• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the synergistic effect of mixed solvent annealing on perovskite film formation?

    2021-06-26 03:30:46KunQian錢昆YuLi李渝JingnanSong宋靜楠JazibAliMingZhang張明LeiZhu朱磊HongDing丁虹JunzheZhan詹俊哲andWeiFeng馮威
    Chinese Physics B 2021年6期
    關鍵詞:張明

    Kun Qian(錢昆) Yu Li(李渝) Jingnan Song(宋靜楠) Jazib Ali Ming Zhang(張明) Lei Zhu(朱磊)Hong Ding(丁虹) Junzhe Zhan(詹俊哲) and Wei Feng(馮威)

    1School of Physics and Astronomy and Collaborative Innovation Center of IFSA(CICIFSA),Shanghai Jiao Tong University,Shanghai 200240,China

    2Department of Polymer Science and Engineering,School of Chemistry and Chemical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    3State Key Laboratory of Fluorinated Materials,Zibo 256401,China

    Keywords: perovskite solar cell,solvent vapor annealing,dissolution,recrystallization

    1. Introduction

    Organic-inorganic halide perovskite materials refer to oxides of the chemical formulaABX3(A=CH3NH3,(NH2)2CH,Cs,B=Ge,Sn,Pb,andX=I,Br,Cl),which have been given numerous attentions in recent years due to their unique properties such as magnetism,ferroelectricity,etc.[1,2]Being the absorber layers in solar cells,the perovskite materials are particularly remarkable because of their optically high absorption,[3]superior charge transport properties,[4]and low exciton binding energy.[5,6]The power conversion efficiency(PCE)of perovskite solar cells (PSCs) was only 3.8% at the beginning of 2009,[3]whereas a PCE of 25.5% was achieved in the latest research.[7]

    Nevertheless, perovskite-based devices are still confronted with critical challenges, such as detrimental grain boundaries and high densities of defect states caused by rapid and disordered crystallization of perovskite films.[8–10]These issues lead to radiationless recombination of carriers in perovskites, degrading the device performance.[11,12]A number of post-treatment methods have been proposed to control the crystallization rate of perovskite films to improve the crystal quality, eliminate the lattice defects, and eventually improve the device efficiency. For example,using solvent engineering to add DMSO into DMF solvent can slow down the crystallization rate by taking advantage of the strong force between Lewis acid-base adducts.[13,14]The antisolvent method,dropping a solvent with strong compatibility to the original one during the spin coating process and quickly removing the excess solvent by centrifugal force, is commonly used for controlling the crystallization rate.[15,16]Solvent vapor annealing(SVA),first proposed by Yanget al.in polymer solar cells,[17]has been proven to effectively improve device performance with excellent controllability in annealing temperature, annealing time,vapor pressure,etc.[18]

    As a common post-treatment method, SVA introduces solvent molecules into the atmosphere of traditional thermal annealing. The solvent molecules preferentially reach the areas with higher surface energies,such as grain boundaries. At grain boundaries, solvent molecules enter the cubic octahedral structure of perovskite, seize organic molecules, and reform the intermediate phase in the perovskite crystallization process. At a certain temperature,the entry and volatilization of the solvent molecules reach a thermal equilibrium, where the intermediate phase is formed,leading to fusion of adjacent grains, expansion of the size of grains, and reduction of the density of defect states.[19–21]

    The typical solvents used in SVA are the ones commonly used in the perovskite precursor solution.[19]However, in the past,most researches have focused on single-component SVA while solvent annealing adopting different solvents showed huge differences. For instance, DMSO has obvious advantages in expanding the grain size in SVA.However,due to its high boiling point[22]and the strong interaction between solvent molecules and perovskite components,the thermal equilibrium mentioned above can be easily broken,and perovskite films can be dissolved overly.It is also possible to form an irreversible poly-plumbate structure over a long period of time.[23]In contrast, the boiling point of DMF is lower, and the interaction force between DMF and perovskite is smaller. In this case, the thermal equilibrium is established rapidly, and the DMF molecules quickly volatilize, leaving a very short time for their interaction, so the grain fusion becomes very limited.[13]

    Fig.1. Top-view SEM image and the corresponding grain size distribution of perovskite film processed without and with solvent annealing treatment.

