• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN*

    2021-07-30 07:43:08XiKunFeng馮希昆XiaoFengGu顧曉峰QinLingMa馬琴玲YanNiYang楊燕妮andHaiLianLiang梁海蓮
    Chinese Physics B 2021年7期
    關(guān)鍵詞:梁海

    Xi-Kun Feng(馮希昆), Xiao-Feng Gu(顧曉峰), Qin-Ling Ma(馬琴玲),Yan-Ni Yang(楊燕妮), and Hai-Lian Liang(梁海蓮)

    Engineering Research Center of Internet of Things Technology Applications(Ministry of Education),Department of Electronic Engineering,Jiangnan University,Wuxi 214122,China

    Keywords: junction field-effect transistors,NPN,electrostatic discharge(ESD)robustness,ESD protection

    1. Introduction

    With the rapid development of integrated technology,ultra-high-voltage (UHV) power devices are commonly used as main drive devices in power management, motors, automotive electronics,and industrial control applications.[1-3]In particular, junction field-effect transistors (JFETs) have been widely used in silicon-based high voltage integrated circuits(ICs)because of their high input impedance,low noise,small power consumption,good process compatibility,and temperature performance.[4-7]Various techniques and methods such as the long field plate,N-type drift and design of the reversed PN junction location, have been used to increase the breakdown voltage of the conventional JFETs.

    In addition, the electrical performance optimization and electrostatic discharge (ESD) characteristics improvement of JFETs are simultaneously becoming an important research field with the wide applications in high-voltage ICs, because the ESD protection is developing into a severe and challenging issue in UHV JFETs. Nidhi and Ker used the P-type ESD implantation to adjust the pinch-off voltage of a novel horizontal n-channel JFET device,making JFET suitable for multi-power supplying circuit.[8]Vincentet al.explored an optimized vertical JFET,by embedding diffusion gates to harvest the excellent voltage control sensitivity and the enhanced overvoltage protection capability.[9]Nget al.proposed a novel sub-20-V planar power MOSFET device by using the ion implantation technology to reduce the on-resistance and the threshold voltage variation.[10]The above optimizations effectively improved the electrical performance of traditional JFET. However,these JFETs remain vulnerable in the human body model(HBM) test. Other solutions such as the reported JFET with an embedded silicon-controlled rectifier (SCR)[11]have been proposed to elevate the ESD robustness, which increases up from 1.93 kV to 2.63 kV. However, the ESD protection capability is still not strong enough for the increasingly harsh circuit operating environment.

    The UHV JFET embedded with NPN to enhance the ESD performance is designed and investigated. By inserting the NPN structure,the JFET embedded with NPN exhibits a small voltage snapback and strong ESD robustness of 5.5 kV,which satisfies the ESD protection requirements of UHV JFETs in some special operations.

    2. Device structures and operation mechanism

    A similar top-view layout of three JFETs is shown in Fig.1. The corresponding cross-sections along A-A′and BB′directions of the conventional JFET are shown in Figs.2(a)and 2(b), respectively. The conventional JFET and JFETLNPN have identical structures along the A-A′direction as shown in Figs. 2(a) and 3(a). However, unlike the conventional JFET,the JFET-LNPN has a lateral parasitic NPN along the B-B′direction. The lateral NPN marked as T1 in Fig.3(a)improves the ESD robustness and turn-on speed under electrical stress.

    Fig.1. Similar top view of the general layout of three JFETs.

    Fig. 2. (a) Cross-section along A-A′ direction and (b) cross section along B-B′ direction of conventional JFET device.

    Fig. 3. (a) Cross-section along A-A′ direction, and (b) cross section along the B-B′ direction of JFET-LNPN device.

    By maintaining the same structure with the conventional JFET along the A-A′direction,extending the P-well to the left deep P-well in the JFET along the B-B′direction,and inserting a high implanted N-type (N+) region into the P-well, we obtain a new JFET embedded with lateral NPN(JFET-LNPN).The cross-section of JFET-LNPN along the B-B′direction is shown in Fig.3(b).

