• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A high-fidelity memory scheme for quantum data buses?

    2017-08-30 08:25:04BoYangLiu劉博陽(yáng)WeiCui崔巍HongYiDai戴宏毅XiChen陳希andMingZhang張明
    Chinese Physics B 2017年9期
    關(guān)鍵詞:陳希張明

    Bo-Yang Liu(劉博陽(yáng)),Wei Cui(崔巍),Hong-Yi Dai(戴宏毅),Xi Chen(陳希),and Ming Zhang(張明),?

    1 College of Mechatronics and Automation,National University of Defense Technology,Changsha 410073,China

    2 School of Automation Science and Engineering,South China University of Technology,Guangzhou 510641,China

    3 College of Science,National University of Defense Technology,Changsha 410073,China

    A high-fidelity memory scheme for quantum data buses?

    Bo-Yang Liu(劉博陽(yáng))1,Wei Cui(崔巍)2,Hong-Yi Dai(戴宏毅)3,Xi Chen(陳希)1,and Ming Zhang(張明)1,?

    1 College of Mechatronics and Automation,National University of Defense Technology,Changsha 410073,China

    2 School of Automation Science and Engineering,South China University of Technology,Guangzhou 510641,China

    3 College of Science,National University of Defense Technology,Changsha 410073,China

    A novel quantum memory scheme is proposed for quantum data buses in scalable quantum computers by using adjustable interaction.Our investigation focuses on a hybrid quantum system including coupled flux qubits and a nitrogen–vacancy center ensemble.In our scheme,the transmission and storage(retrieval)of quantum state are performed in two separated steps,which can be controlled by adjusting the coupling strength between the computing unit and the quantum memory.The scheme can be used not only to reduce the time of quantum state transmission,but also to increase the robustness of the system with respect to detuning caused by magnetic noises.In comparison with the previous memory scheme,about 80%of the transmission time is saved.Moreover,it is exemplified that in our scheme the fidelity could achieve 0.99 even when there exists detuning,while the one in the previous scheme is 0.75.

    quantum memory,hybrid quantum system,quantum data bus

    1.Introduction

    To extend the processing ability of quantum computers, transmitting[1,2]and correlating[3,4]quantum information by coupling computing units is regarded as an effective way.[5–8]In classical computer systems,caches,registers,and memories play the role in sharing information between processing units.Correspondingly,quantum data buses based on processors and memory units have also been proposed for constructing quantum information processing systems.[9–11]Sending and receiving quantum states can be conducted asynchronously with the help of memory units,which make sit possible to realize complex quantum algorithms that require many computing units and long processing times.[12,13]There are various quantum memory schemes proposed based on different physical effects,[14–16]storage materials,[17–19]and system structures.[20–23]By employing different memory schemes, sharing quantum information has been widely studied in theory and experiment.[24–28]It suggests a full potential for the application of quantum memories in quantum state buses.

    The information transmission in quantum memory systems is generally directly performed by keeping the computing units interacting with the memory units for a specific period of time.At present,such memory schemes have been studied in a variety of coupling models,including direct electromagnetic interaction,[29,30]transmission line resonator,[31–33]LC resonator,[34–37]and ancillary qubits coupling.[38,39]In theory and experiment,the feasibility of direct memory schemes have been shown.Nevertheless,in practicable quantum data buses,the application of these schemes still faces challenges in processing efficiency and system robustness.When the computing unit interacts with a memory unit,the processing time would be occupied for the whole quantum state transmission process.As a result,the processing efficiency of performing other quantum operations will be limited.Moreover,quantum transmission systems are sensitive to magnetic fields.[35,40]In order to protect the coherence of the quantum state transmitted,the robustness of the system remains to be improved in the presence of environmental noises.

    Aiming at the aforementioned challenges,we propose a novel quantum memory scheme for quantum data buses in scalable quantum computers.In most of the previous quantum memory schemes,state storage(retrieval)is done in one single step by finding and implementing some specific unitary evolution.Although the analyses of complicated systems are simplified,parts of the degrees of freedom of the system are lost.In contrast,degrees of freedom,including coupling strength and the state of qubit,are utilized in our scheme. State transmission and storage(retrieval)are achieved in two steps by adjusting the interaction between the computing and the memory units.A hybrid superconducting(SC)memory system combining flux qubits with a nitrogen–vacancy centers(NV)ensemble is considered conducting our two-step scheme.The NV ensemble has been regarded as a promising candidate for storage units because of its long coherence time at room temperature,narrow optical line widths,and flexible scalability.[41–45]In SC circuits,NV ensembles couple flux qubits through magnetic interactions.[29,46,47]Spins in NV ensemble are usually considered to have a low excitation rate and homogeneous energy splitting,hence the NV ensemblecan be approximated as a bosonic mode.[48,49]As an intermediate state,the entangled state of SC qubit and NV ensemble is utilized to temporarily keep the quantum information,with which the state transmission process could be finished in advance.By tuning the coupling strength between SC qubits, we are able to further trade off time costs of two steps and to reduce the influence of frequency detuning caused by environmental noises.The simulation reflects that both the transmission speed and the robustness with respect to detuning could be effectively enhanced in our scheme.

    2.Model and Hamiltonian

    We briefly introduce the model and the Hamiltonian of our memory system for quantum data buses in scalable quantum computers.The system comprises SC flux qubits and a NV ensemble.[29,47,48]The schematic architecture of our model is depicted in Fig.1,which consists of three parts:a computing unit,a quantum memory unit,and a transmission unit.Here a computing flux qubit(CQ)is utilized as the computing unit.The quantum memory unit is made up of a memory qubit(MQ)and a NV ensemble.An ancillary qubit (AQ)is introduced as the transmission unit,which couples the distant computing unit and the quantum memory together.By modifying voltage,current,and magnetic induction,energy levels and transition frequencies of SC qubits can be accurately controlled.[50–55]Additionally,the coupling strength between the computing unit and the memory can be adjusted by changing the energy level of AQ.By controlling the coupling strength between the memory and the computing units,one can store the quantum state of a computing unit in the memory and retrieve it at another computing unit.Here,the memory plays the role of a quantum state buffer.Benefiting from the memory unit,the quantum state could be shared in a longer time period,and the controllability and scalability of the system would be improved.

