• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness?

    2021-06-26 03:30:12JieXu許杰NaiLongHe何乃龍HaiLianLiang梁海蓮SenZhang張森YuDeJiang姜玉德andXiaoFengGu顧曉峰
    Chinese Physics B 2021年6期
    關(guān)鍵詞:梁海

    Jie Xu(許杰) Nai-Long He(何乃龍) Hai-Lian Liang(梁海蓮)Sen Zhang(張森) Yu-De Jiang(姜玉德) and Xiao-Feng Gu(顧曉峰)

    1Engineering Research Center of IoT Technology Applications(Ministry of Education),Department of Electronic Engineering,Jiangnan University,Wuxi 214122,China

    2Technology Development Department,CSMC Technologies Corporation,Wuxi 214061,China

    Keywords: lateral double-diffused MOSFET (LDMOS), terminal-optimization, breakdown voltage, electrostatic discharge

    1. Introduction

    The lateral double-diffused metal–oxide semiconductor(LDMOS) has wide applications in power integrated circuits due to its high breakdown voltage (BV) and high current capability.[1–3]The LDMOS with interdigitated structure is usually adopted for high current capability, benefiting from the increased device width. However,theBVof the interdigitated LDMOS is reduced due to the curvature effect and high electric field in the terminal region. To suppress the curvature effect,Komatsuet al.proposed a novel LDMOS by increasing the curvature radius in the terminal region,[4]but its manufacturing cost increases with device size increasing. To reduce the electric field in the terminal region, Leeet al.optimized the LDMOS by inserting P-type rings around the source fingertip region,[5]but theBVcould not be improved remarkably by this method. On the other hand,the electrostatic discharge(ESD) performance of LDMOS is also very important for its practical applications.[6–8]With an ultrahigh operating voltage,the ESD robustness of LDMOS in high voltage(HV)circuit is quite weak,which is usually improved by enlarging the device width at the expense of increasing the manufacturing cost. Therefore,LDMOS needs to be further optimized by using more economical methods.

    In this paper, a terminal-optimized triple RESURF LDMOS (TOTR-LDMOS) is proposed to improve theBVand ESD robustness without consuming additional chip area. Both traditional LDMOS and TOTR-LDMOS are fabricated, and their physical mechanisms are investigated by direct current(DC) tests, transmission line pulse (TLP) tests, and technology computer-aided design (TCAD) simulations. The results demonstrate that the TOTR-LDMOS with a higherBVand a stronger ESD robustness is a promising power device.

    2. Device structure and mechanism

    The schematic top view and internal structure of the traditional triple RESURF LDMOS is shown in Fig.1(a). It consists of active regions as the main working area and terminal regions as the bridge to connect two active areas.[9]TheBVof traditional LDMOS is mainly restricted by the curvature effect and high electric field in terminal regions. In order to increase theBV, the device structure is optimized by cutting the N-drift region in the terminal region and filling the area with a P-region, and the doping concentration of the P-layer falls in between the concentrations of P-substrate and Deep Pwell. The structure of the proposed TOTR-LDMOS is shown in Fig.1(b).

    The cross-section structure of the active region in the TOTR-LDMOS along theAA'C'Cplane (marked in Fig. 1)is the same as that in the traditional LDMOS as shown in Fig.2(a).When the device is in the on-state,the heavily doped N-top layer provides a low-resistance path for electrons,leading to a lowRon,sp. When the device is biased in the off-state,the P-buried layer is completely exhausted by the upper N-top layer and the bottom N-drift region.

    Fig.1. Schematic top view and internal structure of(a)traditional LDMOS and(b)TOTR-LDMOS.

    Fig.2. Cross-section structures when cutting along(a)AA'C'C surface and(b)AA'B'B surface of traditional LDMOS,and along(c)AA'B'B surface of TOTR-LDMOS.

