• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation?

    2021-06-26 03:05:00XuLiu劉旭JunChaoHuang黃俊超andXiangMeiDuan段香梅
    Chinese Physics B 2021年6期
    關(guān)鍵詞:劉旭

    Xu Liu(劉旭), Jun-Chao Huang(黃俊超), and Xiang-Mei Duan(段香梅)

    School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    Keywords: first-principles calculations,single-atom catalyst,CO oxidation,rate-limiting reaction barrier

    1. Introduction

    As greenhouse gases like CO get increased,[1]researchers are trying their best to find solutions to decrease the content of CO in the air.[2]One of the most promising methods is to convert CO to CO2by a highly effective catalyst.[3,4]So far,considerable efforts have been made to develop novel and efficient catalysts for CO oxidation. Some typical noble metals can effectively catalyze CO oxidation, such as Pt,[5]Pd,[6]Ru,[7]and Au.[8]However, considering the low cost, environmental friendliness, and outstanding thermal stability, researchers start to develop noble-free metals gradually and achieve certain success in CO oxidation.[9]Adhering to further increase the catalytic performance and reduce the cost,the view of researchers turns to single-atom catalysts (SACs)[10]for their high site density,high specify,and low cost.[11]

    Two-dimensional (2D) materials are extensively applied in various catalytic reactions as substrates owing to their large surface area, high thermal stability, and easily manufacture, such as graphene,[12,13]MoS,[14,15]hexagonal boron nitride monolayers (h-BN),[16,17]and graphic carbon nitride(CN,[18–20]C2N,[21,22]and C3N4[23–25]). Many 2D materials are rich in electron pairs to combine with metal ions, and it seems easy to recognize active sites. Besides,due to the crude or artificial vacancies, 2D materials can be used as prominent supports to host metal atoms and get high stable catalyst. In the experiment, SACs can be synthesized using the mass-selected soft-landing technique,improved wet chemistry methods, or atomic layer deposition methods. Many studies showed that defects of the support materials could serve as anchoring sites for metal clusters and even single atom.[26]

    It is reported that carbon nitride (CN), successfully synthesized in the experiment, can be applied in He separation,[25]H2storage,[27]water decomposition,[28,29]and CO oxidation.[20]Co atom, as an ideal noble-free metal, has a good performance in CO oxidation, even surpassing traditional noble metal catalysts. For instance,experimental works showed that the Co atom in Co3O4shows strong catalytic activity in CO oxidation at low temperature.[30,31]However,the reaction barrier of Co-anchored graphene(Co@Gra)is as high as 0.65 eV,[32]which cannot be carried out at room temperature. In order to improve the performance, researchers start to introduce defects in graphene-based SAC,and the reaction barrier of Co@Sv-Gra is decreased by 0.23 eV.[32]Co implanted h-BN and g-C3N4are also reported as excellent catalysts for CO oxidation, and the reaction barriers of Co@h-BN[33]and Co@g-C3N4[34]are 0.41 eV and 0.21 eV,respectively. The catalytic behavior of Co-anchored CN in the CO oxidation reaction is worth studying.

    Based on first-principles calculations,we investigated CO oxidation on Co anchored planar CN sheet. Our results show that the Co atom(s) can perfectly bind to the CN monolayer and maintain the stability of the whole system. When O2and CO molecules are adsorbed over Co/2Co@CN, the gas molecules are activated through electron “acceptance donation” interaction between gas molecules and the transition metal. Furthermore, Co anchored CN systems possess superior catalytic activity toward the CO oxidation reaction.

    2. Computation details

    The calculations are performed based on density functional theory (DFT) by the Viennaab initiosimulation package (VASP).[35]The Perdew–Burke–Ernzerh (PBE) functional of generalized gradient approximation (GGA) with the semi-empirical van der Waals (vdW) method of Grimme(DFT-D2) was used to handle the exchange and correlation functionals.[36,37]The cutoff energy is set to be 500 eV.The convergence tolerance for the geometry optimization is 10?4eV for the energy and 10?2eV/?A for the force. A vacuum space of 20 ?A is adopted to avoid interaction between two adjacent images. The reciprocal space is sampled with a 3×3×1k-point grid generated automatically using the Monkhorst-Pack method[38]for optimization. A HubbardUterm was added to the PBE functional (DFT+U) to describe partially filled d orbitals. The on-site Coulomb interaction(U)of 4 eV and exchange interaction(J)of 1 eV were applied.[39]Additionally,we used the climbing image nudged elastic band(CI-NEB) method[40]to search for transition states to investigate the reaction paths. Bader charge analysis is adopted to obtain the number of transferred electrons.[41]The first principles molecular dynamics(MD)simulations at 300 K with a time step of 1 fs are performed to check the structural stability.