    Fig.1.(color online)The architecture of our hybrid SC circuit memory system.The whole quantum memory system consists of three flux qubits and an NV ensemble.The computing qubit(CQ)is employed as the computing unit.Memory qubit(MQ)together with the NV ensemble compose the memory unit.The ancillary qubit(AQ)plays the role in data transmission between the computing unit and the memory.Coupling spatially separated computing units A,B,C,D,...,and the memory unit M respectively,a series of memory systems are composed.By storing and retrieving the quantum information,they can act as a quantum data bus.

    Under the rotating wave approximation,the Hamiltonian of the memory unit[29,40]is

    where the reduced Planck constantˉh=1.The NV ensemble is considered as an effective bosonic mode.[48,49]The straininduced fine-structure splitting of NV centers are ignored and the spins of the NV centers are assumed to have the homogeneous energy splitting.The increasing and decreasing operators of the excited NV centers are denoted by b+and b, respectively.They are derived from the raising and lowering operators of the the NV center and are approximately bosonic commutation operators.In addition,andare raising and lowering operators of MQ.Parameter JMUis the coupling strength between the NV ensemble and MQ,and ωMand ωNVare the frequencies of MQ and NV ensemble.

    In superconducting circuits,the ancillary qubit could be a flux qubit,whose frequency is much larger than the frequencies of CQ and MQ.In this dispersive interaction case,AQ evolves faster than any other unit of the system,and operators corresponding to the ancillary qubit can be adiabatically eliminated.[56]Under the rotation wave approximation,the interaction Hamiltonian between MQ and CQ[57]is

    We can describe the evolution of the whole system with a Schr?dinger equationHere the initial state of the system is|ψ(0)〉=|ψC(0)〉?|ψM(0)〉?|ψNV(0)〉. |ψC(t)〉,|ψM(t)〉,|ψNV(t)〉,and|ψ(t)〉represent the states of CQ,MQ,NV ensemble,and the whole memory system,respectively.

    In the following,the evolution of the memory system is discussed in the interaction picture.Under the resonate condition,ωC=ωM=ωNV,the interaction Hamiltonian of our memory system is

    where

    H√ereand b?|n〉=State vectors|g〉and|e〉are the ground state and the excited state of the flux qubits respectively,and|n〉denotes the state of n NV centers excited in the NV ensemble.

    In the quantum memory system employed in our scheme, the coupling between CQ and MQ can be controlled by adjusting the ancillary qubit via adapting the external magneticfield.Through setting the coupling strength JCM=Jt≥JMUand JCM=0 respectively,we can achieve the quantum state storage and retrieval in two steps.

    3.Two-step scheme for quantum state storage and retrieval

    In this section,we consider the two-step scheme for quantum state storage and retrieval.We assume that the computing qubit,the memory qubit,and the NV ensemble have been set off-resonance.Additionally,the states of the memory |ψM〉?|ψNV〉and the computing unit|ψC〉are assumed to be ground states before conducting the storage and the retrieval process.

    To store the state of the computing unit into the NV ensemble,quantum information is firstly transmitted from CQ to the memory unit.The entangled state of MQ and NV ensemble is utilized to keep the quantum information temporarily. We can adjust magnetic fields on MQ and the NV ensemble to make the whole memory system resonate,ωC=ωM=ωNV, and modify the magnetic flux through the ancillary qubit AQ to couple MQ and CQ with the strength JCM=Jt≥JMU.

    For initial states|ψC(0)〉=cg|g〉+ce|e〉,|ψM(0)〉=|g〉, and|ψNV(0)〉=|0〉,the state of the whole quantum memory system at time t can be expressed with parametersandas

    As a result,at some specific moments

    In the second step,the quantum information transmitted to the quantum memory unit is stored in the NV ensemble. We cut off the interaction between the computing unit and the memory by setting JCM=0.Thus the Hamiltonian of the system will beFor an initial statethe state of the quantum memory system at time t>t1can also be expressed as the form of|ψI(t)〉with

    which correspond to two different cases with evolution times t1=t1Aand t1=t1Bin the first step,respectively.At the moments t1+t2=t1A+t2Aor t1+t2=t1B+t2B,the initial quantum state would be completely stored in the NV ensemble,and the interaction between the memory flux qubit and the NV ensemble could then be cut off by tuning the external magnetic field.The NV ensemble will preserve the quantum information for a certain period before retrieving it.

    Corresponding to our storage process,the two-step state retrieval scheme is introduced in the following.To retrieve the stored quantum information,the NV ensemble firstly interacts with the flux qubit MQ for a time period t3=?t2+2k3π/JMU, with k3=1,2,...and t3≥0.Then the quantum information will be coded by an entangled state of the memory unit.In the second step,we couple the memory unit to the computing unit with the coupling strength JCM=Jt≥JMU. Through their interaction,the quantum state is transmitted back to the computing unit.Corresponding to two cases in the retrieval step,transmission time of the second step iswith k4=1,2,...and t4≥0.After the evolution for the time period t4,the initial state would be finally retrieved at the desired computing qubit.

    In the following,we make a discussion on how transmission time can be adjusted by modifying the coupling strength. According to our discussion in the previous section,the total time cost for a complete state storage and retrieval process is

    The total time costs are functions of the cycle numbers,kA, kB≥1,and the coupling strength parameters,JCMand JMU. To ensure the resonance of the memory unit,JMUshould be kept at a specific value.[29,58]On the other hand,the coupling strength between the computing unit and the memory unit, JCM=Jt,could be modified by controlling the flux threading the loop of the ancillary qubit,[56,57]and our scheme can thus be adjusted.As a special case,when JCM=JMUand k1=k2=0,k3=k4=1,we find t2A=0,which means that the state storage process can be finished in one step.By setting parameters of the system to be a specific set of values, our scheme degenerates to a direct storage scheme.Moreover,when JCM=JMUand k1=0,k2=k3=k4=1,we have t3B=0,which means that the state retrieval process degenerates to a direct retrieval scheme.