    In this manuscript, DMF/DMSO mixed solvent (MS) in SVA was proposed while the effect was compared with singlecomponent SVA.The detailed process and mechanism of SVA were also described to prove the effectiveness. The MS SVA combined the advantages of the two solvents, effectively expanding the grain size and reducing the density of defect states without damaging the film. The detailed crystallization dynamics during SVA,which is of critical importance in understanding the perovskite mesophase and the transformation between mesophase and perovskite crystal,was summarized. A champion power-conversion efficiency (PCE) of 19.76% under air mass global (AM 1.5G) spectrum illumination was achieved without any doping and interface optimization compared with 17.13%of the SVA-free control device.

    2. Results and discussion

    Figure 1 shows the top-view SEM images of the perovskite films and their corresponding grain size distribution.The images indicate that SVA treatment increased the grain size of perovskite films regardless of the type of solvent vapor.DMSO vapor treated perovskite film exhibited the largest average grain size of~380 nm along with clear voids and breaks between grains,which are detrimental for device performance.In contrast to DMSO treatment, the MS SVA resulted in a more uniform and compact perovskite film with an average grain size of~330 nm.

    Figure S1 shows the UV-vis absorption spectra of perovskite films based on SVA with different solvents.The nearly identical absorption spectra indicate that SVA treatment had no influence on light absorption. Further, to investigate the effect of SVA treatment on carrier recombination, we conducted the steady-state photoluminescence (PL) spectra and time-resolved PL spectra (TRPL) of bare perovskite films,with results shown in Figs.2(a)and 2(b). The highest PL intensity was observed in MS treated perovskite films,indicating non-radiative recombination was significantly suppressed. By fitting the TRPL spectra with a bi-exponential function, the carrier lifetime was extracted(Table S1)with 14.64 ns for the control device and 23.05 ns for the MS treated device. The prolonged carrier lifetime for the MS treated device indicates SVA treatment effectively passivated the defects by reducing the grain boundaries.[24,25]As for pure DMSO treated film,the carrier lifetime was largely shortened with an averageτof only 3.58 ns, meaning that the structure of perovskite film was damaged under the effect of DMSO vapor. In order to quantify the defect density, we performed space charge limited current(SCLC)measurements based on electron-only devices(ITO/SnO2/MAPbI3/PCBM/Al). As shown in Fig.2(c),there are three regions in the SCLC curves. In the first region,the applied voltage is lower than the kink point voltage,and the current increases linearly with applied voltage. When the applied voltage exceeds the kink point voltage,where the second region is, the current increases nonlinearly, indicating that all trap states are filled by the injected carriers. At higher bias, the current shows a quadratic dependence (the third region), and the dark current is well fitted by the Mott–Gurney law.Hence the intersection of the first and second region is the kink point voltage, which is also called trap-filled limit voltageVTFL,and the trap densityNtrapis calculated by using the following formula:[26,27]

    Fig. 2. (a) The PL spectra, and (b) time-resolved PL spectra of bare perovskite films processed with SVA treatment exposed to different solvent vapor.(c) Space charge limited current (SCLC) of electron-only devices with a device structure of ITO/SnO2 (40 nm)/MAPbI3 (~340 nm)/PCBM (80 nm)/A1(100 nm). The volumes of four solvents were optimized, which is 60μL for DMF solvent, 20μL for DMF/DMSO mixted solvent and 20μL for DMSO solvent,respectively.

    whereLis the thickness of the perovskite film which is around 350 nm,ε(~18) is the relative dielectric constant of perovskite.[28]The devices after SVA with DMF and MS had lowerNtrapof 1.04×1016cm?3and 7.91×1015cm?3respectively, compared to that of 1.16×1016cm?3for the control one and 1.65×1016cm?3for the case of DMSO SVA. The reduction in defect states agrees with suppressed carrier recombination,corresponding to the significant improvement ofVOCand FF shown in Table S2.

    To relate the above results with the crystallization process, we conducted the grazing incidence wide-angle x-ray scattering experiments(GIWAXS).The 2D GIWAXS images for the studied films are shown in Fig.S3,and the corresponding 1D GIWAXS profiles are displayed in Fig. 3(a). In comparison with the control device,both DMF and MS SVA processed perovskite films exhibited an improved crystallization,with the latter showing the greatest improvement. While for the DMSO case, the characteristic peak intensity of the perovskite phase was subjected to an obvious decrease. In addition, new peaks occurred atq <1.0 A?1, which could be attributed to the characteristic scattering peak of intermediate phase MAI-PbI2-DMSO.[29,30]The fitting results of the perovskite phase atq= 1.0 A?1, including the peak area and crystal size, are shown in Fig. 3(b). MS treated perovskite film showed enhanced peak area and enlarged crystal size.The results suggest that proper selection of solvent and solvent volume for SVA treatment could simultaneously enhance the crystallinity and crystal size by recrystallizing the perovskite crystals.