    Furthermore, by introducing an N+ region and an Nwell into the left deep P-well in the JFET-LNPN along the A-A′direction, and maintaining the structure of the JFETLNPN along the B-B′direction unchanged,we obtain an optimized JFET embedded with lateral and vertical NPNs(JFETLVNPN)as shown in Fig.4.

    Fig. 4. (a) Cross-section along A-A′ direction, and (b) cross section along B-B′ direction of JFET-LVNPN device.

    The breakdown voltage decreases because of the different reverse PN junctions. Compared with that of the conventional JFET,the reverse PN junction of the JFET-LNPN forms at the interface between the deep N-well and the top P-well. The location and doping concentration of the top P-well are valuable for optimizing the electrical performance of the JFET-LNPN.

    In addition to the same lateral NPN in the JFET-LNPN and JFET-LVNPN along the B-B′direction,the JFET-LVNPN has an additional vertical parasitic NPN marked as T2 in Fig. 4(a), which dwells in the structure along the A-A′direction and helps to enhance the ESD robustness. Meanwhile,the vertical NPN is beneficial to the decreasing of the trigger voltage and the increasing of the turn-on speed due to the deep P-well parasitic resistance.

    In operation,the conventional JFET and optimized JFETs embedded with the different NPNs have their own ultra-high turn-on voltage, because of the large deep N-well resistance,long field plate and top P-well. Moreover, the fabrication process of these devices is compatible with the commercial CMOS or bipolar-CMOS-DMOS (BCD) process of siliconbased ICs without extra mask cost.

    3. Experimental results and discussion

    3.1. Device test

    The aforementioned three types of JFET devices with a width of 250 μm are fabricated in a 0.25-μm BCD process.The main process parameters of the devices are shown in Table 1. The high voltage BCD process characterized by Table 1 helps to increase the turn-on voltages of the JFETs.

    Table 1. Main process parameters of devices.

    The DC electrical performances at different temperatures of the three JFETs are measured by the semiconductor tracer and variable temperature probe system. The DC test results show that the saturated voltages of the devices are all approximately 98 V, the JFETs work in the constant-current region,and the turn-on voltages of these devices are about 780 V at room temperature, which satisfies the operation requirements of the UHV JFET. When the temperature is increased to 150°C,the turn-on voltage of the JFETs slightly decreases from 780 V to 720 V;thus,the JFETs remain in a better UHV turn-on state,and exhibit good temperature characteristics.

    The transient electrical performances of the JFET devices are evaluated by transmission line pulse(TLP)tests. The TLP characteristics are measured with the source end of JFETs floating and grounded. When the source end is floating, the gate and the substrate are both connected to the ground, and the drain end is stressed by a positive ESD pulse. When the source end is grounded, the source, gate and substrate are all connected together, and the drain end remains stressed by a positive ESD pulse.

    Fig.5. TLP characteristic curves of JFET devices with grounded source and with floating source.

    The TLP characteristic curves are shown in Fig. 5. The curves with solid and open symbols represent the TLP characteristics of different devices with the floating and grounded source ends, respectively. The results indicate that the JFETLNPN and JFET-LVNPN have stronger ESD robustness than the conventional JFET.In addition,the holding voltages of the two optimized devices after the snapback are larger than the saturation voltage without the risk of latch-up.

    The trigger voltages of the JFET devices with the floating source end and grounded source end are summarized in Table 2. The trigger voltage of the experimental device with the floating source end changes slightly,which is similar to that of the device with the grounded source end. However,compared with that of the device with the grounded source end,the trigger voltage of the conventional JFET device decreases from 861 V to 779 V because of the assistant trigger effect by the large well parasitic resistance. Meanwhile,the trigger voltage of the JFET-LNPN device decreases from 791 V to 770 V because of the combination effect of the even larger well parasitic resistance and the embedded lateral NPN in the JFET device.Similarly, the trigger voltage of the JFET-LVNPN decreases from 862 V to 756 V because of the combination effect of the lateral and vertical NPN embedded in the JFET.

    Table 2. Trigger voltages of three devices.