    By strengthening the coupling JCM,the time cost TCcould be reduced and the performance of the system would be more efficient.Because the memory processes in case A and case B have inverse time costs,we just focus on case A in the following study and take tl=tlAfor l=1,2,3,4.To simplify the scheme and reduce the total transmission time,we take k1=0 and k2=k3=k4=1,which leads to

    According to Eq.(12)the relationship between the coupling strength Jtand the time costs is shown in Fig.2.It indicates that the transmission times t1and t4would be reduced when increasing the coupling strength Jt.Considering the coupling strength limitation of the rotating wave approximation,[59–61]we propose that the optimal value of the coupling strength Jtis around 8JMU–10JMU,with which 80%of the transmission time will be saved.

    Fig.2.(color online)The relationship between time costs of quantum memory processes and the coupling strength parameter Jt.Time costs of quantum state storage(a)and retrieval(b)are influenced by Jt.Here the relative value Jt/J MU is employed to judge Jt.We take tl=tlA and k1=0,k2=k3=k4=1.

    4.The robustness of the memory scheme against detuning

    In this section,we discuss the robustness of our control method under quantum detuning caused by magnetic noises. Currents of SC qubits nearby and acts of conducting classical or quantum operations on computing qubits may cause interruptions to the control magnetic fields of flux qubits.[38]With regard to resonant coupling qubits,frequency detuning is one of the main influences caused by such kind of interruptions, since the frequency of flux qubits are sensitive to the magnetic flux threading their loops.[52,57]Focusing on frequency detuning,we study the evolution of our memory system and show the robustness of our memory scheme in the following.

    With δ1=ωC?ωMdenoting the detuning between CQ and MQ,and δ2=ωM?ωNVdenoting the detuning between MQ and the NVensemble,the Hamiltonian of the whole memory system can be expressed in the interaction picture as

    We take time periods of quantum state storage and retrieval processes as those given in Eq.(12)and focus on the quan-tum state storage process in the following,since the state retrieval is just its inverse process.Under the initial condition |ψC(0)〉=cg|g〉+ce|e〉,|ψM(0)〉=|g〉,and|ψNV(0)〉=|0〉, the state of the whole quantum memory system at time t can generally be written as

    Since detuning is considered to be much smaller than the coupling strength,the second and higher level items of detuning are omitted in our model.According to our derivation shown in Appendix A,when δ1t1,δ2t1?1,state parameters for 0≤t≤t1can be approximately expressed as

    Additionally,we have t1≤t≤t1+t2in the second step.When δ1t2,δ2t2?1,state parameters in Eq.(14)are approximately expressed as

    We firstly study how detuning influences the transmission time in our scheme.Comparing Eq.(15)with Eq.(7),we find that,which suggests that there is little variance caused by detuning in the transmission time.Here we consider only the influence of lower level items of detuning,since the second and higher level items of the perturbation are much smaller and they can be omitted consequently.As the estimated state parameter,the quantum state transmission will still be completed at t1even under the detuning condition.The time cost of the state transmission process in our scheme is robust with respect to detuning.

    Detuning may also cause errors in the states transmitted. According to the expressions ofandin Eq.(15), state errors in the intermediate state〉can be described by two factors, which are

    Fig.3.(color online)The relationship between phase error E,transmission time t1,and detuning δ,which are depicted with the relative values t1/J MU∈(0~2.5)and δ/J MU∈(?0.5~0.5).The amplitude and phase of the error factor E are plotted,respectively.

    To investigate the error in the final state,the fidelity of quantum storage versus δ1and δ2is plotted in Fig.4 with t1=2,1.5,1,and 0.5.It is shown that the influence of detuning can be depressed through reducing the state transmission time t1.By tuning the coupling strength JCM,we can cut down the time cost of state storage and get a higher fidelity under the specific detuning condition.

    According to the aforementioned discussion,although detuning influences the transmission time and the transmitted state in different ways,both kinds of influence can be depressed in our scheme.The transmission time is immune to detuning when the second and higher level items of the perturbation are omitted.By reducing the transmission time,the error in the intermediate state could be depressed and thefidelity of the state stored would be improved.These facts indicate that our control method can be used to improve the system robustness under the influence of quantum detuning.

    Fig.4.(color online)The fidelity of the stored state F versus detuning δ1=ωC?ωM and δ2=ωM?ωNV under different state transmission times t1=2(a),1.5(b),1(c),and 0.5(d),where δ1/J MU,δ2/J MU∈(?0.4~0.4). The value of F is indicated by the colorbar on the right.Here,we consider that the initial state to be stored isthe state stored in the NV ensemble is|ψNV〉,and F=〈ψT|ψNV〉.

    5.A comparison with the direct memory scheme

    In this section,we make a comparison between the storing processes of our scheme and the previous direct memory schemes.We note that the direct memory scheme[38]can be regarded as a special case of our two-step scheme.According to Eqs.(8)and(10),by taking k1=k2=0,our scheme will degenerate to the direct memory scheme when JCM=JMU.To simplify the comparison,we take times of two steps to be

    in the following discussion.

    The efficiency of our memory scheme is judged by the evolution of fidelityHereis the state of the NV ensemble with the additional phase omitted.The initial state of the flux qubit is assumed to be |ψC(0)〉=α|g〉+β|e〉and the target state of the NV ensemble is accordingly denoted by|ψT〉=α|0〉+β|1〉.In addition,thefidelityis employed to indicate the transmission process,where|g〉is the ground state of the flux qubit. Since CQ decays to the ground state|g〉in the transmission process,FT(t)=1 means that the quantum state transmission from CQ to the memory unit is completed.

    Currently,the coupling strength between a flux qubit and a NV ensemble,JMU,has been achieved with dozens of MHz.[30,38,62]Via the mediating of the ancillary qubit,the interaction strength between CQ and MQ can be adjusted within 0~2π×300 MHz.[57,59]The energy splitting of the NV ensemble ωNVcan be adjusted around the zero-field splitting D=2.88 GHz.[14,63,64]Correspondingly,the typical energy gap of SC qubits is about a few GHz.[65,66]SC flux qubits can be tuned resonate with the NV ensemble by modifying external magnetic fields.[50–54]Considering the available values of parameters in current experiment condition,we take JMU=?, and the frequenciesωC,ωM,andωNVaroundω=100? in our discussion.Moreover,to ensure the rotating wave approximation in Eq.(2)is valid,[60,61]the range of the coupling strength Jtis taken to be ?~10?.