    Taking Co@CN as an example, the binding energy (Eb)of Co on CN is defined as the energy difference between the Co atomically deposited CN and the separated CN plus the freestanding Co atom,that isEb=ECo@CN?ECN?ECo. The more negative binding energy,the more energy advantage the anchoring of Co on the substrate.

    The adsorption energy (Ea) of the gas molecules is obtained by the energy difference between the absorbed Co@CN and the gaseous species plus the bare Co@CN.Eacan be expressed asEa=Eadsorbate+Co@CN?Eadsorbate?ECo@CN. The charge density difference ?ρis used to describe the electronic interaction between the substrate and the adsorbate, ?ρ=ρa(bǔ)dsorbate/support?ρa(bǔ)dsorbate?ρsupport. Hereρa(bǔ)dsorbate/support,ρa(bǔ)dsorbate, andρsupportare the corresponding charge densities of the combined system,the free adsorbate,and the bare support,respectively.

    3. Results and discussion

    3.1. One and two Co atoms anchored CNs

    The calculated lattice constant of CN is 7.13 ?A, the C–N and C–C bond lengths are 1.35 ?A and 1.52 ?A,respectively.The results are in good agreement with the reported values of 7.12 ?A, 1.34 ?A, and 1.54 ?A.[27,28]A 2×2×1 supercell containing 24 carbon and 24 nitrogen atoms was established. The intrinsic hole surrounded by six sp2bonded nitrogen atoms is beneficial for Co atom anchoring. We consider three possible sites for Co landing on CN,find the most favorable configuration is the one shown in Fig. 1(a), where the Co atom bonds to two edge N atoms with a bond length of 1.85 ?A and keeps

    its planar geometric structure undistorted(see Fig.1(c)). The most stable geometry for two Co atoms on CN is shown in Fig.S1(a),with the Co–N bond length of 1.81 ?A and the Co–Co distance of 2.39 ?A. The corresponding binding energy is calculated to be?3.77 eV and?3.26 eV/atom for Co@CN and 2Co@CN, respectively, indicating the strong interaction between the Co atom and CN monolayer. For comparison,the data are listed in Table 1, where the cohesive energies per atom of the bulk metalsEc(?4.39 eV) are taken from experiments.[42]

    Table 1. The binding energies (eV) for Co, Bader charge Q (|e|) from Co to the substrate,the bond length of Co?N(A?),magnetic moment(μB),and the ratio of Eb/Ec for the most favorable Co adsorptions on CN.

    Fig. 1. The top (a) and side view (c) of optimized atomic configuration, the charge density difference plots (b) with an iso-surface value of 0.003|e|/Bohr3,as well as spin-polarized PDOS(d)for Co@CN.The charge accumulation and depletion regions are represented in yellow and blue, respectively. The bold blue short line points to the d-band center (?1.77 eV)of Co atom.

    The transition metals have a tendency of forming clusters,then we investigate the stability of Co@CN by CI–NEB and MD methods. As shown in Figs. 2(a) and 2(b), the diffusion barrier for Co from one stable site to another in the neighboring hole is 2.62 eV.Such a large diffusion barrier conforms that the single Co atom binds with the CN monolayer steadily and hard to move. On the other hand,the largeEb/Ecratios of 0.86 and 0.74 for single and double cobalt on the substrate manifest that Co atoms prefer a 2D growth morphology on CN.Furthermore, MD results manifest that the structure remains undistorted at room temperature (see Figs. 2(d) and 2(e)). Charge transfers from Co and 2Co to CN monolayer are 0.72|e| and 1.19|e|,respectively. Comparing the energy band structure of pure CN monolayer with that of Co@CN and 2Co@CN in Fig.S2,the bands dominated by N-2p orbitals in Co@CN and 2Co@CN show that there is a semiconductor to metal transition.

    Fig.2. The top(a)and side view(b)of diffusion path diagram and relative energy(c). The results of molecular dynamics(MD)simulations(d)and(e).