    In light of the experimental results above,Scheme 1 was constructed to illustrate the crystallization kinetics of perovskite crystals under SVA treatment,which is made up of two processes: perovskite dissolution and recrystallization. Here we take MS SVA as an example.When the perovskite films are exposed to the MS vapor,the solvent molecules will preferentially dissolve the grain boundaries due to its high instability,and then form an intermediate phase of MAI-PbI2-DMF and MAI-PbI2-DMSO,[23]which refers to the process of dissolution. However, with thermal annealing treatment, the solvent molecules are extracted from the intermediate state, leading to recrystallization of the perovskite phase. In the whole process,there is a competition between dissolution and recrystallization, and the equilibrium state is dependent on the donor number[31]of solvent,boiling point,and heating temperature.Because of the small number of donors, the weak coordination between Pb2+and DMF enables easy transformation from the intermediate phase to the perovskite phase. In contrast,Pb2+and DMSO interact more strongly,demanding more energy to break the bond. By exposing the perovskite films to a proper amount of MS vapor, the balance of perovskite dissolution and recrystallization can be readily achieved,obtaining high-quality perovskite film without byproducts, as shown in the 2D GIWAXS patterns in Fig. S3. If the film exposes to excess DMSO solvent vapor, the equilibrium will be broken,and an excess amount of MAI-PbI2-DMSO will be formed,thus increasing the activation energy for phase transition and finally resulting in a poor film with byproducts, evidenced by the appearance of new scattering peaks atq <1.0 A?1(Fig.S4).

    Fig.3. (a)1D GIWAXS profiles of perovskite films processed under different SVA conditions,which were derived from the 2D GIWAXS patterns by circular integration. (b)The evolution of peak area and crystal size of perovksite phase at q=1.0 ?A?1 as a function of solvent vapor types.

    Scheme 1. Schematic diagrams illustrating the dissolution and recrystallization process of perovskite crystals under SVA treatment.

    To verify the impact of SVA treatment on the resulting photovoltaic performance, we fabricated inverted-planar perovskite solar cells with the device structure shown in Fig.4(a)(ITO/PTAA/MAPbI3/PCBM/Al). Figure 4(b) shows the best photocurrent density–voltage (J–V) curves of perovskite solar cells under each optimized condition without and with SVA treatment, and the corresponding device parameters are summarized in Table S2. The detailed device optimization process is shown in Fig. S2. After SVA treatment, the device efficiency was improved due to the improved film quality and crystallinity as demonstrated. It can be noted that the MS treated perovskite solar cells achieved a champion efficiency of 19.76%,with improved open-circuit current(VOC)of 1.103 V,short-circuit current density(JSC)of 21.93 mA/cm2,and fill factor (FF) of 81.72%. In addition, SVA treatment eliminated theJ–Vhysteresis(Fig.4(c)).[32,33]External quantum efficiency(EQE)measurements were conducted,with results shown in Fig.4(d). It was confirmed that the integrated current density from EQE was consistent with theJSCderived from theJ–Vcurves with a deviation of 0.36 mA/cm2. Further, we checked the stable-state photocurrent and PCE output, measured at a maximum power point (0.88 V for the control device and 0.91 V for MS SVA treated devices), as shown in Fig. 4(e). The steady-state output PCE increased from 17.03% to 19.88% after SVA treatment. The device reproducibility was assessed by fabricating more than 100 cells for devices without and with MS treatment(Fig.4(f)). The average PCE for the control and MS treated devices were 16.53%and 19.37%,respectively.