    Fig.5.(color online)Fidelity evolutions of the quantum storage process under different detuning conditions.We set the computing unit initially at the state(|0〉+|1〉)/.Under detuning conditions δ1/?=0(a), 0.5(b),and 1(c),we compare the evolution of F T(t)and F S(t)of our two-step memory scheme with the direct memory scheme.

    6.Conclusion

    The state storage and retrieval of quantum memories is studied based on the application of quantum data buses in a scalable quantum computer system.A novel two-step quantum memory scheme is proposed for the hybrid SC memory system.Taking advantage of the adjustable coupling parameter of the ancillary qubit and utilizing the entangled state of MQ and NV ensemble,our scheme divides the state transmission and storage(retrieval)into two separately performed steps.Through adjusting the value of coupling strength JCM, our scheme can trade off the time costs of the transmission and the storage(retrieval),and includes one step direct memory scheme as a special case.The quantum state transmission could be performed much faster and the performance of the quantum data bus will be improved with a stronger coupling. During the transmission procedure,quantum states are vulnerable to the variance of environmental magnetic fields,which may lead to detuning of the system.By studying the evolution of our memory system under the detuning condition,it is found that both the time cost and the final state are robust with respect to detuning.We further make a comparison between our scheme and the previous direct memory scheme based on an available experimental condition.The results indicate the feasibility of our scheme,and suggest its robustness and effi ciency over another scheme[38]for the quantum data bus in scalable quantum computers.

    Appendix A

    To get the state parameters in Eqs.(15)and(16),we derive the state evolution under a detuning condition.Detuning between CQ and MQ δ1=ωC?ωMand the one between MQ and NV center δ2=ωM?ωNVare considered.It is assumed that both δ1and δ2are small in comparison to the coupling strength between units of our system,hence their higher level items are omitted in our derivation.

    With the Hamiltonian for any k,l=0,1,2,3,and kl.Thus we have

    The state parameters at any time t could be finally gotten by simply substituting initial state parameters into Eq.(A8)and extending it.

    [1]Shi Z G,Chen X W,Zhu X X and Song K H 2009 Chin.Phys.B 18 910

    [2]Wang D M,Qian Y,Xu J B and Yu Y H 2015 Chin.Phys.B 24 110304

    [3]Wu C,Fang M F,Xiao X,Li Y L and Cao S 2011 Chin.Phys.B 20 020305

    [4]Hua M,Tao M J and Deng F G 2016 Sci.Rep.6 22037

    [5]Shahriar M S,Kumar P and Hemmer P R 2012 J.Phys.B-At.Mol.Opt. Phys.45 124018

    [6]Garcia-Escartin J C and Chamorro-Posada P 2006 Phys.Rev.Lett.97 110502

    [7]Majer J,Chow J M,Gambetta J M,Koch J,Johnson B R,Schreier J A, Frunzio L,Schuster D I,Houck A A,Wallraff A,Blais A,Devoret M H,Girvin S M and Schoelkopf R J 2007 Nature 449 443

    [8]Reiserer A and Rempe G 2015 Rev.Mod.Phys.87 1379

    [9]Li T,Yang G J and Deng F G 2014 Opt.Express 22 23987

    [10]Yu L B,Feng J S,Dong P,Li D C and Cao Z L 2015 Quantum Inf. Process.14 3303

    [11]Mariantoni M,Wang H,Yamamoto T,Neeley M,Bialczak R C,Chen Y,Lenander M,Lucero E,O’Connell A D,Sank D,Weides M,Wenner J,Yin Y,Zhao J,Korotkov A N,Cleland A N and Martinis J M 2011 Science 334 61

    [12]Yang C P,Su Q P,Zheng S B and Han S 2015 Phys.Rev.B 92 054509

    [13]Kurizki G,Bertet P,Kubo Y,Molmer K,Petrosyan D,Rabl P and Schmiedmayer J 2015 P.Natl.Acad.Sci.USA 112 3866

    [14]Matsuzaki Y,Zhu X,Kakuyanagi K,Toida H,Shimooka T,Mizuochi N,Nemoto K,Semba K,Munro W J,Yamaguchi H and Saito S 2015 Phys.Rev.A 91 042329

    [15]Averin D V,Xu K,Zhong Y P,Song C,Wang H and Han S 2016 Phys. Rev.Lett.116 010501

    [16]Douce T,Stern M,Zagury N,Bertet P and Milman P 2015 Phys.Rev. A 92 052335

    [17]Ginossar E and Grosfeld E 2014 Nat.Commun.5 4772

    [18]Zhang X,Zou C L,Zhu N,Marquardt F,Jiang L and Tang H X 2015 Nat.Commun.6 8914

    [19]Wolfowicz G,Maier-Flaig H,Marino R,Ferrier A,Vezin H,Morton J J L and Goldner P 2015 Phys.Rev.Lett.114 170503

    [20]Bensky G,Amsuss R,Majer J,Petrosyan D,Schmiedmayer J and Kurizki G 2011 Quantum Inf.Process.10 1037

    [21]Wu Q Q,Xu L,Tan Q S and Yan L L 2012 Int.J.Theor.Phys 51 1482

    [22]Cohen G Z and Ventra M 2013 Phys.Rev.B 87 014513

    [23]Liu T,Cao X Z,Su Q P,Xiong S J and Yang C P 2016 Sci.Rep.6 21562

    [24]Li P B,Gao S Y and Li F L 2011 Phys.Rev.A 83 054306

    [25]Blais A,Huang R S,Wallraff A,Girvin S M,and Schoelkopf R J 2004 Phys.Rev.A 69 062320

    [26]Wallquist M,Hammerer K,Rabl P,Lukin M and Zoller P 2009 Phys. Scripta T137 014001

    [27]Duan L M and Monroe C 2010 Rev.Mod.Phys.82 1209

    [28]Sillanpaeae M A,Park J I and Simmonds R W 2007 Nature 449 438

    [29]Marcos D,Wubs M,Taylor J M,Aguado R,Lukin M D and Sorensen A S 2010 Phys.Rev.Lett.105 210501

    [30]Zhu X,Saito S,Kemp A,Kakuyanagi K,Karimoto S,Nakano H, MunroWJ,Tokura Y,Everitt M S,Nemoto K,Kasu M,Mizuochi N and Semba K 2011 Nature 478 221