    As shown in Fig. 1(b) and Fig. S1(b), the charge rearrangement mainly occurs among the Co atom(s) and the twoedged N atoms. To better understand its physical mechanism, partial density of states(PDOS)is plotted in Fig.1(d)and Fig. S1(d). The overlapped peaks caused by orbital hybridization appearing between Co-3d and N-2p states illustrate that the single Co atom(s)can be viewed as an active site. The insertion of the second Co atom proves the ability of catalytic because the d-band center deviates from the Fermi level.[43]The magnetic momentum for Co and 2Co@CN is 2.68μBand 4.0μB,respectively.

    3.2. Adsorption of species involved in the CO oxidation

    The thermodynamics of a specific reaction are strongly affected by the stability of reactants, intermediates, transition orbitals,and products.[44]The ability to bind the gas molecules on catalytic active centers confirms the reaction efficiency.We then investigate the adsorption of reactants CO and O2over Co atom(s)anchored CN.

    O2molecule is one of the most important participants in the whole process of CO oxidation. We consider both end-on and side-on adsorption of O2on both Co@CN and 2Co@CN,and find that the adsorption energy via side-on is more negative (see Table 2 and Table S1); therefore, we focus on this configuration. As shown in Fig.3(a),the O2molecule prefers to lie parallel to the plane of the substrate, on top of the implanted Co atom. The two nearest Co–O distances are both 1.8 ?A, the O–O bond length is 1.34 ?A, stretched by 0.11 ?A compared with the value of free O2(g), which indicates that the “donation–acceptance” between Co and edged N in CN that activates the reaction activity of the single Co atom. The charge transfer of 0.58|e|is mainly caused by the reduction of the Co atom and accumulation of O2molecule(see Fig.3(b)).Evidenced by DOS in Fig. 3(c), after adsorption, the Co-3d states are overlapped with O2-2π?state, the DOS peaks of O2-5σand O2-1πstates are downshifted, indicating that O2molecule accepts electrons from Co-3d orbital.The strong hybridization among them benefits the O2molecule to combine with Co@CN.

    Table 2. The adsorption energies(eV/atom)for CO and O2(side-on),Bader Charge Q(|e|/atom),and bond length(?A)for the Co implanted CN.

    Fig. 3. The side views of the most plausible adsorption structures, the corresponding charge density difference,which iso-surface value is set to 0.003 e/Bohr3 and the PDOS for O2 on Co@CN (a)–(c) and 2Co@CN(d)–(f).

    For 2Co@CN shown in Fig. 3(d), the O2molecule adsorbs over the catalyst,like a bridge connecting one Co atom to the other. TheEaof the O2molecule is?1.43 eV/atom,and it is relatively larger than that of the O2molecule on 2Cu@C2N(?0.67 eV/atom). The bond length of O–O(1.50 ?A)is longer than that of O2over Co@CN. Moreover, Bader charge analysis shows that each Co atom transfers 0.70|e| to the O2molecule. After O2adsorbing, there are several peaks overlapping with Co-3d and O2-2p states at the energy region of?2 eV to?5 eV,as shown in Figs.3(c)and 3(f).For Co@CN,the O2molecule donates 1πand 5σstate electrons to Co-3d state, and the occupied Co-3d states feedback electrons to 2π?state of O2molecule, which is evidenced by the spindown peak near Fermi level. The ability to adsorb O2of both Co@CN and 2Co@CN is strong, especially the latter, with more charge(0.70|e|vs.0.58|e|)transferred from the substrate to O2molecule,the length of O–O bond is more elongated.

    CO interacts strongly with the Co@CN.For the most stable configuration,the calculatedEaof CO is?1.14 eV,which is close to the value of O2(?1.27 eV),so CO poisoning may be avoided. As presented in Fig. 4(a), the CO molecule is not perpendicular to the Co@CN plane but is inclined. The length of the C–Co bond is 1.82 ?A. The C–O bond length increases by 0.02 ?A compared to the value of free CO(g)(1.14 ?A). The charge transfer is 0.07|e| from the substrate to CO.From the density of states in Fig.4(c),it can be seen that there is slight charge transfer between CO and the substrate due to the donation of CO-5σstate electrons to Co-3d state and the back-donation of Co-3d state electrons to the CO-2π?state. For CO on 2Co@CN, the adsorbate stands above the two Co atoms and is almost perpendicular to the CN sheet(see Fig.4(d)). TheEaof?1.48 eV/atom is closer to the value of O2(?1.43 eV/atom);therefore,CO poisoning will not occur.The bond lengths of C–O(1.18 ?A)are also longer than that of the CO molecule on Co@CN.Moreover,Bader charge analysis shows that the adsorbed CO molecule gains 0.085|e|/atom from 2Co@CN.The strong interaction between Co and CO is evidenced by the DOS in Fig.4(f). The slight charge transferring is mainly caused by the donation of CO-4π?,1π,5σelectrons to Co-3d state and back donation of Co-3d electrons to CO-2π?. Like the adsorption of O2,the more electrons transfer from the substrate to the CO molecule,the larger the C–O bond length.