    Fig. 4. (a) Device structure of perovskite solar cells in this work. (b) The best photocurrent density versus voltage (J–V) curves of perovskite solar cells processed under different solvent vapor environment. (c) J–V curves of champion device scanned from both the reverse and forward directions. (d) External quantum efficiency (EQE) and integrated short current density (JSC) of control and DMF/DMSO mixed solvent treated perovksite solar cells. (e)Stable output of current density and PCE as a function of time,which were held at a maximum power point(0.88 V for the control device,and 0.91 V for mixed DMF/DMSO).(f)The PCE histograms of devices without and with mixed DMF/DMSO treatment.

    Fig. 5. (a) Normalized PCEs of unencapsulated devices exposed to ambient conditions with humidity of 55%–65%. (b) Normalized PCEs of unencapsulated devices under 85 ?C heat treatment in a nitrogen atmosphere.

    Additionally, we carried out a series of stability testing to evaluate the effect of SVA treatment on the device stability, the results of which are displayed in Fig. 5. First, the humidity stability of devices was tested by leaving the nonencapsulated devices in ambient air with a humidity of 55%–65% for 30 days. As shown in Fig. 5(a), the control device degraded to~70% of its initial value after 30 days of tracking. In comparison, the MS SVA treated devices retained~85% efficiency, unambiguously demonstrating improved humidity stability. Then,the thermal stability of unsealed devices was monitored by continuous annealing the devices at 85?C under a nitrogen atmosphere for 200 h(Fig.5(b)). The MS treated device exhibited superior thermal stability, which maintained~76% of its initial PCE after continuous annealing for 200 h. Under the same condition, the control device dropped to~56%of its initial PCE.The above results demonstrate that SVA treatment can not only promote photovoltaic performance but also improve operational stability. Such improvement is attributed to the enlarged grain size and reduced grain boundaries, which are reported to be vulnerable when exposed to a harsh environment.[34]

    3. Conclusion and perspectives

    In summary,SVA was performed with mixed solvents to study its synergistic effect on the intermediate phase and crystallization of perovskite film formation. The solvent vapor acted uniformly on the surface of the film; however, excess solvent led to the dissolution of perovskite films. We proposed a model based on the GIWAXS, revealing that solvent molecules enter the grain boundaries and induce two competing processes, dissolution and crystallization, which reach an equilibrium depending on solvent type and volume. Consequently, from the overall perspective, MS SVA promoted the growth of grains and enlarged the grain size, suppressing radiationless recombination loss. With MS SVA, theVOCand FF of the completed device were improved due to significantly reduced defect states in perovskite material, and the PCE reached 19.76% compared to 17.13% of the control device. Meanwhile,both thermal stability and humidity stability were improved significantly.