    The cross-section structures along theAA'B'Bplane of the terminal region in the traditional LDMOS and TOTR-LDMOS are shown in Figs.2(b)and 2(c),respectively.Comparing with the traditional LDMOS,a wide depletion region is formed in the TOTR-LDMOS by deep N-well and P–when the device is in the off-state. As a result, the electric field between the Pand deep N-well is weaker, resulting in a higherBV. On the other hand,the introduced P-region increases the curvature radius of PN junction in the terminal region,suppressing the curvature effect in the terminal region. As a result,the premature breakdown caused by current over-crowding in the terminal region is avoided. Besides,the weaker electric field reduces the impact ionization rate,avoiding thermal breakdown caused by the intense movement of charge carriers and further contributing to a higher second failure current(It2)of the device.

    3. Results and discussion

    3.1. Breakdown voltage

    In order to verify the superiority of the TOTR-LDMOS,the experimental device as well as the traditional LDMOS is fabricated in a 0.25-μm bipolar-CMOS-DMOS(BCD)process and measured by Keysight B1505A.The process flow chart of the TOTR-LDMOS is summarized in Fig.3. Comparing with the traditional LDMOS, an extra layer P-well square is obtained by driving-in array of small deep P-well squares,without needing extra mask. The relevant doping parameters are listed in Table 1.

    Fig.3. Process flow chart of TOTR-LDMOS.

    The obtainedI–Vcurves are shown in Fig. 4. The two devices have similar leakage currents when they are in the offstate. When avalanche breakdown occurs in the reversed PN junction, the current increases rapidly, and the corresponding voltage is theBV. Comparing with the traditional LDMOS,theBVof TOTR-LDMOS increases from 755 V to 817 V,resulting mainly from the transfer of the breakdown point.

    Table 1. Parameters of key layers in BCD process.

    Three-dimensional (3D) TCAD simulations are conducted by Sentaurus to explore the internal physical mechanisms of the devices.Both the traditional LDMOS and TOTRLDMOS have active and terminal regions with the same sizes,consistent with their actual layouts. By applying a DC voltage to the drain, the electrostatic potential distributions before breakdown are obtained as shown in Fig. 5. The solid lines represent the equipotential lines. The denser equipotential lines correspond to the stronger electric field, where the breakdown occurs more easily.

    Fig.5. Simulated 3D electrostatic potential distribution in(a)traditional LDMOS and(b)TOTR-LDMOS.

    Fig.4. The I–V characteristic of traditional LDMOS and TOTR-LDMOS.

    Fig.6. Surface electric field variation along(a)AB line and(b)AC line in traditional LDMOS and TOTR LDMOS.

    As can be clearly seen from Fig.5(a),the terminal region in the traditional LDMOS has a denser potential distribution in the red rectangle, suggesting that the breakdown will occur first in this area under the reverse DC voltage. Compared with the traditional LDMOS,the TOTR-LDMOS possesses a very uniform distribution of electrostatic potential close to the source in terminal region,which is also sparser than that in the active region,suggesting that the breakdown will occur first in the active region. Therefore, the TOTR-LDMOS will exhibit a higherBV.

    Figure 6 shows the critical breakdown electric field distribution of the traditional LDMOS and the TOTR-LDMOS along the AB line (terminal region) and AC line (active region),respectively(marked in Fig.1),which are obtained from 3D simulations. Obviously, the traditional LDMOS has an high electric field of 2.5×105V/cm at a length of 75 μm in the terminal region around the source, which is much higher than that in the active region, suggesting that the traditional LDMOS breakdowns first in the terminal region. As a result,the withstanding voltage of active region in the traditional LDMOS cannot be displayed. As far as the optimized device is concerned, the position of peak electric field shifts from the terminal region to the active region,indicating that the TOTRLDMOS breakdowns first in the active region. Therefore,the TOTR-LDMOS possesses a higherBVthan the traditional LDMOS.

    In order to evaluate the comprehensive performance of the TOTR-LDMOS,the following theoretical relationship between theBVandRon,spof the triple RESURF LDMOS is considered:[10]

    The curve shown in Fig. 7 illustrates theBV–Ron,sprelation in a voltage range from 500 V to 900 V according to Eq. (1). The performance of proposed TOTR-LDMOS and some typical optimized LDMOS[11–14]are shown in Fig.7 and summarized in Table 2. Obviously,the difference between the TOTR-LDMOS and theoretical limit is the largest,indicating that the TOTR-LDMOS possesses the best performance in the five optimized devices.