    Fig. 4. The side views of the most stable adsorption structures, the corresponding charge density difference and the PDOS for CO on Co@CN(a)–(c)and 2Co@CN(d)–(f).

    We also consider the final products O atomic and CO2adsorption on both catalysts and summarize the data in Table S1. TheEaof O atom absorbed on Co@CN and 2Co@CN is?3.94 eV and?3.14 eV, respectively. Due to the strong hybridization between the O-2p and Co-3d states, the Co–O bond length is all less than 2 ?A. The bond length of the two C–O bonds,as well as the angle of O–C–O,is the same as that of free CO2(g). TheEaof CO2is?0.42 eV and?0.34 eV,respectively,both are less than 0.50 eV,indicating that CO2is easy to desorb.[33]

    3.3. CO oxidation on Co@CN and 2Co@CN

    Generally, the CO oxidation on catalysts can mainly be performed by three typical reaction mechanisms, namely Eley–Rideal (ER), Langmuir–Hinshelwood (LH), and termolecular Eley–Rideal (TER) mechanism. Considering the recycling of catalysts,we take catalysts themselves as the initial state in three mechanisms.

    The ER,a mechanism of single active state participating in the reaction,is initiated by the direct reaction of gaseous CO molecules with the adsorbed O atom at the reaction centers resulting in the activation of O2to form a carbonate-like CO3intermediate or a final product of CO2. The dissociation of O2is the rate-limiting step. For Co@CN,the interaction with CO is as strong as that with O2,which can avoid CO poisoning. The configuration of physically adsorbed CO above the pre-adsorbed O2is selected as the initial state(IS2). As shown in Fig. S3, a chemically adsorbed atomic O and a physically adsorbed CO2molecule are considered as the final state(FS).In IS2, when the CO molecule approaches the activated O2,the O–O distance increases from 1.34 ?A to 1.35 ?A.The insertion of CO is exothermic; the breaking of the O–O bond and the formation of the new C–O bonds need to cross a barrier of 0.73 eV.Then it forms carbonate–like CO3(TS1). The CO3in TS1 dissociates by scission of one C–O bond attached to the Co atom. The process has an energy barrier of 3.14 eV(from MS1 to TS2). As a result, there leaves a physically adsorbed CO2and an O atom adsorbing on the Co@CN(FS).CO2adsorption on Co@CN is quite weak,and entire CO oxidation is exothermic at 300 K.The ER mechanism is unfavorable due to its large reaction barriers(>3 eV).The reaction on 2Co@CN is shown in Fig.S5. The entire reaction progress of 2Co@CN is similar to that of Co@CN,and its reaction barrier is 2.65 eV.

    The LH,a mechanism of double active states(CO+O2)participating in the reaction, starts with the interaction between the co-adsorbed CO and O2molecules for forming a peroxide-like OCOO intermediate and then the O–O bond breaks. And there leaves a physically adsorbed CO2together with an adsorbed atomic O like the final state of ER.As shown in Fig.S4,the co-adsorption of CO and O2on Co@CN is selected as the initial state(IS).Then crossing an energy barrier of 0.25 eV,CO and O2are parallel with end-on configurations(TS1). The CO and O2are activated,the O–O and C–O bonds are elongated. The peroxide-like OCOO has formed (MS1)with new O–O bond(1.63 ?A).With the scission of the new O–O bond and Co–C in MS,a physically adsorbed CO2is formed together with an adsorbed atomic O(TS2). The reaction from MS1 to TS2 climbs the energy barriers of 0.79 eV.The entire progress is exothermic with a small reaction barrier of 1.69 eV.The reaction could process readily with the barrier of 0.8 eV or less.[44]The findings indicate that CO oxidation on Co@CN is not particularly desirable. Whereas, O2molecule prefers adsorbing on 2Co@CN (IS1). With CO molecule participating in, the O–O bond stretches. Then one of the O atoms approaches to adsorbed CO molecule, and it forms OCOO(MS1). Then it gets dispersed,the corresponding reaction barrier is only 0.62 eV. We conclude that 2Co@CN is superior in terms of a minor reaction barrier. Following this,as shown in Fig.S6,the left adsorbed atomic O will react with another gaseous CO molecule(IS)and form the second physically adsorbed CO2(FS). For Co@CN (2Co@CN), the formation of the second CO2needs to pass over a reaction barrier of 0.28 eV(0.34 eV) and release the heat of 3.82 eV (2.65 eV), respectively.

