洲精品| 亚洲黑人精品在线| 成人亚洲精品一区在线观看| 国产精品香港三级国产av潘金莲 | 久久久国产精品麻豆| 欧美97在线视频| 亚洲国产成人一精品久久久| 老司机深夜福利视频在线观看 | 国产男女内射视频| 久久精品亚洲av国产电影网| 天堂中文最新版在线下载| 看十八女毛片水多多多| 日韩熟女老妇一区二区性免费视频| 国产在线免费精品| 色94色欧美一区二区| 亚洲欧美精品综合一区二区三区| www.熟女人妻精品国产| www.精华液| 成人三级做爰电影| 亚洲国产av影院在线观看| 国产精品av久久久久免费| 熟女av电影| videos熟女内射| 亚洲午夜精品一区,二区,三区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩福利视频一区二区| 麻豆国产av国片精品| 日韩大码丰满熟妇| 日本黄色日本黄色录像| 国产精品麻豆人妻色哟哟久久| 亚洲av在线观看美女高潮| 一级黄色大片毛片| 男人爽女人下面视频在线观看| 9热在线视频观看99| 国产成人免费观看mmmm| 汤姆久久久久久久影院中文字幕| 久久精品人人爽人人爽视色| 成年动漫av网址| 成年av动漫网址| 亚洲午夜精品一区,二区,三区| 色播在线永久视频| 最新在线观看一区二区三区 | cao死你这个sao货| 视频区欧美日本亚洲| 国产精品久久久人人做人人爽| 涩涩av久久男人的天堂| 飞空精品影院首页| 久久久久国产精品人妻一区二区| 咕卡用的链子| 精品少妇久久久久久888优播| 日本猛色少妇xxxxx猛交久久| 99热网站在线观看| 男人操女人黄网站| 亚洲一区二区三区欧美精品| 美女脱内裤让男人舔精品视频| 精品少妇黑人巨大在线播放| 国产av一区二区精品久久| 欧美成人午夜精品| 国产成人a∨麻豆精品| 日日爽夜夜爽网站| 啦啦啦在线免费观看视频4| 啦啦啦在线免费观看视频4| 午夜91福利影院| 国产一区亚洲一区在线观看| 制服诱惑二区| 精品福利永久在线观看| 中文字幕人妻丝袜制服| 色94色欧美一区二区| 国产日韩欧美在线精品| 午夜免费成人在线视频| 国产无遮挡羞羞视频在线观看| 又黄又粗又硬又大视频| 一本久久精品| 精品一区二区三区av网在线观看 | 国产高清videossex| 两人在一起打扑克的视频| 十分钟在线观看高清视频www| 国产成人影院久久av| 精品人妻熟女毛片av久久网站| 久久久欧美国产精品| 午夜福利一区二区在线看| 亚洲精品第二区| 少妇裸体淫交视频免费看高清 | 亚洲精品久久午夜乱码| 久久久久久亚洲精品国产蜜桃av| 又大又爽又粗| 免费观看av网站的网址| 大香蕉久久网| 亚洲成av片中文字幕在线观看| 欧美黑人精品巨大| 亚洲伊人色综图| 韩国精品一区二区三区| 午夜视频精品福利| 999精品在线视频| 亚洲欧美激情在线| 一级黄片播放器| 亚洲五月色婷婷综合| 久久久久国产精品人妻一区二区| 久久久久网色| 无限看片的www在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲成人手机| 亚洲av片天天在线观看| 丰满迷人的少妇在线观看| 狠狠婷婷综合久久久久久88av| 免费高清在线观看日韩| 久久99一区二区三区| 熟女av电影| 精品国产一区二区三区久久久樱花| 免费看不卡的av| 精品久久久久久久毛片微露脸 | 高清欧美精品videossex| 亚洲一区中文字幕在线| 激情视频va一区二区三区| 欧美+亚洲+日韩+国产| 侵犯人妻中文字幕一二三四区| 美女国产高潮福利片在线看| 麻豆乱淫一区二区| 欧美日韩黄片免| 自线自在国产av| 成年动漫av网址| 人人妻人人爽人人添夜夜欢视频| 亚洲成人免费av在线播放| 一边摸一边做爽爽视频免费| 另类精品久久| 涩涩av久久男人的天堂| 丝瓜视频免费看黄片| av在线app专区| 精品视频人人做人人爽| 成年av动漫网址| 好男人电影高清在线观看| 精品一区二区三卡| 看免费成人av毛片| 99国产综合亚洲精品| 午夜福利乱码中文字幕| 在线观看免费视频网站a站| 成人午夜精彩视频在线观看| 午夜福利乱码中文字幕| 国产精品国产av在线观看| 黄片小视频在线播放| 在线精品无人区一区二区三| a级片在线免费高清观看视频| 