    Table 2. Comparison of performance between TOTR LDMOS and other reported HV LDMOS.

    Fig.7. Comparison of BV–Ron,sp performance among five high voltage LDMOS devices.

    3.2. ESD robustness

    In order to verify the current discharge capacity of the TOTR-LDMOS under an ESD pulse,the TLP tests are carried out. The pulse with a rise time of 10 ns and a pulse width of 100 ns is applied to the drain of the device with the gate and source grounded. The results are shown in Fig. 8. When the leakage current increases suddenly by more than three orders of magnitude, the corresponding current is defined as theIt2,which usually reflects the ESD robustness. Comparing with the traditional LDMOS, theIt2of TOTR-LDMOS increases from 0.263 A to 0.652 A.Such a large increase by about 147%is mainly caused by the weakened current skin effect.

    Fig.8. TLP I–V curve of traditional LDMOS and TOTR-LDMOS.

    Fig. 9. Simulated impact ionization rate in (a) traditional LDMOS and (b)TOTR-LDMOS.

    To confirm the weakened current skin effect, the simulated impact ionization rate distributions of both devices before thermal breakdown are shown in Fig. 9. Obviously, the traditional LDMOS collects a large amount of impact ionization in the terminal region, caused by the current skin effect,aggravating the lattice vibration,and thus resulting in the further increase of temperature. As a result, the thermal breakdown is easy to occur in the terminal region, leading to the failure of devices and circuits. Compared with the traditional LDMOS, the TOTR-LDMOS has much impact ionization in the active region instead of in the terminal region. Due to the increasedBVof terminal region, the breakdown of reversed PN junction in the active region occurs first and the device begins to discharge, thereby producing the current through the active region. The current skin effect in the terminal region is thus greatly weakened, contributing to a higherIt2for the TOTR-LDMOS.

    4. Conclusions

    A terminal optimized LDMOS is proposed by introducing a P-region between the deep N-well and deep P-well and fabricated in a 0.25-μm BCD process. The physical mechanism of optimization is analyzed based on testing results and 3D simulations. Compared with the traditional LDMOS, the TOTR-LDMOS has a large depletion around the optimized region, leading to a higherBVwithout significant change ofRon,sp. Meanwhile, the current skin effect in the terminal region of TOTR-LDMOS is weakened,contributing to a higher ESD robustness. As a result,The TOTR-LDMOS with a highBVof 817 V,a lowRon,spof 6.99 ?·mm2and anIt2of 0.652 A can be a promising competitor in power devices.