    [31]Zhao Y J,Fang X M,Zhou F and Song K H 2012 Phys.Rev.A 86 052325

    [32]Wang Z L,Zhong Y P,He L J,Wang H,Martinis J M,Cleland A N and Xie Q W 2013 Appl.Phys.Lett.102 163503

    [33]Kyaw T H,Felicetti S,Romero G,Solano E and Kwek L C 2015 Sci. Rep.5 8621

    [34]Qian Y,Zhang Y Q and Xu J B 2012 Chin.Sci.Bull.57 1637

    [35]Zhang F Y,Chen X Y,Li C and Song H S 2015 Sci.Rep.5 17025

    [36]McKay D C,Naik R,Reinhold P,Bishop L S and Schuster D I 2015 Phys.Rev.Lett.114 080501

    [37]Feng Z B,Wang H L and Yan R Y 2016 Quantum Inf.Process.15 3151

    [38]Lu X Y,Xiang Z L,Cui W,You J Q and Nori F 2013 Phys.Rev.A 88 012329

    [39]Blum S,O’Brien C,Lauk N,Bushev P,Fleischhauer M,and Morigi G 2015 Phys.Rev.A 91 033834

    [40]Xiang Z L,Lu X Y,Li T F,You J Q and Nori F 2013 Phys.Rev.B 87 144516

    [41]Togan E,Chu Y,Trifonov A S,Jiang L,Maze J,Childress L,Dutt M V G,Sorensen A S,Hemmer P R,Zibrov A S and Lukin M D 2010 Nature 466 730

    [42]Shi F,Rong X,Xu N,Wang Y,Wu J,Chong B,Peng X,Kniepert J, Schoenfeld R S,Harneit W,Feng M and Du J 2010 Phys.Rev.Lett. 105 040504

    [43]Neumann P,Kolesov R,Naydenov B,Beck J,Rempp F,Steiner M, Jacques V,Balasubramanian G,Markham M L,Twitchen D J,Pezzagna S,Meijer J,Twamley J,Jelezko F and Wrachtrup J 2010 Nat.Phys. 6 249

    [44]Zhao N,Hu J L,Ho S W,Wan J T K and Liu R B 2011 Nat.Nanotech. 6 242

    [45]Liu G Q,Jiang Q Q,Chang Y C,Liu D Q,Li W X,Gu C Z,Po H C, Zhang W X,Zhao N and Pan X Y 2014 Nanoscale 6 10134

    [46]Li P B,Liu Y C,Gao S Y,Xiang Z L,Rabl P,Xiao Y F and Li F L 2015 Phys.Rev.Applied 4 044003

    [47]Grezes C,Julsgaard B,Kubo Y,MaWL,Stern M,Bienfait A,Nakamura K,Isoya J,Onoda S,Ohshima T,Jacques V,Vion D,Esteve D, Liu R B,Molmer K and Bertet P 2015 Phys.Rev.A 92 020301

    [48]Twamley J and Barrett S D 2010 Phys.Rev.B 81 241202

    [49]Huemmer T,Reuther G M,Haenggi P and Zueco D 2012 Phys.Rev.A 85 052320

    [50]van der Ploeg S H W,Izmalkov A,van den Brink A M,Huebner U, Grajcar M,Il’ichev E,Meyer H G and Zagoskin A M 2007 Phys.Rev. Lett.98 057004

    [51]Liu Y X,Wei L F,Tsai J S and Nori F 2006 Phys.Rev.Lett.96 067003

    [52]Niskanen A O,Harrabi K,Yoshihara F,Nakamura Y,Lloyd S and Tsai J S 2007 Science 316 723

    [53]Neumann P,Kolesov R,Jacques V,Beck J,Tisler J,Batalov A,Rogers L,Manson N B,Balasubramanian G,Jelezko F and Wrachtrup J 2009 New J.Phys.11 013017

    [54]Forrester D M and Kusmartsev F V 2016 Sci.Rep.6 25084

    [55]Qiu Y,Xiong W,He X L,Li T F and You J Q 2016 Sci.Rep.6 28622

    [56]Ashhab S,Niskanen A O,Harrabi K,Nakamura Y,Picot T,de Groot P C,Harmans C J P M,Mooij J E and Nori F 2008 Phys.Rev.B 77 014510

    [57]Niskanen A O,Nakamura Y and Tsai J S 2006 Phys.Rev.B 73 094506

    [58]Bertet P,Chiorescu I,Burkard G,Semba K,Harmans C,DiVincenzo D P and Mooij J E 2005 Phys.Rev.Lett.95 257002

    [59]Xiang Z L,Ashhab S,You J Q and Nori F 2013 Rev.Mod.Phys.85 623

    [60]Casanova J,Romero G,Lizuain I,Garcia-Ripoll J J and Solano E 2010 Phys.Rev.Lett.105 263603

    [61]Fedorov A,Feofanov A K,Macha P,Forn-Diaz P,Harmans C J P M and Mooij J E 2010 Phys.Rev.Lett.105 060503

    [62]Song W L,Yin Z Q,Yang W L,Zhu X B,Zhou F and Feng M 2015 Sci.Rep.5 7755

    [63]Jin L,Pfender M,Aslam N,Neumann P,Yang S,Wrachtrup J and Liu R B 2015 Nat.Commun.6 8251

    [64]Kubo Y,Grezes C,Dewes A,Umeda T,Isoya J,Sumiya H,Morishita N,Abe H,Onoda S,Ohshima T,Jacques V,Dreau A,Roch J F,Diniz I,Auffeves A,Vion D,Esteve D and Bertet P 2011 Phys.Rev.Lett.107 220501

    [65]Liu Y,You J and Hou Q 2016 Sci.Rep.6 21775

    [66]van der Wal C H,ter Haar A C,Wilhelm F K,Schouten R N,Harmans C J,Orlando T P,Lloyd S and Mooij J E 2000 Science 290 773

    7 March 2017;revised manuscript

    16 May 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/090303

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.61673389,61273202,61134008,and 11404113).