少妇被粗大的猛进出69影院| 国产不卡av网站在线观看| 美女高潮到喷水免费观看| 精品国产乱码久久久久久男人| 中国美女看黄片| 国产精品国产三级专区第一集| 欧美精品人与动牲交sv欧美| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情极品国产一区二区三区| 狠狠婷婷综合久久久久久88av| a级毛片在线看网站| 国产高清不卡午夜福利| 18禁观看日本| 精品卡一卡二卡四卡免费| 十分钟在线观看高清视频www| 又大又爽又粗| 亚洲久久久国产精品| 久久精品久久久久久久性| 一级毛片我不卡| 搡老乐熟女国产| 精品国产一区二区久久| 免费在线观看完整版高清| 国产深夜福利视频在线观看| 精品少妇一区二区三区视频日本电影| 激情五月婷婷亚洲| 久9热在线精品视频| 大型av网站在线播放| 欧美日本中文国产一区发布| 啦啦啦啦在线视频资源| 午夜老司机福利片| 午夜久久久在线观看| 十八禁人妻一区二区| 男女边摸边吃奶| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av高清一级| 国产精品.久久久| 成人亚洲精品一区在线观看| 国产男女超爽视频在线观看| 国产精品av久久久久免费| 免费观看av网站的网址| 国产成人精品无人区| 1024视频免费在线观看| 日韩伦理黄色片| 久久久久久亚洲精品国产蜜桃av| 99热网站在线观看| 成人三级做爰电影| 中文字幕av电影在线播放| 一级a爱视频在线免费观看| 乱人伦中国视频| 黄色一级大片看看| 亚洲人成电影观看| 国产成人精品久久久久久| 国产精品av久久久久免费| 国产福利在线免费观看视频| 最黄视频免费看| 国产高清videossex| 超碰成人久久| 欧美日韩av久久| 日韩中文字幕欧美一区二区 | 欧美日本中文国产一区发布| 伊人亚洲综合成人网| 欧美人与性动交α欧美精品济南到| 中文欧美无线码| 777米奇影视久久| 热re99久久国产66热| 日韩中文字幕欧美一区二区 | 最近最新中文字幕大全免费视频 | 丝袜脚勾引网站| 午夜激情av网站| 麻豆乱淫一区二区| 日本91视频免费播放| 久久久久精品人妻al黑| 视频在线观看一区二区三区| 国产精品国产三级专区第一集| 国产一区二区三区av在线| 国产成人一区二区三区免费视频网站 | 久久久精品免费免费高清| www.999成人在线观看| 成在线人永久免费视频| 欧美精品人与动牲交sv欧美| 麻豆国产av国片精品| 日本av免费视频播放| 高清黄色对白视频在线免费看| 亚洲av日韩精品久久久久久密 | 18禁观看日本| 亚洲欧美日韩另类电影网站| 99国产精品一区二区三区| 91九色精品人成在线观看| 一本久久精品| www日本在线高清视频| 色婷婷久久久亚洲欧美| 777久久人妻少妇嫩草av网站| av国产久精品久网站免费入址| 国产视频首页在线观看| 少妇人妻 视频| 亚洲免费av在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费大片| 日本一区二区免费在线视频| av片东京热男人的天堂| 成人影院久久| 一本大道久久a久久精品| 一级a爱视频在线免费观看| 三上悠亚av全集在线观看| 亚洲三区欧美一区| 亚洲成人国产一区在线观看 | 国产人伦9x9x在线观看| 啦啦啦视频在线资源免费观看| 精品国产超薄肉色丝袜足j| 十八禁高潮呻吟视频| 黄色一级大片看看| 老鸭窝网址在线观看| 免费久久久久久久精品成人欧美视频| 亚洲中文日韩欧美视频| 老司机靠b影院| 国产伦理片在线播放av一区| 人人妻人人澡人人爽人人夜夜| 国产女主播在线喷水免费视频网站| 欧美日韩一级在线毛片| 国产激情久久老熟女| 99久久99久久久精品蜜桃| 免费看av在线观看网站| 午夜福利乱码中文字幕| 亚洲九九香蕉| 日韩伦理黄色片| 搡老乐熟女国产| 久久久久网色| 涩涩av久久男人的天堂| 亚洲国产日韩一区二区| 久久天躁狠狠躁夜夜2o2o | 亚洲av综合色区一区| 国产精品一区二区在线不卡| 人人澡人人妻人| 亚洲欧美一区二区三区国产| 国产爽快片一区二区三区| 欧美黄色片欧美黄色片| av网站免费在线观看视频| 欧美黄色淫秽网站| 国产成人免费无遮挡视频| 啦啦啦啦在线视频资源| 欧美变态另类bdsm刘玥| 精品免费久久久久久久清纯 | 日本色播在线视频| 欧美精品av麻豆av| 色婷婷久久久亚洲欧美| 精品亚洲成国产av| 精品久久久久久久毛片微露脸 | 亚洲国产精品999| 国产精品偷伦视频观看了| 少妇人妻 视频| www.