    猜你喜歡
    梁海
    如何做自我介紹呢?
    小白兔寫(xiě)暑假日記
    說(shuō)說(shuō)我自己
    Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN*
    常州送梁海青
    牡丹(2021年11期)2021-07-20 08:54:49
    《民族女孩》
    青年生活(2019年18期)2019-10-21 15:44:53
    忘帶書(shū)包
    找春天
    清朝征服汗哈屯烏梁海資料評(píng)析與史實(shí)考述
    第一次洗襪子
    校园人妻丝袜中文字幕| 少妇被粗大猛烈的视频| a级一级毛片免费在线观看| 久久韩国三级中文字幕| 亚洲一区二区三区欧美精品 | 日韩国内少妇激情av| 日韩一区二区三区影片| 亚洲欧美清纯卡通| 91在线精品国自产拍蜜月| 男男h啪啪无遮挡| 97精品久久久久久久久久精品| 亚洲精品中文字幕在线视频 | 美女脱内裤让男人舔精品视频| 日韩人妻高清精品专区| 成人黄色视频免费在线看| 中国三级夫妇交换| 夫妻午夜视频| 日本熟妇午夜| 免费大片黄手机在线观看| 女人久久www免费人成看片| 视频区图区小说| 熟女人妻精品中文字幕| 亚洲成色77777| 亚洲av电影在线观看一区二区三区 | 欧美少妇被猛烈插入视频| 国产成人精品一,二区| 97超视频在线观看视频| 在线观看一区二区三区激情| xxx大片免费视频| 老师上课跳d突然被开到最大视频| 少妇高潮的动态图| 激情 狠狠 欧美| 欧美高清成人免费视频www| 久久久精品94久久精品| 看黄色毛片网站| 国国产精品蜜臀av免费| 午夜免费男女啪啪视频观看| 狂野欧美激情性xxxx在线观看| 熟女av电影| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看 | a级毛色黄片| 国产一区二区在线观看日韩| 精品亚洲乱码少妇综合久久| 高清日韩中文字幕在线| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 人人妻人人看人人澡| 免费大片18禁| 精品酒店卫生间| 日韩欧美精品免费久久| 国产免费福利视频在线观看| 人妻少妇偷人精品九色| 在线观看av片永久免费下载| 国产视频内射| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 国产av不卡久久| 97超碰精品成人国产| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 免费看日本二区| 成人国产av品久久久| 街头女战士在线观看网站| 欧美激情国产日韩精品一区| av天堂中文字幕网| 男女无遮挡免费网站观看| 青春草国产在线视频| 免费观看性生交大片5| 成人国产av品久久久| 噜噜噜噜噜久久久久久91| 欧美激情久久久久久爽电影| 一本一本综合久久| 黄片无遮挡物在线观看| 精品人妻一区二区三区麻豆| 三级经典国产精品| 99精国产麻豆久久婷婷| av播播在线观看一区| 自拍欧美九色日韩亚洲蝌蚪91 | freevideosex欧美| 99热网站在线观看| 欧美一区二区亚洲| 婷婷色综合www| 国产欧美日韩一区二区三区在线 | 国产免费又黄又爽又色| 久久久精品免费免费高清| av天堂中文字幕网| 国产精品无大码| 3wmmmm亚洲av在线观看| 一级a做视频免费观看| av卡一久久| 亚洲综合精品二区| 一级av片app| 亚洲三级黄色毛片| 白带黄色成豆腐渣| av在线观看视频网站免费| 永久免费av网站大全| 精品人妻视频免费看| 18禁裸乳无遮挡动漫免费视频 | 另类亚洲欧美激情| 三级男女做爰猛烈吃奶摸视频| 久久久久久九九精品二区国产| 久久久久久久久大av| av免费在线看不卡| 国产精品女同一区二区软件| 国内精品宾馆在线| 极品教师在线视频| 亚洲av不卡在线观看| 国产一区有黄有色的免费视频| 精品久久久久久久人妻蜜臀av| 国产黄片美女视频| 国产极品天堂在线| 男女下面进入的视频免费午夜| 亚洲精品亚洲一区二区| 永久免费av网站大全| 黄片无遮挡物在线观看| 亚洲av男天堂| 最近中文字幕高清免费大全6| 99久国产av精品国产电影| 18禁动态无遮挡网站| 高清在线视频一区二区三区| 久久亚洲国产成人精品v| 亚洲精华国产精华液的使用体验| 亚洲在久久综合| av在线蜜桃| 2022亚洲国产成人精品| 国产一区二区在线观看日韩| 色吧在线观看| 成人漫画全彩无遮挡| 一二三四中文在线观看免费高清| 免费不卡的大黄色大毛片视频在线观看| 日本猛色少妇xxxxx猛交久久| 综合色av麻豆| 五月天丁香电影| 老师上课跳d突然被开到最大视频| av在线蜜桃| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 亚洲精品第二区| 不卡视频在线观看欧美| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 亚洲经典国产精华液单| 久久精品综合一区二区三区| 亚洲美女搞黄在线观看| 亚洲精品自拍成人| 丰满少妇做爰视频| 国产精品人妻久久久久久| 美女主播在线视频| 国产精品一区www在线观看| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 麻豆精品久久久久久蜜桃| 国产成人freesex在线| 久久99热这里只有精品18| 色婷婷久久久亚洲欧美| 国产伦在线观看视频一区| 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 网址你懂的国产日韩在线| 啦啦啦在线观看免费高清www| a级毛色黄片| .