    The ESD robustness of the JFET device is tested by the wafer ESD testing system HED-W5000M.By setting the initial ESD pulse voltage of 500 V and the step of 500 V,the ESD robustness of the conventional JFET device is 1.5 kV,which is lower than that of the 2-kV HBM ESD commercial test standard, whereas both JFET-LNPN and JFET-LVNPN can pass the 5.5-kV HBM ESD test. The tested data indicate that the ESD robustness of JFET-LNPN and JFET-LVNPN increase approximately 3.75 times due to the embedded NPN in the JFETs.

    The proposed JFET simultaneously exhibits stronger ESD robustness than the 800-V SCR-JFET.[11]The main ESD characteristics of experimental devices and the 800-V SCRJFET are shown in Table 3. The trigger voltages of the JFETLNPN and JFET-LVNPN are lower than that of the 800-V SCR-JFET, which helps to improve the turn-on speed of the proposed JFETs under the ESD pulse.

    Table 3. Main ESD characteristics of experimental devices and 800-V SCR-JFET devices.

    3.2. Failure analysis of devices

    The voltage endurance capability and inner physical mechanism of producing the damage in the JFET device are investigated by using the semiconductor tracer,scanning electron microscopy(SEM),and emission microscopy(EMMI).

    When the devices are stressed by an increasing DC bias,the leakage current hardly changes. Then, the leakage current significantly increases when the DC voltage is larger than 780 V. Finally, the conventional JFET breaks down under the continuous increasing DC stress. However,the JFETLNPN and JFET-LVNPN remain robust when the DC voltage is smaller than 900 V. The delayer images obtained by SEM when the JFET devices are under the same DC stress of 780 V are shown in Fig.6.

    Fig. 6. Delayer images of (a) conventional JFET, (b) JFET-LNPN, and (c)JFET-LVNPN,and(d)amplified image of conventional JFET in yellow box shown in panel(a).

    Compared with those of the JFET-LNPN and JFETLVNPN,the delayer image of the conventional JFET presents a damaged region as indicated by the yellow box in Fig.6(a).The amplified delayer image in Fig.6(d)demonstrates that the substrate of the conventional JFET is burned because of the thermal breakdown. Meanwhile, the good delayer images of the JFET-LNPN and JFET-LVNPN as shown in Figs.6(b)and 6(c)prove that the embedded NPN are helpful in quickly discharging the large current and avoiding the local thermal damage,without affecting the voltage endurance capability of the UHV JFET.

    When the JFET-LNPN and JFET-LVNPN are stressed by continuously increasing TLP pulse, the leakage current changes on a nanoamp scale in a period of time;then,a jumping growth suddenly appears under a 900-V DC bias caused by the TLP test system. At this moment, the corresponding ESD robustness of the JFET embedded with NPN is equal to the HBM of 6 kV.

    Meanwhile,the internal degradations of the JFET-LNPN and JFET-LVNPN are observed and measured by EMMI.The filament-like failure spots appear near the drain end in the JFET-LNPN,but they appear near the source end in the JFETLVNPN, which are marked by yellow arrows. Different failure positions of the JFET-LNPN and JFET-LVNPN,caused by different internal physical mechanisms,are also explored and analyzed by TCAD simulations.

    Fig.7. EMMI photographs of the experimental devices((a)JFET-LNPN and(b)JFET-LVNPN)under the same DC stress.

    3.3. Verification by simulations

    The transient electrical performance of the JFET-LNPN and JFET-LVNPN are simulated by using the Sentaurus software. The structure simulations of JFET-LNPN and JFETLVNPN correspond to the production process, and suitable physical model and computational methods are selected to confirm the good reliability of simulating results by comparing with the measured results.

    When JFET-LNPN and JFET-LVNPN with the floating source end are stressed by a pulse with a period of 100 ns and rise time of 10 ns, the electrical characteristic curves of the devices are obtained as shown in Fig.8, showing that the trigger voltages of the JFETs embedded with NPN are 889 V and 803 V. Meanwhile, the snapback voltages of the devices are 413 eV and 115 V, which are both larger than the saturated voltage of 98 V, thus, the JFETs effectively avoid the latch-up risk. So, the simulated electrical characteristics are consistent with the measured results, which confirm that the simulations are reliable. It can also be found that the JFETLVNPN has a smaller snapback voltage than the JFET-LNPN because the vertical NPN has a larger current gain than the lateral NPN. Furthermore, the large current gain of the vertical NPN in the JFET-LVNPN helps to form the parasitic SCR current discharge path, which beneficially improves the ESD robustness.