熟女人妻精品国产| 女性被躁到高潮视频| 国产精品久久久av美女十八| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 欧美日韩av久久| 久久毛片免费看一区二区三区| 午夜av观看不卡| 9色porny在线观看| 国产精品久久久久久精品电影小说| 国产成人欧美| 黄色一级大片看看| 亚洲国产av新网站| 欧美乱码精品一区二区三区| 午夜免费成人在线视频| 波野结衣二区三区在线| 日本av免费视频播放| 国产一区二区 视频在线| 国产亚洲一区二区精品| 宅男免费午夜| 久久免费观看电影| 色综合欧美亚洲国产小说| 国产片内射在线| 丰满饥渴人妻一区二区三| 欧美日本中文国产一区发布| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久精品一区二区三区| 韩国高清视频一区二区三区| 亚洲精品久久成人aⅴ小说| 久久久亚洲精品成人影院| 久久这里只有精品19| 亚洲欧美日韩高清在线视频 | 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 老司机在亚洲福利影院| 天天躁狠狠躁夜夜躁狠狠躁| 你懂的网址亚洲精品在线观看| 一级毛片 在线播放| 欧美日韩国产mv在线观看视频| 精品人妻1区二区| 最近中文字幕2019免费版| 两人在一起打扑克的视频| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 99热网站在线观看| 精品久久久精品久久久| 少妇精品久久久久久久| 国产成人精品久久久久久| av网站在线播放免费| a 毛片基地| 午夜免费男女啪啪视频观看| 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频| 天堂8中文在线网| 免费看av在线观看网站| 九草在线视频观看| 精品久久久久久电影网| 丰满少妇做爰视频| 午夜影院在线不卡| 欧美在线一区亚洲| 国产精品免费大片| 麻豆乱淫一区二区| 国产欧美日韩精品亚洲av| 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 久久人人97超碰香蕉20202| 久久中文字幕一级| 午夜激情久久久久久久| 一级黄色大片毛片| 十八禁网站网址无遮挡| 视频区图区小说| www日本在线高清视频| 国产淫语在线视频| 成在线人永久免费视频| 精品久久蜜臀av无| a级毛片黄视频| 亚洲国产日韩一区二区| 亚洲伊人久久精品综合| 欧美乱码精品一区二区三区| 少妇精品久久久久久久| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 蜜桃国产av成人99| kizo精华| 婷婷色麻豆天堂久久| 黄色a级毛片大全视频| 亚洲图色成人| 欧美精品一区二区大全| 中文字幕色久视频| av国产精品久久久久影院| 韩国精品一区二区三区| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 国产在线观看jvid| 亚洲一区二区三区欧美精品| 久久99热这里只频精品6学生| av线在线观看网站| 99国产精品一区二区蜜桃av | 七月丁香在线播放| 午夜激情av网站| 捣出白浆h1v1| 成人国语在线视频| 亚洲欧美一区二区三区国产| 久久久欧美国产精品| 99热国产这里只有精品6| 男男h啪啪无遮挡| 欧美97在线视频| 国产精品成人在线| 国产免费一区二区三区四区乱码| 久久精品熟女亚洲av麻豆精品| 亚洲人成电影观看| 大片免费播放器 马上看| 天天影视国产精品| 91国产中文字幕| 人妻人人澡人人爽人人| 另类亚洲欧美激情| 操出白浆在线播放| 国产精品熟女久久久久浪| 欧美黄色片欧美黄色片| 亚洲欧美成人综合另类久久久| 