    猜你喜歡
    張明
    一本書的風波
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    Destroying a Near-Extremal Kerr-Newman-AdS Black Hole with Test Particles?
    A high-fidelity memory scheme for quantum data buses?
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    被女生拒絕后
    三月三(2017年5期)2017-05-25 00:08:44
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    這錢還的
    晚報文萃(2015年6期)2015-08-12 17:50:27
    曰老女人黄片| 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 午夜精品在线福利| 在线十欧美十亚洲十日本专区| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频 | 亚洲国产毛片av蜜桃av| 9色porny在线观看| 男女之事视频高清在线观看| 少妇粗大呻吟视频| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 亚洲av片天天在线观看| 亚洲av日韩精品久久久久久密| 亚洲一区二区三区不卡视频| 欧美色视频一区免费| 亚洲av成人不卡在线观看播放网| 黄色怎么调成土黄色| 久久久久久久精品吃奶| 少妇粗大呻吟视频| 国产亚洲欧美精品永久| 亚洲人成77777在线视频| 欧美成人午夜精品| 欧美丝袜亚洲另类 | 丰满迷人的少妇在线观看| 嫩草影院精品99| 老司机靠b影院| svipshipincom国产片| 国产精品久久视频播放| 日韩精品青青久久久久久| 免费在线观看黄色视频的| 亚洲av美国av| 天堂俺去俺来也www色官网| 美女 人体艺术 gogo| 亚洲激情在线av| 欧美日韩国产mv在线观看视频| 久99久视频精品免费| 免费在线观看完整版高清| 欧美 亚洲 国产 日韩一| av片东京热男人的天堂| 日韩视频一区二区在线观看| 久久欧美精品欧美久久欧美| 久久久精品国产亚洲av高清涩受| 91麻豆精品激情在线观看国产 | 真人一进一出gif抽搐免费| 国产xxxxx性猛交| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久人妻综合| 精品久久久久久久久久免费视频 | 一a级毛片在线观看| 国产aⅴ精品一区二区三区波| 亚洲黑人精品在线| 久热这里只有精品99| 韩国精品一区二区三区| 精品高清国产在线一区| 欧美日韩av久久| 欧美黄色淫秽网站| 日韩欧美一区二区三区在线观看| 亚洲色图av天堂| 伦理电影免费视频| av超薄肉色丝袜交足视频| 国产高清激情床上av| 精品少妇一区二区三区视频日本电影| 欧洲精品卡2卡3卡4卡5卡区| 免费人成视频x8x8入口观看| 一a级毛片在线观看| 日本三级黄在线观看| 老鸭窝网址在线观看| 村上凉子中文字幕在线| 亚洲av片天天在线观看| 国产成人欧美在线观看| 国产精品九九99| 亚洲中文字幕日韩| 亚洲欧美日韩高清在线视频| 久久香蕉激情| 精品国产一区二区三区四区第35| 老司机亚洲免费影院| 成人18禁在线播放| 亚洲一区二区三区欧美精品| 国产蜜桃级精品一区二区三区| 欧美日韩黄片免| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av熟女| 精品一区二区三卡| 一本大道久久a久久精品| 久久精品国产99精品国产亚洲性色 | 亚洲午夜精品一区,二区,三区| 国产亚洲欧美98| 啦啦啦 在线观看视频| 亚洲熟女毛片儿| 国产精品野战在线观看 | 成人影院久久| 电影成人av| 日韩欧美三级三区| 在线观看一区二区三区激情| 老熟妇乱子伦视频在线观看| 精品一区二区三区av网在线观看| 别揉我奶头~嗯~啊~动态视频| 琪琪午夜伦伦电影理论片6080| 女人高潮潮喷娇喘18禁视频| 欧美精品亚洲一区二区| 最近最新中文字幕大全电影3 | 精品午夜福利视频在线观看一区| 亚洲精品美女久久av网站| 国产乱人伦免费视频| √禁漫天堂资源中文www| 久久九九热精品免费| 日本精品一区二区三区蜜桃| 国产成人欧美| 亚洲av片天天在线观看| 亚洲avbb在线观看| 中亚洲国语对白在线视频| avwww免费| 一级黄色大片毛片| 日本三级黄在线观看| 久久亚洲真实| 亚洲熟妇中文字幕五十中出 | 久久精品亚洲精品国产色婷小说| 首页视频小说图片口味搜索| 亚洲久久久国产精品| 激情视频va一区二区三区| 精品久久久久久久久久免费视频 | 99re在线观看精品视频| 夜夜躁狠狠躁天天躁| 国产av又大| 免费观看人在逋| 久久精品国产清高在天天线| 村上凉子中文字幕在线| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 