    The simulated internal current density distributions of the JFETs with different structures along the A-A′and B-B′directions are shown in Fig. 9. The JFET-LNPN and JFETLVNPN have identical structures along the B-B′direction as shown in Figs.3(b)and 4(b). The internal current density distribution in Fig. 9(a) confirms that the current continues to concentrate in the drain region because of the short distance between the drain and the lateral NPN in addition to the reversed PN junction at the interface between the deep N-well and the deep P-well.

    Fig.8. Simulated electrical characteristics of JFETs embedded with NPN.

    Fig.9. Internal current distributions of the JFETs with structure of(a)JFETLNPN and JFET-LVNPN along the B-B′ direction, and (b) JFET-LVNPN along the A-A′ direction.

    However,figure 9(b)shows that the internal current density distribution of the JFET-LVNPN along the A-A′direction is more concentrated in the source region than that of the JFET-LNPN, indicating that two or more current conduction paths are formed in the device. Beside the lateral and vertical NPN current conduction paths, one additional parasitic SCR current conduction path is significantly helpful to increase the discharge current capacity, which enhances the ability of the N-well in the deep P-well to collect electrons. The internal current distributions of the JFETs embedded with NPN are consistent with the aforementioned analyses.

    4. Conclusions and perspectives

    The novel UHV JFET-LNPN and JFET-LVNPN with enhanced ESD robustness are designed and investigated by different types of test instruments and simulation tools. The TLP test results show that the ESD robustness of UHV JFETs-LVNPN increases by approximately 3.75 times, and the failure analysis performed by SEM and EMMI shows that the novel JFETs embedded with NPN have identical voltage endurance to the conventional JFETs. Moreover, the internal physical mechanism of the JFETs embedded with NPN confirms that the lateral NPN and vertical NPN are significantly useful for improving the ESD robustness. In addition,the vertical NPN has a stronger electron collecting capacity than the lateral NPN. Thus, the JFET-LVNPN is more useful for the UHV device and for the ESD protection device.

    Acknowledgments

    The authors would like to thank the Process Development of CSMC for providing the measured instruments and professional failure analysis tools. And this work was completed successfully under the support of many researchers worked in the CSMC.The authors are also grateful to the ESD group of Zhejiang University, Zhejiang Province, China, for providing the equipment of the transmission line pulsing system.