热99国产精品久久久久久7| 国产午夜精品一二区理论片| 99精品久久久久人妻精品| 亚洲国产精品成人久久小说| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 国产精品一区二区精品视频观看| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| 啦啦啦视频在线资源免费观看| 午夜福利乱码中文字幕| bbb黄色大片| 妹子高潮喷水视频| 国产精品久久久久久人妻精品电影 | 超碰成人久久| 国产欧美日韩精品亚洲av| 亚洲国产中文字幕在线视频| 国产一级毛片在线| 视频在线观看一区二区三区| 99九九在线精品视频| 91精品三级在线观看| 国产视频首页在线观看| 赤兔流量卡办理| 美女主播在线视频| 国产精品久久久久久精品电影小说| 午夜福利在线免费观看网站| 9色porny在线观看| 男人添女人高潮全过程视频| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 久久九九热精品免费| 亚洲成人免费电影在线观看 | 脱女人内裤的视频| 亚洲精品一二三| 黑人猛操日本美女一级片| 日韩视频在线欧美| 亚洲免费av在线视频| 在线亚洲精品国产二区图片欧美| 免费人妻精品一区二区三区视频| 国产片特级美女逼逼视频| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 黄片小视频在线播放| 亚洲欧洲日产国产| 国产免费又黄又爽又色| 性少妇av在线| 亚洲国产成人一精品久久久| 亚洲美女黄色视频免费看| 亚洲精品成人av观看孕妇| 大型av网站在线播放| 无限看片的www在线观看| 亚洲成色77777| 免费在线观看日本一区| 久久毛片免费看一区二区三区| 午夜激情久久久久久久| 精品亚洲成国产av| 久久九九热精品免费| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 一本大道久久a久久精品| 视频区欧美日本亚洲| 欧美国产精品一级二级三级| 丝袜喷水一区| 久久精品亚洲av国产电影网| 一二三四社区在线视频社区8| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| av国产精品久久久久影院| 韩国高清视频一区二区三区| 国产精品久久久av美女十八| 伊人亚洲综合成人网| 一本大道久久a久久精品| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕| 青青草视频在线视频观看| 精品人妻在线不人妻| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 大香蕉久久网| 午夜免费鲁丝| 亚洲欧美色中文字幕在线| 亚洲国产av新网站| 热99国产精品久久久久久7| 免费高清在线观看日韩| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 国产精品久久久久久人妻精品电影 | 丁香六月欧美| 精品亚洲成a人片在线观看| 只有这里有精品99| 亚洲精品一卡2卡三卡4卡5卡 | 国产在线免费精品| 女人精品久久久久毛片| 韩国精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| av一本久久久久| 18禁观看日本| 一级片免费观看大全| 亚洲 欧美一区二区三区| 深夜精品福利| 国产97色在线日韩免费| 亚洲精品国产区一区二| 两性夫妻黄色片| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 久久青草综合色| 欧美激情 高清一区二区三区| 后天国语完整版免费观看| 午夜日韩欧美国产| 久久久精品免费免费高清| 国产成人影院久久av| 亚洲欧美一区二区三区国产| 纵有疾风起免费观看全集完整版| 亚洲精品日本国产第一区| 99国产综合亚洲精品| 一本久久精品| 国产伦人伦偷精品视频| 欧美日韩国产mv在线观看视频| 亚洲精品久久成人aⅴ小说| 国产精品免费大片| 国产日韩欧美视频二区| 丝袜人妻中文字幕| 精品高清国产在线一区|