    ?Corresponding author.E-mail:zhangming@nudt.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    陳希張明
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    力量的對(duì)決
    優(yōu)雅螽斯
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    滑滑梯
    二手貨
    小豬吃西瓜
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢(qián)
    張明等
    超碰97精品在线观看| 寂寞人妻少妇视频99o| 99久久精品热视频| 日本av手机在线免费观看| 久久久久网色| 午夜久久久久精精品| 伦精品一区二区三区| 91久久精品电影网| 亚洲国产欧洲综合997久久,| 亚洲欧美清纯卡通| 天堂网av新在线| 国产熟女欧美一区二区| 少妇被粗大猛烈的视频| 久久韩国三级中文字幕| 在线播放国产精品三级| 在线天堂最新版资源| 黄片wwwwww| 免费看美女性在线毛片视频| 欧美成人精品欧美一级黄| 亚洲无线观看免费| 精华霜和精华液先用哪个| 18禁在线播放成人免费| 欧美丝袜亚洲另类| 国产免费男女视频| 最新中文字幕久久久久| 女人十人毛片免费观看3o分钟| 美女高潮的动态| 看片在线看免费视频| 日本黄大片高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av国产免费在线观看| 亚洲av电影在线观看一区二区三区 | 又粗又爽又猛毛片免费看| 日韩三级伦理在线观看| 日本欧美国产在线视频| 国产伦精品一区二区三区四那| 国内精品美女久久久久久| 美女黄网站色视频| 麻豆成人午夜福利视频| 小蜜桃在线观看免费完整版高清| 只有这里有精品99| 嫩草影院新地址| 日本黄色片子视频| 岛国毛片在线播放| 免费播放大片免费观看视频在线观看 | 非洲黑人性xxxx精品又粗又长| 夜夜爽夜夜爽视频| 边亲边吃奶的免费视频| 99在线人妻在线中文字幕| 国内精品宾馆在线| 精品久久久久久久人妻蜜臀av| ponron亚洲| 精品久久久久久久久av| 国产亚洲一区二区精品| 好男人在线观看高清免费视频| 欧美一级a爱片免费观看看| 全区人妻精品视频| 亚洲国产欧美人成| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 黄片wwwwww| 91久久精品国产一区二区成人| 亚洲av不卡在线观看| 亚洲最大成人中文| 久久久成人免费电影| 六月丁香七月| 久久久国产成人精品二区| 欧美+日韩+精品| 欧美日韩在线观看h| 一级毛片久久久久久久久女| 欧美高清性xxxxhd video| 亚洲色图av天堂| 成人国产麻豆网| 国产成人a∨麻豆精品| 蜜桃亚洲精品一区二区三区| 国产高清不卡午夜福利| 亚洲综合色惰| 水蜜桃什么品种好| 久久久久久久久久成人| 国产精品av视频在线免费观看| 国产精品久久久久久av不卡| 国产成人a区在线观看| 天堂中文最新版在线下载 | 国产精品一区二区性色av| 又粗又硬又长又爽又黄的视频| 久久久国产成人免费| 黄色欧美视频在线观看| 国产精品一区二区性色av| 麻豆国产97在线/欧美| 51国产日韩欧美| 人人妻人人看人人澡| 午夜福利在线在线| 91久久精品国产一区二区成人| 99久久人妻综合| 小说图片视频综合网站| 日韩欧美三级三区| 国产中年淑女户外野战色| 在线播放无遮挡| 亚洲欧美精品专区久久| 性插视频无遮挡在线免费观看| videos熟女内射| 日本黄大片高清| 久久久久久久午夜电影| 国产69精品久久久久777片| 特级一级黄色大片| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 在线播放无遮挡| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 日本三级黄在线观看| 色网站视频免费| 在线免费观看的www视频| 1024手机看黄色片| 国产精品99久久久久久久久| 久久亚洲精品不卡| 美女cb高潮喷水在线观看| 欧美97在线视频| 久久精品人妻少妇| 国产黄片视频在线免费观看| 精品人妻一区二区三区麻豆| 国产女主播在线喷水免费视频网站 | 校园人妻丝袜中文字幕| 亚洲天堂国产精品一区在线| 我的老师免费观看完整版| 亚洲国产欧美人成| 亚洲不卡免费看| 国产熟女欧美一区二区| 日本猛色少妇xxxxx猛交久久| 99热全是精品| 欧美最新免费一区二区三区| 麻豆国产97在线/欧美| 韩国高清视频一区二区三区| 99久久九九国产精品国产免费| 免费av毛片视频| 久久久国产成人免费| 日韩成人伦理影院| 国产精品av视频在线免费观看| 丰满少妇做爰视频| 91精品一卡2卡3卡4卡| 成人三级黄色视频| 2021少妇久久久久久久久久久| 亚洲丝袜综合中文字幕| 久久亚洲精品不卡| 少妇人妻精品综合一区二区| av天堂中文字幕网| 激情 狠狠 欧美| 18禁动态无遮挡网站| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 亚洲精品456在线播放app| 国产老妇女一区| 精品久久国产蜜桃| 91精品国产九色| 国产精品一区二区在线观看99 | 综合色丁香网| 国产日韩欧美在线精品| 日本午夜av视频| 亚洲va在线va天堂va国产| 成人欧美大片| 亚洲成人中文字幕在线播放| 国产淫片久久久久久久久| 久久亚洲国产成人精品v| 日本午夜av视频| 日本一二三区视频观看| 日韩国内少妇激情av| 七月丁香在线播放| 成人鲁丝片一二三区免费| 在线观看66精品国产| 国产成人福利小说| 99久久人妻综合| 边亲边吃奶的免费视频| 六月丁香七月| 人人妻人人看人人澡| 久久精品国产自在天天线| 午夜福利视频1000在线观看| 一个人看视频在线观看www免费| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久| 国产免费男女视频| 亚州av有码| 建设人人有责人人尽责人人享有的 | 能在线免费观看的黄片| 免费看光身美女| 99久久中文字幕三级久久日本| 热99re8久久精品国产| 久久久久久久久久久免费av| 中文精品一卡2卡3卡4更新| 麻豆精品久久久久久蜜桃| 免费无遮挡裸体视频| 亚洲熟妇中文字幕五十中出| 一卡2卡三卡四卡精品乱码亚洲| 身体一侧抽搐| 