激情视频va一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产成人啪精品午夜网站| 国产午夜精品久久久久久| 超碰97精品在线观看| 亚洲av片天天在线观看| 夜夜夜夜夜久久久久| 亚洲一码二码三码区别大吗| 国产高清激情床上av| 欧美不卡视频在线免费观看 | 自拍欧美九色日韩亚洲蝌蚪91| 91av网站免费观看| 无遮挡黄片免费观看| 国产亚洲av高清不卡| 老司机福利观看| 丝袜人妻中文字幕| 91麻豆精品激情在线观看国产 | 窝窝影院91人妻| 国产不卡一卡二| 午夜两性在线视频| 日日夜夜操网爽| 日本一区二区免费在线视频| 露出奶头的视频| 国产高清视频在线播放一区| 午夜福利影视在线免费观看| 亚洲一区高清亚洲精品| 久久久精品欧美日韩精品| 国产精品影院久久| 久久久久国产精品人妻aⅴ院| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩乱码在线| 国产一区二区三区综合在线观看| 黄色女人牲交| 欧美av亚洲av综合av国产av| 悠悠久久av| 欧美日韩瑟瑟在线播放| 久久久久久久久中文| 久99久视频精品免费| 又大又爽又粗| 19禁男女啪啪无遮挡网站| 美女高潮喷水抽搐中文字幕| 天天躁夜夜躁狠狠躁躁| 日韩免费高清中文字幕av| 69精品国产乱码久久久| 亚洲中文av在线| 美女午夜性视频免费| 精品国产亚洲在线| 亚洲色图av天堂| 窝窝影院91人妻| 日韩欧美在线二视频| 1024视频免费在线观看| 天堂中文最新版在线下载| 成人手机av| 操美女的视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 黄色毛片三级朝国网站| 一本大道久久a久久精品| 老熟妇乱子伦视频在线观看| 成人特级黄色片久久久久久久| 亚洲全国av大片| 91老司机精品| 国产乱人伦免费视频| 亚洲欧美激情在线| 亚洲va日本ⅴa欧美va伊人久久| 久久青草综合色| 一级片'在线观看视频| 母亲3免费完整高清在线观看| 90打野战视频偷拍视频| 国产欧美日韩精品亚洲av| 亚洲激情在线av| 亚洲美女黄片视频| 韩国精品一区二区三区| 女性被躁到高潮视频| 国产高清国产精品国产三级| 在线看a的网站| 亚洲一区二区三区色噜噜 | av中文乱码字幕在线| 亚洲欧美日韩无卡精品| 午夜福利欧美成人| 一边摸一边做爽爽视频免费| 美女福利国产在线| 91在线观看av| 色老头精品视频在线观看| a级毛片黄视频| 欧美不卡视频在线免费观看 | 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 午夜91福利影院| 欧美日韩av久久| 亚洲成人久久性| 88av欧美| 99国产精品一区二区蜜桃av| 欧美成人免费av一区二区三区| 国产精品久久久久成人av| 99国产极品粉嫩在线观看| 99精品欧美一区二区三区四区| 久久99一区二区三区| tocl精华| 欧美大码av| 久久精品亚洲熟妇少妇任你| 91成人精品电影| 国产一区二区激情短视频| 欧美乱妇无乱码| 精品久久久久久成人av| 亚洲精品一卡2卡三卡4卡5卡| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 黄色a级毛片大全视频| 亚洲五月色婷婷综合| 欧美老熟妇乱子伦牲交| av福利片在线| av电影中文网址| 日韩成人在线观看一区二区三区| 免费观看人在逋| 制服人妻中文乱码| 亚洲色图av天堂| av视频免费观看在线观看| 91av网站免费观看| 色婷婷av一区二区三区视频| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 色综合站精品国产| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 国产成人系列免费观看| 国产成人精品久久二区二区91| www.精华液| 变态另类成人亚洲欧美熟女 | 亚洲av美国av| tocl精华| 咕卡用的链子| 国产精品九九99| 精品久久蜜臀av无| 新久久久久国产一级毛片| 大香蕉久久成人网| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 日日夜夜操网爽| 亚洲精品久久成人aⅴ小说| 宅男免费午夜| 成年女人毛片免费观看观看9| 三上悠亚av全集在线观看| 一级片免费观看大全| 色综合婷婷激情| 在线观看一区二区三区激情| 最近最新免费中文字幕在线| 久久人妻av系列| 黄色成人免费大全| 亚洲少妇的诱惑av| 一级,二级,三级黄色视频| xxx96com| 国产av在哪里看| 男女下面插进去视频免费观看| 最新在线观看一区二区三区| 脱女人内裤的视频| 天堂俺去俺来也www色官网| 欧美午夜高清在线| 一级,二级,三级黄色视频| 国产单亲对白刺激| 激情在线观看视频在线高清| 国产三级在线视频| 电影成人av| av天堂久久9| 女人被躁到高潮嗷嗷叫费观| 黑丝袜美女国产一区| 在线av久久热| 国产精品国产高清国产av| 