国产精品久久| 精品久久久久久久久av| 高清在线视频一区二区三区| 亚洲精品,欧美精品| av卡一久久| 成年女人在线观看亚洲视频 | 国产精品国产三级国产专区5o| 免费大片黄手机在线观看| 国产精品人妻久久久影院| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 久久ye,这里只有精品| 欧美极品一区二区三区四区| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 另类亚洲欧美激情| 日本wwww免费看| 人妻少妇偷人精品九色| 色网站视频免费| 久久精品综合一区二区三区| 观看免费一级毛片| 国产黄色免费在线视频| 欧美日韩国产mv在线观看视频 | 免费看a级黄色片| 欧美日韩国产mv在线观看视频 | 只有这里有精品99| 99久久精品国产国产毛片| 亚洲在久久综合| 插逼视频在线观看| 蜜桃亚洲精品一区二区三区| 国产成人a区在线观看| 一级毛片我不卡| 极品少妇高潮喷水抽搐| 日韩欧美 国产精品| 欧美国产精品一级二级三级 | 亚洲欧美精品自产自拍| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 高清毛片免费看| 免费少妇av软件| av网站免费在线观看视频| 日韩强制内射视频| 99热这里只有是精品在线观看| 99久久精品一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲自偷自拍三级| 国模一区二区三区四区视频| 国产中年淑女户外野战色| 亚洲欧美日韩东京热| 亚洲国产精品专区欧美| 午夜福利视频精品| 欧美日韩亚洲高清精品| 人妻一区二区av| 国产午夜福利久久久久久| 国产成人91sexporn| 嫩草影院入口| 极品教师在线视频| 国产精品不卡视频一区二区| 精品熟女少妇av免费看| 亚洲国产av新网站| 亚洲精品久久午夜乱码| 亚洲精品第二区| 午夜爱爱视频在线播放| 午夜免费观看性视频| 欧美bdsm另类| a级毛色黄片| 国产午夜福利久久久久久| 精品少妇久久久久久888优播| 大又大粗又爽又黄少妇毛片口| 成人黄色视频免费在线看| 久久久色成人| h日本视频在线播放| 激情 狠狠 欧美| 国产一区有黄有色的免费视频| 精华霜和精华液先用哪个| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 亚洲国产精品成人综合色| 国产又色又爽无遮挡免| 欧美精品国产亚洲| 九九爱精品视频在线观看| freevideosex欧美| 亚洲国产色片| 夫妻性生交免费视频一级片| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 国产精品国产三级专区第一集| 一级毛片我不卡| 国产探花极品一区二区| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 亚洲天堂av无毛| 狂野欧美白嫩少妇大欣赏| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 日韩成人伦理影院| 97在线视频观看| 国产在线一区二区三区精| 国产午夜精品久久久久久一区二区三区| 日韩亚洲欧美综合| 成年女人看的毛片在线观看| 在线观看免费高清a一片| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 成年人午夜在线观看视频| 免费av不卡在线播放| 欧美性感艳星| 中文资源天堂在线| a级毛片免费高清观看在线播放| 日本一本二区三区精品| 亚洲欧美成人综合另类久久久| 麻豆乱淫一区二区| 久久热精品热| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 在线观看国产h片| 成人美女网站在线观看视频| 18禁裸乳无遮挡动漫免费视频 | xxx大片免费视频| 99久久人妻综合| 欧美日韩在线观看h| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 男男h啪啪无遮挡| 国产伦在线观看视频一区| 久久久久久国产a免费观看| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 