国产精品,欧美在线| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱| 美女黄网站色视频| 中文字幕亚洲精品专区| 91久久精品电影网| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 99久久中文字幕三级久久日本| 久久久久性生活片| 午夜福利在线观看免费完整高清在| av在线天堂中文字幕| av黄色大香蕉| 亚洲成人精品中文字幕电影| 成人av在线播放网站| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| av黄色大香蕉| 看非洲黑人一级黄片| 1024手机看黄色片| 国产老妇女一区| 青春草亚洲视频在线观看| 精品人妻一区二区三区麻豆| 精品久久久久久久久亚洲| 日本欧美国产在线视频| 国产探花极品一区二区| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 在线观看av片永久免费下载| 国产精华一区二区三区| 亚洲,欧美,日韩| 国产高清视频在线观看网站| 国产单亲对白刺激| 亚洲精品亚洲一区二区| 国语对白做爰xxxⅹ性视频网站| 97超碰精品成人国产| 久久久久久久久大av| 国产乱来视频区| 精品国产一区二区三区久久久樱花 | 亚洲国产精品成人久久小说| 一级黄色大片毛片| av在线天堂中文字幕| 国产一区有黄有色的免费视频 | 美女国产视频在线观看| 91精品国产九色| ponron亚洲| 性插视频无遮挡在线免费观看| 国产成人午夜福利电影在线观看| av又黄又爽大尺度在线免费看 | 日日啪夜夜撸| 亚洲欧美中文字幕日韩二区| 插逼视频在线观看| av卡一久久| 久久久欧美国产精品| 国产精品,欧美在线| 免费看日本二区| 日韩欧美 国产精品| av卡一久久| 国产伦理片在线播放av一区| 久久久精品94久久精品| 午夜精品一区二区三区免费看| av免费观看日本| 国产黄色视频一区二区在线观看 | 亚洲欧美一区二区三区国产| 国产成人精品久久久久久| 亚洲av熟女| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 能在线免费看毛片的网站| 熟妇人妻久久中文字幕3abv| 亚洲av电影在线观看一区二区三区 | 美女cb高潮喷水在线观看| 国产探花极品一区二区| 99九九线精品视频在线观看视频| 国产又色又爽无遮挡免| 国产一区二区亚洲精品在线观看| 免费观看精品视频网站| 国产精品人妻久久久影院| 欧美成人午夜免费资源| eeuss影院久久| 久久精品夜色国产| 午夜福利高清视频| 简卡轻食公司| 中文亚洲av片在线观看爽| 日本av手机在线免费观看| 国产激情偷乱视频一区二区| 亚洲内射少妇av| 午夜久久久久精精品| 精华霜和精华液先用哪个| 99热6这里只有精品| 欧美三级亚洲精品| 久久6这里有精品| 国产成人午夜福利电影在线观看| 久久久久久国产a免费观看| 老女人水多毛片| 日韩精品有码人妻一区| 极品教师在线视频| 欧美又色又爽又黄视频| 日韩 亚洲 欧美在线| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 99久久九九国产精品国产免费| 免费大片18禁| 中国美白少妇内射xxxbb| 国产成人精品婷婷| 成人美女网站在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 又黄又爽又刺激的免费视频.| 日韩中字成人| 成人亚洲精品av一区二区| 蜜臀久久99精品久久宅男| 国产淫片久久久久久久久| 你懂的网址亚洲精品在线观看 | 一区二区三区高清视频在线| 好男人在线观看高清免费视频| 亚洲成人av在线免费| 嫩草影院新地址| 亚洲国产日韩欧美精品在线观看| 九九热线精品视视频播放| 欧美一级a爱片免费观看看| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| 亚洲成人精品中文字幕电影| 久久久国产成人精品二区| 午夜福利在线在线| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 国产人妻一区二区三区在| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 国产精品一区二区性色av| 男插女下体视频免费在线播放| 人人妻人人澡人人爽人人夜夜 | 男人和女人高潮做爰伦理| 精品国产一区二区三区久久久樱花 | 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看| 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| 国产黄色视频一区二区在线观看 | 久久草成人影院| 久久欧美精品欧美久久欧美| 人妻系列 视频| 精品人妻偷拍中文字幕| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 好男人在线观看高清免费视频| 久久精品91蜜桃| 丰满少妇做爰视频| av.在线天堂| 午夜老司机福利剧场| 亚洲色图av天堂| 久久6这里有精品| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 日韩成人伦理影院| 视频中文字幕在线观看| 看免费成人av毛片| 岛国在线免费视频观看| 成年版毛片免费区| 欧美成人一区二区免费高清观看| 非洲黑人性xxxx精品又粗又长| 午夜福利高清视频| 51国产日韩欧美| 日韩人妻高清精品专区| 麻豆乱淫一区二区| 国产三级在线视频| 一级av片app| 国产 一区精品| 国产69精品久久久久777片| 久久99蜜桃精品久久| 国产精品国产三级国产专区5o | 亚洲图色成人| 亚洲怡红院男人天堂| 亚洲图色成人| 美女黄网站色视频| 大又大粗又爽又黄少妇毛片口| 欧美精品国产亚洲| 国产欧美日韩精品一区二区| 97在线视频观看| 国产精品野战在线观看| АⅤ资源中文在线天堂| 国产激情偷乱视频一区二区| 欧美性猛交黑人性爽| 午夜视频国产福利| 深爱激情五月婷婷| 免费看光身美女| 两个人视频免费观看高清| www.av在线官网国产| 国产免费视频播放在线视频 | 99热网站在线观看| 国产高清三级在线| 长腿黑丝高跟| 亚洲精华国产精华液的使用体验| 观看美女的网站| 少妇熟女aⅴ在线视频| 69人妻影院| 黄色配什么色好看| 午夜福利在线观看吧| 欧美区成人在线视频| 国产亚洲精品久久久com| 寂寞人妻少妇视频99o| 国产淫片久久久久久久久| 午夜福利高清视频| 99热这里只有是精品在线观看| 