黄色女人牲交| 欧美色视频一区免费| 精品国产国语对白av| 精品一区二区三卡| 黄色视频,在线免费观看| 亚洲男人的天堂狠狠| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 99国产精品一区二区三区| 嫩草影视91久久| 叶爱在线成人免费视频播放| 天堂影院成人在线观看| 色婷婷久久久亚洲欧美| 国产蜜桃级精品一区二区三区| 久久精品成人免费网站| 啦啦啦在线免费观看视频4| av中文乱码字幕在线| 国产精品一区二区三区四区久久 | 12—13女人毛片做爰片一| 亚洲成人免费av在线播放| 亚洲黑人精品在线| 18禁美女被吸乳视频| 成人黄色视频免费在线看| 午夜91福利影院| 天堂√8在线中文| √禁漫天堂资源中文www| 国产真人三级小视频在线观看| 精品久久久久久电影网| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 手机成人av网站| 91av网站免费观看| 久久精品亚洲熟妇少妇任你| 国产成人精品久久二区二区91| 高清欧美精品videossex| 欧美日韩中文字幕国产精品一区二区三区 | 丰满的人妻完整版| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av| 久久久久国产一级毛片高清牌| 午夜免费成人在线视频| aaaaa片日本免费| 97碰自拍视频| 亚洲成a人片在线一区二区| 伊人久久大香线蕉亚洲五| 欧美色视频一区免费| 不卡一级毛片| 成人黄色视频免费在线看| 超碰97精品在线观看| 国产成人影院久久av| 午夜激情av网站| 在线看a的网站| 国产精品乱码一区二三区的特点 | 成年女人毛片免费观看观看9| 亚洲成人精品中文字幕电影 | 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 亚洲全国av大片| bbb黄色大片| 成人av一区二区三区在线看| 在线观看日韩欧美| 91字幕亚洲| bbb黄色大片| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 亚洲专区中文字幕在线| 国产成人av教育| 97碰自拍视频| 在线av久久热| av在线播放免费不卡| 美女扒开内裤让男人捅视频| 另类亚洲欧美激情| 精品一区二区三区av网在线观看| 啦啦啦 在线观看视频| 亚洲精品av麻豆狂野| 国产午夜精品久久久久久| 看免费av毛片| 国产精品爽爽va在线观看网站 | 老司机午夜十八禁免费视频| 免费看a级黄色片| 日本撒尿小便嘘嘘汇集6| 韩国精品一区二区三区| 首页视频小说图片口味搜索| 免费少妇av软件| 国产亚洲欧美精品永久| 丰满的人妻完整版| 久久国产精品人妻蜜桃| www.999成人在线观看| 精品第一国产精品| 亚洲熟妇中文字幕五十中出 | 久久精品国产亚洲av高清一级| 欧美日韩瑟瑟在线播放| 人成视频在线观看免费观看| 国产视频一区二区在线看| 丝袜人妻中文字幕| 悠悠久久av| bbb黄色大片| 婷婷精品国产亚洲av在线| 久久久久久亚洲精品国产蜜桃av| 在线观看一区二区三区激情| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 国产精品一区二区免费欧美| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 色老头精品视频在线观看| 亚洲精华国产精华精| 一级黄色大片毛片| 麻豆国产av国片精品| 欧美+亚洲+日韩+国产| 日本wwww免费看| 国产av在哪里看| 久久草成人影院| 在线观看免费视频网站a站| 正在播放国产对白刺激| 日本精品一区二区三区蜜桃| 国产精品野战在线观看 | 久久国产精品影院| 麻豆国产av国片精品| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 男女下面进入的视频免费午夜 | 久久精品成人免费网站| 热re99久久精品国产66热6| 99精品久久久久人妻精品| 乱人伦中国视频| 女人精品久久久久毛片| 99久久人妻综合| 成年女人毛片免费观看观看9| 亚洲精品久久成人aⅴ小说| 91大片在线观看| 亚洲熟妇熟女久久| 精品国产国语对白av| 久久精品人人爽人人爽视色| 国产伦一二天堂av在线观看| 99国产综合亚洲精品| a级毛片黄视频| 18禁裸乳无遮挡免费网站照片 | 亚洲 欧美一区二区三区| 亚洲中文av在线| 午夜福利影视在线免费观看| 色精品久久人妻99蜜桃| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| 成人18禁在线播放| 19禁男女啪啪无遮挡网站| 91九色精品人成在线观看| 日本a在线网址| 亚洲欧美日韩另类电影网站| 久久久国产成人免费| 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 男女床上黄色一级片免费看| 国产精品野战在线观看 | 黄网站色视频无遮挡免费观看| 男人操女人黄网站| 亚洲成人精品中文字幕电影 | 