少妇 在线观看| 成人毛片60女人毛片免费| 精品久久久久久久末码| 黄色日韩在线| 色播亚洲综合网| 久久久久久久久久成人| av在线天堂中文字幕| 国产日韩欧美在线精品| 亚洲av免费在线观看| 欧美成人午夜免费资源| 视频区图区小说| 国产v大片淫在线免费观看| 亚洲av中文av极速乱| 久久久久精品性色| av在线蜜桃| 春色校园在线视频观看| 熟女电影av网| 精品久久久久久久末码| 成人亚洲欧美一区二区av| 亚洲,一卡二卡三卡| 大又大粗又爽又黄少妇毛片口| 最近最新中文字幕免费大全7| 如何舔出高潮| 亚洲天堂av无毛| 国产69精品久久久久777片| 午夜日本视频在线| 人妻系列 视频| 男女边摸边吃奶| 久久久久精品性色| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说 | 亚洲最大成人中文| 日韩成人av中文字幕在线观看| 日韩成人伦理影院| 少妇裸体淫交视频免费看高清| 免费av观看视频| 亚洲国产欧美人成| 免费看不卡的av| 久久久精品94久久精品| av专区在线播放| 亚洲国产欧美在线一区| 夜夜爽夜夜爽视频| 亚洲内射少妇av| 青春草视频在线免费观看| 亚洲自偷自拍三级| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91 | 伊人久久国产一区二区| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 久久国产乱子免费精品| 久久久久久久国产电影| 色吧在线观看| 一级爰片在线观看| 国产成人福利小说| 18+在线观看网站| 国产精品爽爽va在线观看网站| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| 波多野结衣巨乳人妻| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 91久久精品国产一区二区三区| 久久久精品免费免费高清| 欧美国产精品一级二级三级 | 成人美女网站在线观看视频| 亚洲内射少妇av| 日韩一区二区视频免费看| 国产av不卡久久| 亚洲丝袜综合中文字幕| 欧美精品国产亚洲| 波多野结衣巨乳人妻| 国产亚洲最大av| 国产午夜精品一二区理论片| 舔av片在线| 高清视频免费观看一区二区| 国产av国产精品国产| 色综合色国产| 好男人视频免费观看在线| 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 国产熟女欧美一区二区| 好男人在线观看高清免费视频| 纵有疾风起免费观看全集完整版| 国产美女午夜福利| 久久99蜜桃精品久久| 一级av片app| 看非洲黑人一级黄片| 中文字幕制服av| 精品国产乱码久久久久久小说| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 99热这里只有是精品50| 一边亲一边摸免费视频| 亚洲欧美成人精品一区二区| 国产黄片视频在线免费观看| 亚洲色图av天堂| 能在线免费看毛片的网站| av.在线天堂| 男人和女人高潮做爰伦理| 国产av码专区亚洲av| 大香蕉97超碰在线| 久久久久久九九精品二区国产| 人妻少妇偷人精品九色| av播播在线观看一区| 欧美成人精品欧美一级黄| eeuss影院久久| av线在线观看网站| 国产一区亚洲一区在线观看| 久久这里有精品视频免费| 狂野欧美激情性xxxx在线观看| 人人妻人人爽人人添夜夜欢视频 | 日本wwww免费看| 乱码一卡2卡4卡精品| 国产男人的电影天堂91| 看黄色毛片网站| 亚洲av一区综合| 日本熟妇午夜| 插阴视频在线观看视频| av在线蜜桃| 99热6这里只有精品| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 欧美最新免费一区二区三区| 色婷婷久久久亚洲欧美| 蜜臀久久99精品久久宅男| 日本黄色片子视频| 国产精品av视频在线免费观看| 99久久人妻综合| 黑人高潮一二区| 国产伦精品一区二区三区四那| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 丝袜美腿在线中文| 成人免费观看视频高清| 亚洲欧美清纯卡通| 麻豆久久精品国产亚洲av| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区| 欧美极品一区二区三区四区| 亚洲av免费在线观看| 午夜视频国产福利| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃 | 亚洲精品成人久久久久久| 国产在线一区二区三区精| 亚洲国产欧美在线一区| 熟女av电影| 69av精品久久久久久| 在线天堂最新版资源| 国产 精品1| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 