    猜你喜歡
    梁海
    如何做自我介紹呢?
    小白兔寫暑假日記
    說說我自己
    常州送梁海青
    牡丹(2021年11期)2021-07-20 08:54:49
    Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness?
    《民族女孩》
    青年生活(2019年18期)2019-10-21 15:44:53
    忘帶書包
    找春天
    清朝征服汗哈屯烏梁海資料評(píng)析與史實(shí)考述
    第一次洗襪子
    色网站视频免费| 国产 精品1| 国产爽快片一区二区三区| 国产在线男女| 国产精品一区二区性色av| 少妇人妻 视频| 夫妻午夜视频| 18禁裸乳无遮挡免费网站照片| 亚洲国产成人一精品久久久| 欧美日本视频| 91午夜精品亚洲一区二区三区| 久久久成人免费电影| 欧美性猛交╳xxx乱大交人| 男人爽女人下面视频在线观看| 又爽又黄a免费视频| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 美女主播在线视频| 久久韩国三级中文字幕| 晚上一个人看的免费电影| 国产成人午夜福利电影在线观看| 在线观看av片永久免费下载| 只有这里有精品99| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| 久热久热在线精品观看| 国产精品久久久久久精品电影小说 | 99久久精品热视频| 国内精品美女久久久久久| 99视频精品全部免费 在线| 97超碰精品成人国产| 成人一区二区视频在线观看| 在线播放无遮挡| 亚洲最大成人中文| 网址你懂的国产日韩在线| 免费人成在线观看视频色| 最近最新中文字幕大全电影3| 亚洲人成网站高清观看| 久久久a久久爽久久v久久| 国产一区有黄有色的免费视频| 日韩视频在线欧美| 成人午夜精彩视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 美女内射精品一级片tv| 又爽又黄a免费视频| 看十八女毛片水多多多| 日韩大片免费观看网站| 亚洲国产最新在线播放| 欧美97在线视频| 大话2 男鬼变身卡| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区| 联通29元200g的流量卡| 只有这里有精品99| 卡戴珊不雅视频在线播放| 女的被弄到高潮叫床怎么办| 中国美白少妇内射xxxbb| 国产精品国产三级专区第一集| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻一区二区| 免费av观看视频| 亚洲国产精品成人久久小说| 黄色欧美视频在线观看| 久久久亚洲精品成人影院| 男女边吃奶边做爰视频| 国产亚洲一区二区精品| 精品酒店卫生间| 最新中文字幕久久久久| 丝袜美腿在线中文| 99热这里只有是精品50| 男的添女的下面高潮视频| 夫妻午夜视频| 久久人人爽人人片av| 另类亚洲欧美激情| 国产午夜精品久久久久久一区二区三区| 亚洲最大成人av| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 亚洲一区二区三区欧美精品 | 色5月婷婷丁香| 亚洲欧美精品专区久久| 久久6这里有精品| 嘟嘟电影网在线观看| 在线精品无人区一区二区三 | 午夜免费鲁丝| 亚洲不卡免费看| 三级经典国产精品| 99热网站在线观看| 国产 精品1| 在线播放无遮挡| 91aial.com中文字幕在线观看| 综合色丁香网| 国产在线一区二区三区精| 国产高清不卡午夜福利| 亚洲av免费在线观看| 男人和女人高潮做爰伦理| 高清在线视频一区二区三区| 交换朋友夫妻互换小说| 91久久精品国产一区二区三区| 国产视频内射| 国产精品一区二区在线观看99| 九九久久精品国产亚洲av麻豆| av国产久精品久网站免费入址| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 国产成人福利小说| 青春草国产在线视频| 欧美+日韩+精品| 国产 一区精品| 亚洲av一区综合| 国产精品久久久久久久久免| 国产精品.久久久| 国产精品一及| 免费黄色在线免费观看| 特级一级黄色大片| 七月丁香在线播放| 亚洲成人久久爱视频| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 久久久久精品性色| 亚洲欧美成人精品一区二区| 视频区图区小说| 观看美女的网站| 久热久热在线精品观看| 99久久九九国产精品国产免费| 99久久精品热视频| 久久久久国产精品人妻一区二区| 亚洲色图av天堂| 最近最新中文字幕免费大全7| 久久久久网色| 麻豆成人av视频| 成人黄色视频免费在线看| 在线观看免费高清a一片| 别揉我奶头 嗯啊视频| 永久网站在线| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影 | 日本猛色少妇xxxxx猛交久久| 