国产深夜福利视频在线观看| 精品久久蜜臀av无| 在线免费观看的www视频| 国产激情欧美一区二区| 久久人妻福利社区极品人妻图片| 老司机在亚洲福利影院| 老司机亚洲免费影院| 琪琪午夜伦伦电影理论片6080| 亚洲精品av麻豆狂野| 日韩欧美免费精品| 午夜激情av网站| 成人黄色视频免费在线看| 亚洲av成人不卡在线观看播放网| 精品日产1卡2卡| 亚洲视频免费观看视频| 男男h啪啪无遮挡| 免费女性裸体啪啪无遮挡网站| 老司机在亚洲福利影院| 午夜精品在线福利| 午夜免费成人在线视频| 国产精品 欧美亚洲| 日本黄色日本黄色录像| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久人妻精品电影| 欧美成人午夜精品| 极品人妻少妇av视频| 国产高清激情床上av| 久久青草综合色| 久久人妻熟女aⅴ| 日本欧美视频一区| 国产aⅴ精品一区二区三区波| 欧美日韩中文字幕国产精品一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 精品卡一卡二卡四卡免费| 夜夜爽天天搞| 在线观看www视频免费| aaaaa片日本免费| 国产av一区二区精品久久| 免费观看精品视频网站| а√天堂www在线а√下载| 久久精品91蜜桃| 国产精品秋霞免费鲁丝片| 美女午夜性视频免费| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 精品国产亚洲在线| 性欧美人与动物交配| 亚洲第一青青草原| 国产亚洲精品一区二区www| 国产黄色免费在线视频| av天堂在线播放| 亚洲精品国产色婷婷电影| 久久精品人人爽人人爽视色| 日韩精品中文字幕看吧| 久久久久九九精品影院| 91成人精品电影| 最近最新中文字幕大全电影3 | 日韩成人在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产免费现黄频在线看| 国产精品免费视频内射| 女警被强在线播放| 男人舔女人下体高潮全视频| 日日摸夜夜添夜夜添小说| cao死你这个sao货| 三上悠亚av全集在线观看| 熟女少妇亚洲综合色aaa.| 国产黄a三级三级三级人| 国产亚洲精品一区二区www| 十八禁人妻一区二区| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 99精国产麻豆久久婷婷| 成人特级黄色片久久久久久久| 国产97色在线日韩免费| 亚洲av美国av| 日韩国内少妇激情av| 国产精品 国内视频| 动漫黄色视频在线观看| 最新在线观看一区二区三区| 深夜精品福利| 欧美 亚洲 国产 日韩一| 91国产中文字幕| 国产亚洲精品第一综合不卡| 欧美大码av| 国产有黄有色有爽视频| 夜夜看夜夜爽夜夜摸 | 天天躁夜夜躁狠狠躁躁| 美女扒开内裤让男人捅视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产综合久久久| 精品福利永久在线观看| 日韩免费av在线播放| 亚洲免费av在线视频| 啦啦啦免费观看视频1| 熟女少妇亚洲综合色aaa.| 纯流量卡能插随身wifi吗| 午夜福利影视在线免费观看| 久久中文字幕人妻熟女| 久久精品亚洲精品国产色婷小说| 欧美在线一区亚洲| 亚洲人成网站在线播放欧美日韩| 在线观看免费日韩欧美大片| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 一进一出抽搐gif免费好疼 | 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 亚洲欧美日韩另类电影网站| 国产极品粉嫩免费观看在线| 99re在线观看精品视频| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 国产伦一二天堂av在线观看| 人成视频在线观看免费观看| 亚洲成人免费电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| av中文乱码字幕在线| 男女高潮啪啪啪动态图| 国产精品二区激情视频| av国产精品久久久久影院| 琪琪午夜伦伦电影理论片6080| 一本综合久久免费| 久久精品91无色码中文字幕| 亚洲国产欧美日韩在线播放| 97超级碰碰碰精品色视频在线观看| 纯流量卡能插随身wifi吗| 夜夜夜夜夜久久久久| 80岁老熟妇乱子伦牲交| 日日爽夜夜爽网站| 免费观看人在逋| 激情视频va一区二区三区| 国产亚洲欧美98| 日韩 欧美 亚洲 中文字幕| 色综合欧美亚洲国产小说| 国产高清激情床上av| 精品国内亚洲2022精品成人| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 91国产中文字幕| 无遮挡黄片免费观看| 国产激情久久老熟女| 国产一区二区在线av高清观看| 丰满人妻熟妇乱又伦精品不卡| 精品一品国产午夜福利视频| 久久影院123| 亚洲精品粉嫩美女一区| 精品久久久精品久久久| 大型av网站在线播放| 国产精品亚洲一级av第二区| 99在线视频只有这里精品首页|