国产精品国产三级国产av玫瑰| 欧美潮喷喷水| 最近中文字幕高清免费大全6| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 男女啪啪激烈高潮av片| 国语对白做爰xxxⅹ性视频网站| 身体一侧抽搐| 99热6这里只有精品| 黄片wwwwww| av在线app专区| 一级a做视频免费观看| 高清视频免费观看一区二区| 能在线免费看毛片的网站| av网站免费在线观看视频| 超碰97精品在线观看| 亚洲av成人精品一二三区| 黄色欧美视频在线观看| 美女xxoo啪啪120秒动态图| 大香蕉久久网| 久久久色成人| 深夜a级毛片| 99久久人妻综合| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 亚洲精品影视一区二区三区av| 亚洲av日韩在线播放| 99热这里只有是精品在线观看| 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| 偷拍熟女少妇极品色| 国产男女超爽视频在线观看| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 国产免费又黄又爽又色| 午夜免费鲁丝| 亚洲第一区二区三区不卡| 人妻系列 视频| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 18禁在线播放成人免费| av福利片在线观看| 免费黄色在线免费观看| 草草在线视频免费看| 男人添女人高潮全过程视频| 久久99热这里只频精品6学生| 亚洲国产高清在线一区二区三| 亚洲精品第二区| 成人国产麻豆网| 中文在线观看免费www的网站| 亚洲欧洲日产国产| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 3wmmmm亚洲av在线观看| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 亚洲精品aⅴ在线观看| 欧美丝袜亚洲另类| 国产精品久久久久久精品电影| 亚洲丝袜综合中文字幕| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区黑人 | 国产亚洲一区二区精品| 我的女老师完整版在线观看| 尾随美女入室| 亚洲国产最新在线播放| 亚洲真实伦在线观看| 国产在线一区二区三区精| 一级毛片电影观看| 亚洲色图av天堂| 日韩 亚洲 欧美在线| 亚洲欧洲国产日韩| 日韩一区二区视频免费看| 亚洲国产精品成人综合色| 交换朋友夫妻互换小说| 国产爽快片一区二区三区| 一级a做视频免费观看| 伦理电影大哥的女人| 国产淫片久久久久久久久| 黄片wwwwww| 美女被艹到高潮喷水动态| 国产高清有码在线观看视频| 日本黄大片高清| 欧美日韩亚洲高清精品| 有码 亚洲区| 久久久久久久久久久免费av| 最近的中文字幕免费完整| 久久99热这里只有精品18| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 自拍偷自拍亚洲精品老妇| 中文字幕人妻熟人妻熟丝袜美| 噜噜噜噜噜久久久久久91| 插逼视频在线观看| 亚洲成人一二三区av| 亚洲国产欧美在线一区| 免费大片黄手机在线观看| 国产人妻一区二区三区在| 成人国产麻豆网| 日韩三级伦理在线观看| 亚洲欧美日韩东京热| 简卡轻食公司| 精品一区二区免费观看| 亚洲精华国产精华液的使用体验| 久久久久九九精品影院| 日本色播在线视频| 中文字幕久久专区| 国产成人a∨麻豆精品| 久久久午夜欧美精品| 97在线人人人人妻| 我要看日韩黄色一级片| 国产av码专区亚洲av| 亚洲成人一二三区av| 又粗又硬又长又爽又黄的视频| 欧美日本视频| 午夜福利视频1000在线观看| 亚洲精品日韩av片在线观看| 可以在线观看毛片的网站| 少妇猛男粗大的猛烈进出视频 | av线在线观看网站| 成人漫画全彩无遮挡| 寂寞人妻少妇视频99o| 久热久热在线精品观看| 大片电影免费在线观看免费| 成人高潮视频无遮挡免费网站| 国产精品久久久久久精品电影小说 | 亚洲精品乱久久久久久| 成人高潮视频无遮挡免费网站| 国产黄色视频一区二区在线观看| 高清日韩中文字幕在线| 免费看光身美女| 熟女人妻精品中文字幕| 日日撸夜夜添| 亚洲国产日韩一区二区| 少妇人妻精品综合一区二区| 亚洲精品乱久久久久久| 国产毛片a区久久久久| 人妻少妇偷人精品九色| 日日撸夜夜添| 亚洲国产日韩一区二区| 国产中年淑女户外野战色| 日韩三级伦理在线观看| 亚洲色图av天堂| 成年免费大片在线观看| 又粗又硬又长又爽又黄的视频| 久久女婷五月综合色啪小说 | 亚洲精品自拍成人| 又黄又爽又刺激的免费视频.| 亚洲aⅴ乱码一区二区在线播放| 午夜日本视频在线| 天堂网av新在线| 亚洲高清免费不卡视频| 亚洲精品,欧美精品| 精品视频人人做人人爽| 亚洲国产最新在线播放| 精华霜和精华液先用哪个| 免费看不卡的av| 五月天丁香电影| 美女国产视频在线观看|