午夜激情福利司机影院| 国产欧美亚洲国产| 午夜激情久久久久久久| 91精品国产九色| 亚洲经典国产精华液单| 亚洲内射少妇av| 国产中年淑女户外野战色| 日日摸夜夜添夜夜添av毛片| 亚洲综合色惰| 国产人妻一区二区三区在| 免费看不卡的av| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 成年版毛片免费区| 久久久久久久午夜电影| 亚洲精品一区蜜桃| 午夜福利在线在线| 精品久久久精品久久久| 国产成人午夜福利电影在线观看| 亚洲综合色惰| 秋霞在线观看毛片| 全区人妻精品视频| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 免费观看在线日韩| 色视频在线一区二区三区| 亚洲图色成人| 只有这里有精品99| 99久国产av精品国产电影| 国产在线男女| 久久久久久久久大av| 丝袜脚勾引网站| 欧美+日韩+精品| 美女国产视频在线观看| 久久精品国产亚洲网站| 欧美区成人在线视频| 国产黄a三级三级三级人| 国产精品一二三区在线看| www.av在线官网国产| 99久久中文字幕三级久久日本| 乱系列少妇在线播放| 国产一区二区三区综合在线观看 | 国产视频内射| 九九在线视频观看精品| 亚洲国产欧美在线一区| 美女高潮的动态| 国产精品.久久久| 国产av不卡久久| 国产黄色视频一区二区在线观看| 日本熟妇午夜| 有码 亚洲区| 美女视频免费永久观看网站| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| 大又大粗又爽又黄少妇毛片口| 只有这里有精品99| 性色avwww在线观看| 免费看不卡的av| 亚洲欧洲国产日韩| 国产美女午夜福利| 少妇高潮的动态图| 日本猛色少妇xxxxx猛交久久| 蜜桃亚洲精品一区二区三区| 亚洲国产高清在线一区二区三| 亚洲av电影在线观看一区二区三区 | 高清午夜精品一区二区三区| 亚洲av一区综合| 国产精品麻豆人妻色哟哟久久| 2022亚洲国产成人精品| 日韩亚洲欧美综合| 国产毛片a区久久久久| 国产精品人妻久久久影院| 久久99热6这里只有精品| 黄色日韩在线| av在线天堂中文字幕| 直男gayav资源| 久久热精品热| 精品久久久精品久久久| 精品酒店卫生间| 国产一区二区亚洲精品在线观看| 欧美成人精品欧美一级黄| 国产精品久久久久久久电影| 久久6这里有精品| 男人添女人高潮全过程视频| 久久久成人免费电影| 久久人人爽人人片av| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| 国产亚洲av片在线观看秒播厂| freevideosex欧美| 国产片特级美女逼逼视频| 天天一区二区日本电影三级| 欧美精品国产亚洲| 国产在线一区二区三区精| 神马国产精品三级电影在线观看| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 亚洲天堂国产精品一区在线| 五月伊人婷婷丁香| 色视频www国产| 国产精品久久久久久久电影| 久久人人爽av亚洲精品天堂 | 国产熟女欧美一区二区| 少妇猛男粗大的猛烈进出视频 | 91在线精品国自产拍蜜月| 精品一区二区三卡| 又大又黄又爽视频免费| 国产精品伦人一区二区| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 精品久久久久久久人妻蜜臀av| 国产成人91sexporn| 美女高潮的动态| 午夜福利网站1000一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 欧美少妇被猛烈插入视频| 新久久久久国产一级毛片| 日本与韩国留学比较| 国产亚洲av嫩草精品影院| 欧美人与善性xxx| 日韩三级伦理在线观看| 新久久久久国产一级毛片| 深夜a级毛片| 国产美女午夜福利| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 在线播放无遮挡| av又黄又爽大尺度在线免费看| 午夜精品国产一区二区电影 | 亚洲四区av| 亚洲欧美日韩东京热| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 亚洲av国产av综合av卡| 国产美女午夜福利| 成人毛片a级毛片在线播放| 六月丁香七月| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 国产综合懂色| 国产精品秋霞免费鲁丝片| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 嫩草影院入口| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区 | 国产 一区精品| 简卡轻食公司| 麻豆久久精品国产亚洲av| 色播亚洲综合网| 18+在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 中文在线观看免费www的网站| 国产 一区精品| 亚洲精品第二区| 在线天堂最新版资源| 久久久久久久精品精品| 人妻一区二区av| 午夜激情久久久久久久| 天堂网av新在线| 日韩不卡一区二区三区视频在线| 久久久久国产精品人妻一区二区| 在线观看av片永久免费下载| 午夜爱爱视频在线播放| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 大陆偷拍与自拍| 激情五月婷婷亚洲| 人妻 亚洲 视频| 精品国产乱码久久久久久小说| 国模一区二区三区四区视频| 欧美激情久久久久久爽电影| 日本爱情动作片www.