91aial.com中文字幕在线观看| 国产一级毛片在线| 久久亚洲精品不卡| 国产精品麻豆人妻色哟哟久久 | 亚洲国产精品成人久久小说| 男人舔奶头视频| 韩国av在线不卡| 亚洲精品久久久久久婷婷小说 | 日韩人妻高清精品专区| 麻豆av噜噜一区二区三区| 亚洲自拍偷在线| 如何舔出高潮| 日日撸夜夜添| 联通29元200g的流量卡| 亚洲最大成人av| 18+在线观看网站| 视频中文字幕在线观看| 一个人看的www免费观看视频| 午夜老司机福利剧场| 永久网站在线| 亚洲人与动物交配视频| 村上凉子中文字幕在线| 国产一级毛片在线| 国产精品久久久久久精品电影| 日本一本二区三区精品| 国产精品三级大全| 特级一级黄色大片| 精品久久久久久久末码| 身体一侧抽搐| 国产精品国产三级国产专区5o | 亚洲人成网站高清观看| 九九热线精品视视频播放| 国产伦在线观看视频一区| 观看美女的网站| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 永久网站在线| 人妻系列 视频| 亚洲成人中文字幕在线播放| 亚洲天堂国产精品一区在线| 成年女人永久免费观看视频| 麻豆成人av视频| 两个人视频免费观看高清| av天堂中文字幕网| 亚洲欧美中文字幕日韩二区| 亚洲自拍偷在线| 亚洲美女搞黄在线观看| 国产男人的电影天堂91| 国产成人午夜福利电影在线观看| 亚洲av熟女| 熟女电影av网| 午夜激情福利司机影院| 国产不卡一卡二| 午夜久久久久精精品| 一边亲一边摸免费视频| 特级一级黄色大片| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 韩国av在线不卡| 少妇被粗大猛烈的视频| 亚洲av成人精品一区久久| 男女国产视频网站| 岛国毛片在线播放| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 国产一级毛片在线| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 国产黄色小视频在线观看| 三级男女做爰猛烈吃奶摸视频| 久久久精品大字幕| 91久久精品国产一区二区三区| 熟妇人妻久久中文字幕3abv| 一级毛片我不卡| 精品人妻偷拍中文字幕| 女的被弄到高潮叫床怎么办| 久久久久久久久久黄片| 免费av观看视频| 久久6这里有精品| av.在线天堂| 非洲黑人性xxxx精品又粗又长| 3wmmmm亚洲av在线观看| 亚洲在线观看片| 99久国产av精品国产电影| 91午夜精品亚洲一区二区三区| 免费看日本二区| 我的女老师完整版在线观看| 国产精品人妻久久久久久| 色播亚洲综合网| 亚洲欧美精品自产自拍| 成年免费大片在线观看| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 在线观看美女被高潮喷水网站| 国产精品一区二区在线观看99 | 超碰97精品在线观看| 99热网站在线观看| 免费av观看视频| 国产精品久久久久久av不卡| 午夜福利高清视频| 亚洲人成网站在线播| 又粗又硬又长又爽又黄的视频| 国产伦在线观看视频一区| 日韩欧美精品免费久久| 日本免费一区二区三区高清不卡| 午夜福利成人在线免费观看| 天堂√8在线中文| 国产精品99久久久久久久久| 午夜福利视频1000在线观看| 亚洲欧美精品专区久久| 久久久a久久爽久久v久久| 中文字幕熟女人妻在线| 国产高清不卡午夜福利| 国产中年淑女户外野战色| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 欧美激情在线99| 永久免费av网站大全| 亚洲精品456在线播放app| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人与动物交配视频| 精品国产三级普通话版| 成人午夜精彩视频在线观看| 欧美zozozo另类| 边亲边吃奶的免费视频| 久久99蜜桃精品久久| 国产又黄又爽又无遮挡在线| 美女xxoo啪啪120秒动态图| 国产精品一区二区在线观看99 | 高清毛片免费看| 精品久久国产蜜桃| 久久久久久久久久久免费av| 国产黄色视频一区二区在线观看 | 免费人成在线观看视频色| 嫩草影院新地址| 国产精品一区二区性色av| 极品教师在线视频| 一边亲一边摸免费视频| 女人久久www免费人成看片 | 在线观看一区二区三区| 99久久精品一区二区三区| 亚洲国产精品成人综合色| 久久热精品热| 国产在线一区二区三区精 | 免费观看精品视频网站| 女人十人毛片免费观看3o分钟| 91久久精品电影网| 高清毛片免费看| 亚洲精品国产成人久久av| .国产精品久久| 在线免费观看不下载黄p国产| 亚洲成人中文字幕在线播放| 成人一区二区视频在线观看| 91精品伊人久久大香线蕉| 国产乱人视频| 级片在线观看| 青青草视频在线视频观看| 午夜福利在线观看免费完整高清在| 国产精品av视频在线免费观看| 久久久欧美国产精品| 日韩欧美精品免费久久| av播播在线观看一区| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 成年女人看的毛片在线观看| 18禁动态无遮挡网站| 男女边吃奶边做爰视频| 岛国毛片在线播放| 午夜激情欧美在线| 丰满人妻一区二区三区视频av| 亚洲在久久综合| 国产精品久久久久久精品电影小说 | 一级黄片播放器| av免费在线看不卡| 搞女人的毛片| 国产精品一区www在线观看| 热99在线观看视频| 亚洲欧美成人精品一区二区| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 国产精品永久免费网站| 99九九线精品视频在线观看视频| 国产一级毛片七仙女欲春2| 中文字幕亚洲精品专区| 综合色av麻豆| av.在线天堂| 成人亚洲精品av一区二区| 国产视频首页在线观看| 免费观看在线日韩| 国产精品蜜桃在线观看| 国国产精品蜜臀av免费| 亚洲成人av在线免费| 又爽又黄无遮挡网站| 床上黄色一级片| 欧美日韩综合久久久久久| 国产精品伦人一区二区| 亚洲18禁久久av| h日本视频在线播放| 桃色一区二区三区在线观看| АⅤ资源中文在线天堂| 三级男女做爰猛烈吃奶摸视频| 又爽又黄无遮挡网站| 亚洲国产欧美人成| 夜夜看夜夜爽夜夜摸| 一卡2卡三卡四卡精品乱码亚洲| 国产高清国产精品国产三级 | 久久久国产成人精品二区| 有码 亚洲区| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 嫩草影院精品99| av在线蜜桃| 又爽又黄a免费视频|