    Fig.5. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on Co@CN through TER mechanism. All energies are given with respect to the reference energies of IS0.

    Fig.6. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on 2Co@CN through TER mechanism.

    Similar to the LH mechanism,the TER is a mechanism of double active states (CO+CO) participating in the reaction.Free O2molecule can be activated by the two co–adsorbed CO molecules to form an OCO–M–OCO intermediate. Then CO2molecules gradually stay away from the catalysts after the breaking of the C–Co bond. As shown in Fig.5, two CO molecules are chemically co–adsorbed on the Co site,and one O2molecule approaches them from the top(IS).Then the insertion of O2actives the pre-adsorbed CO with the elongated O–O bond length of 1.28 ?A (TS1) via adsorbing energy of 0.47 eV.Once a free O2is close enough,two O atoms bind to the C atoms and form an OCO–Co–OCO intermediate(MS).From MS to TS1, as the O–O bond length continues to increase, it finally breaks, and OCO–Co–OCO dissociates into two CO2molecules with a small reaction barrier of 0.42 eV and a huge exothermic energy of 4.35 eV (TS2). Due to the smallEa(?0.42 eV)of CO2on Co@CN,they should desorb spontaneously and finish the reaction cycle. The rate–limiting step for the TER mechanism is the dissociative adsorption of O2,and the reaction energy of Co@CN is 0.42 eV.The result indicates that the CO oxidation on Co@CN through the TER mechanism is superior to Pd@CN (0.48 eV). For 2Co@CN,as shown in Fig. 6, the adsorbed O2molecule reacts with two CO molecules simultaneously and produces an OCO–Co–OCO intermediate.[45]The reaction barrier is 0.38 eV, a bit smaller than that of Co@CN.

    4. Conclusion

    We have investigated the electronic structure of one and two Co atoms implanted on CN monolayer and their catalytic role played in CO oxidation by first-principles calculations.Our results show that the large binding energy and high diffusion barrier ensure that Co atoms are steadily anchored on CN and hard to form clusters,which are beneficial for the reactions. The adsorption energies of CO and O2on both catalysts are comparable, and the reactants molecules can be effectively captured and activated. Via three typical reaction mechanisms, we find that CO oxidation can favorably be in progress over both catalysts,and the TER mechanism is more preferable with a fairly small rate-limiting reaction barrier.