在线观看| 日韩在线高清观看一区二区三区| 日韩强制内射视频| 国产欧美日韩精品一区二区| 啦啦啦在线观看免费高清www| 亚洲图色成人| 99久久精品热视频| 国产乱人偷精品视频| 又大又黄又爽视频免费| 特大巨黑吊av在线直播| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 欧美区成人在线视频| 免费大片18禁| 亚洲,欧美,日韩| 我要看日韩黄色一级片| 小蜜桃在线观看免费完整版高清| 日韩大片免费观看网站| 国产高清三级在线| 18禁裸乳无遮挡动漫免费视频 | 亚州av有码| 国产91av在线免费观看| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 欧美日韩在线观看h| 三级国产精品片| 国产高潮美女av| 日本一二三区视频观看| 波野结衣二区三区在线| 性插视频无遮挡在线免费观看| 色5月婷婷丁香| 国产高清国产精品国产三级 | 亚洲av二区三区四区| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放| 天美传媒精品一区二区| 国产欧美亚洲国产| 国产综合精华液| 联通29元200g的流量卡| 亚洲国产欧美人成| 欧美潮喷喷水| 亚洲国产欧美人成| 人妻 亚洲 视频| 亚洲欧洲日产国产| 精品一区二区三卡| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 男女国产视频网站| 免费看不卡的av| 男女国产视频网站| 97超碰精品成人国产| 国产精品爽爽va在线观看网站| 秋霞伦理黄片| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 97在线视频观看| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 黄色欧美视频在线观看| 国产亚洲午夜精品一区二区久久 | 99九九线精品视频在线观看视频| 亚洲精品一二三| 久久久精品欧美日韩精品| 亚洲人成网站在线观看播放| 亚洲精品国产成人久久av| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 久久久久久伊人网av| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻久久综合中文| 国产大屁股一区二区在线视频| 日韩精品有码人妻一区| 亚洲天堂国产精品一区在线| 亚洲av免费在线观看| 国产 一区 欧美 日韩| 99久久精品热视频| 在线观看人妻少妇| 大码成人一级视频| 国产淫语在线视频| 国产成年人精品一区二区| 国产免费又黄又爽又色| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 欧美另类一区| 国产精品人妻久久久久久| 成人漫画全彩无遮挡| 亚洲国产精品999| 视频中文字幕在线观看| 搞女人的毛片| 日日摸夜夜添夜夜爱| 国产成人freesex在线| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区| 深爱激情五月婷婷| 色综合色国产| 欧美成人一区二区免费高清观看| 大话2 男鬼变身卡| 亚洲人与动物交配视频| 国产一区二区三区av在线| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 久久久a久久爽久久v久久| 免费不卡的大黄色大毛片视频在线观看| 欧美一级a爱片免费观看看| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频 | 欧美激情国产日韩精品一区| 亚洲精品久久午夜乱码| 国产黄片美女视频| 国产精品嫩草影院av在线观看| 国产有黄有色有爽视频| 亚洲成人久久爱视频| 午夜日本视频在线| 婷婷色av中文字幕| 视频区图区小说| 国产大屁股一区二区在线视频| 中国三级夫妇交换| 秋霞伦理黄片| 18禁在线播放成人免费| 亚洲在久久综合| 亚洲aⅴ乱码一区二区在线播放| 国产精品.久久久| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 男人爽女人下面视频在线观看| 国产高潮美女av| 日韩一区二区三区影片| 亚洲天堂av无毛| 亚洲不卡免费看| 亚洲综合色惰| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久精品久久久久真实原创| 国产大屁股一区二区在线视频| 精品午夜福利在线看| 成年女人在线观看亚洲视频 | 久久久久久久久久久免费av| 婷婷色综合www| 国产永久视频网站| 日韩 亚洲 欧美在线| 国产一区二区三区av在线| 一级黄片播放器| 婷婷色综合大香蕉| 久久精品国产a三级三级三级| 国产精品国产三级国产av玫瑰| 免费人成在线观看视频色| 久久ye,这里只有精品| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 嫩草影院新地址| av福利片在线观看| 亚洲最大成人手机在线| 亚洲真实伦在线观看| 久久精品久久久久久久性| 日本午夜av视频| 久久精品国产鲁丝片午夜精品| 国产男人的电影天堂91| 国产在线男女| 69av精品久久久久久| 白带黄色成豆腐渣| 五月天丁香电影| 天天躁夜夜躁狠狠久久av| 一级av片app| 亚洲av成人精品一二三区| 最近最新中文字幕大全电影3| 国产成人福利小说| 亚洲欧美日韩东京热| 成人无遮挡网站| 亚洲精品aⅴ在线观看| 建设人人有责人人尽责人人享有的 | 日本-黄色视频高清免费观看| 国产成人aa在线观看| 亚洲天堂av无毛| 又爽又黄a免费视频| 国产亚洲午夜精品一区二区久久 | 欧美日韩国产mv在线观看视频 | 欧美精品国产亚洲| av在线亚洲专区| 欧美日韩视频高清一区二区三区二| h日本视频在线播放| 国产亚洲av嫩草精品影院| 午夜福利在线在线| 亚洲美女搞黄在线观看| 国产男人的电影天堂91| 亚洲性久久影院| 丰满少妇做爰视频| 国内少妇人妻偷人精品xxx网站| 91精品国产九色| 亚洲国产精品专区欧美| 精品一区二区三卡| 色视频在线一区二区三区| 熟女电影av网| 亚洲人与动物交配视频| 亚洲av成人精品一二三区| 中文字幕久久专区| 91在线精品国自产拍蜜月| 一级毛片黄色毛片免费观看视频| 97精品久久久久久久久久精品| 欧美日韩精品成人综合77777| 亚洲人成网站高清观看| 舔av片在线| 成人亚洲欧美一区二区av| 好男人在线观看高清免费视频| 亚洲欧美精品专区久久| videos熟女内射| a级毛片免费高清观看在线播放| 人妻制服诱惑在线中文字幕| 国产老妇伦熟女老妇高清| 中文欧美无线码| 国产久久久一区二区三区| 九色成人免费人妻av| 天天一区二区日本电影三级| 日本一二三区视频观看| 91aial.com中文字幕在线观看| 丝袜喷水一区| 久久ye,这里只有精品| 三级男女做爰猛烈吃奶摸视频| 好男人在线观看高清免费视频| 亚洲天堂av无毛| 日本一本二区三区精品| 一级毛片久久久久久久久女| 精品国产露脸久久av麻豆| 青春草国产在线视频| av免费在线看不卡| 午夜精品一区二区三区免费看| 国产黄片视频在线免费观看| 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 国产精品人妻久久久影院| 99久久精品一区二区三区| 亚洲,一卡二卡三卡| 寂寞人妻少妇视频99o| 嘟嘟电影网在线观看| 国产亚洲91精品色在线| 欧美日本视频| 18禁裸乳无遮挡免费网站照片| 免费看a级黄色片| 亚洲天堂国产精品一区在线| 搡老乐熟女国产| av天堂中文字幕网| 韩国av在线不卡| 99热网站在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲伊人久久精品综合| 午夜免费观看性视频| 欧美成人a在线观看| 国产女主播在线喷水免费视频网站| 在线亚洲精品国产二区图片欧美 | 少妇的逼水好多| 亚洲aⅴ乱码一区二区在线播放| 22中文网久久字幕| 中文字幕制服av| 有码 亚洲区| 看十八女毛片水多多多| 99热全是精品| 99久久中文字幕三级久久日本| 久久亚洲国产成人精品v| 2021少妇久久久久久久久久久| 久久99精品国语久久久| 观看免费一级毛片| 中国国产av一级| 高清午夜精品一区二区三区| 国产精品伦人一区二区| 日本猛色少妇xxxxx猛交久久| 伦理电影大哥的女人| 欧美xxxx性猛交bbbb| 七月丁香在线播放| 亚洲国产精品999| 国产精品嫩草影院av在线观看| 男女下面进入的视频免费午夜| 人妻 亚洲 视频| 性色avwww在线观看| 街头女战士在线观看网站| 青春草视频在线免费观看| 欧美zozozo另类| 神马国产精品三级电影在线观看| 国产色爽女视频免费观看| 18禁在线播放成人免费| 免费观看在线日韩| 国产淫片久久久久久久久| 国产精品偷伦视频观看了| 在线观看一区二区三区激情| 免费观看无遮挡的男女| 久久久午夜欧美精品| 真实男女啪啪啪动态图| 亚洲,一卡二卡三卡| 婷婷色麻豆天堂久久| videos熟女内射| av国产精品久久久久影院| 国产乱人视频| 亚洲精品乱码久久久v下载方式| 一级二级三级毛片免费看| 免费观看av网站的网址| 亚洲人成网站在线播| 久久ye,这里只有精品| 肉色欧美久久久久久久蜜桃 | 一区二区av电影网| 久久亚洲国产成人精品v| 国产亚洲精品久久久com| 最新中文字幕久久久久|