    猜你喜歡
    劉旭
    Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
    綁錯(cuò)的女友,騙錢騙色的渣女竟查無此人
    某新型航空材料加速腐蝕當(dāng)量關(guān)系試驗(yàn)研究
    17歲少年捐腎之死:有個(gè)孝子醫(yī)生深淵沉淪
    讓不愉快化成過眼云煙
    西門警事之四十二
    派出所工作(2018年6期)2018-09-10 23:01:56
    雨中情
    派出所工作(2017年6期)2017-05-30 10:48:04
    西門警事之十四困局
    派出所工作(2016年2期)2016-05-30 05:20:20
    一把折扇有乾坤,北京老宅挖寶一波三折
    The Short-term Effects of Temperature and Free Ammonia onAmmonium Oxidization in Granular and Floccular Nitrifying System*
    亚洲国产高清在线一区二区三| 又紧又爽又黄一区二区| 亚洲男人的天堂狠狠| 国产成人影院久久av| 欧美日韩中文字幕国产精品一区二区三区| 欧美av亚洲av综合av国产av| 九九在线视频观看精品| 又黄又粗又硬又大视频| 首页视频小说图片口味搜索| 亚洲18禁久久av| av欧美777| 一区福利在线观看| 色噜噜av男人的天堂激情| 日韩欧美精品v在线| 在线观看一区二区三区| av天堂在线播放| 亚洲自拍偷在线| 午夜福利高清视频| 国产99白浆流出| 嫩草影视91久久| 亚洲美女黄片视频| 亚洲美女黄片视频| 午夜影院日韩av| 少妇人妻一区二区三区视频| 97人妻精品一区二区三区麻豆| 成人av一区二区三区在线看| 国产野战对白在线观看| 一进一出好大好爽视频| 亚洲精品色激情综合| 国产成人福利小说| 日韩欧美免费精品| 嫩草影院入口| 一本一本综合久久| 日韩有码中文字幕| xxxwww97欧美| 欧美3d第一页| 亚洲久久久久久中文字幕| 成人亚洲精品av一区二区| 欧美大码av| 一级毛片高清免费大全| 亚洲av中文字字幕乱码综合| 国产熟女xx| 老熟妇乱子伦视频在线观看| 亚洲人成网站在线播放欧美日韩| 悠悠久久av| 波多野结衣高清无吗| 亚洲国产精品999在线| 国产精品久久久人人做人人爽| 亚洲av免费在线观看| 成年女人永久免费观看视频| 少妇的逼好多水| 香蕉丝袜av| 欧美激情在线99| 岛国在线免费视频观看| 久久天躁狠狠躁夜夜2o2o| 嫁个100分男人电影在线观看| tocl精华| 久9热在线精品视频| 黄色片一级片一级黄色片| 精品熟女少妇八av免费久了| 女警被强在线播放| www国产在线视频色| 国内久久婷婷六月综合欲色啪| 亚洲天堂国产精品一区在线| 国产在线精品亚洲第一网站| 麻豆一二三区av精品| 好看av亚洲va欧美ⅴa在| 国产精品国产高清国产av| 国产精品久久久久久久电影 | 国产乱人伦免费视频| 亚洲国产高清在线一区二区三| 精品人妻偷拍中文字幕| 精华霜和精华液先用哪个| 免费电影在线观看免费观看| 免费高清视频大片| 极品教师在线免费播放| 欧美在线一区亚洲| 色播亚洲综合网| 十八禁人妻一区二区| 国产亚洲av嫩草精品影院| 黄色片一级片一级黄色片| 成人鲁丝片一二三区免费| 午夜福利成人在线免费观看| 老司机福利观看| 成人亚洲精品av一区二区| 在线播放国产精品三级| 成人欧美大片| 国内精品一区二区在线观看| ponron亚洲| 久久久成人免费电影| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮喷水抽搐中文字幕| av在线天堂中文字幕| 最后的刺客免费高清国语| 国产成人aa在线观看| 99久久综合精品五月天人人| 一本精品99久久精品77| 看黄色毛片网站| 中文字幕av在线有码专区| 久久香蕉精品热| 2021天堂中文幕一二区在线观| av国产免费在线观看| 久久久久久国产a免费观看| 久久久精品欧美日韩精品| 久久久久久久精品吃奶| 男人和女人高潮做爰伦理| 亚洲七黄色美女视频| 国产亚洲av嫩草精品影院| 国产精品亚洲av一区麻豆| 国产高清三级在线| 又黄又爽又免费观看的视频| 日本成人三级电影网站| 看黄色毛片网站| www.熟女人妻精品国产| av黄色大香蕉| 在线国产一区二区在线| 波野结衣二区三区在线 | 精品久久久久久久人妻蜜臀av| 日本三级黄在线观看| 日韩欧美在线乱码| netflix在线观看网站| www日本在线高清视频| 一级黄色大片毛片| 日本免费一区二区三区高清不卡| 中文字幕人成人乱码亚洲影| 哪里可以看免费的av片| 19禁男女啪啪无遮挡网站| 亚洲欧美一区二区三区黑人| 麻豆国产av国片精品| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 欧美精品啪啪一区二区三区| 久久久久久九九精品二区国产| 搡女人真爽免费视频火全软件 | 久久亚洲精品不卡| 亚洲精品国产精品久久久不卡| 狠狠狠狠99中文字幕| 少妇人妻精品综合一区二区 | 床上黄色一级片| 久久精品91无色码中文字幕| 国产97色在线日韩免费| 国产综合懂色| 无限看片的www在线观看| 亚洲精品在线观看二区| 变态另类丝袜制服| 免费看十八禁软件| 中出人妻视频一区二区| 日韩欧美在线乱码| 又粗又爽又猛毛片免费看| 国产主播在线观看一区二区| 舔av片在线| 高清毛片免费观看视频网站| 99久国产av精品| 99久久99久久久精品蜜桃| 日韩欧美 国产精品| 一a级毛片在线观看| av在线天堂中文字幕| 亚洲成人久久爱视频| 99久久成人亚洲精品观看| 日韩国内少妇激情av| 午夜福利高清视频| 日韩欧美三级三区| 男女之事视频高清在线观看| 操出白浆在线播放| 国内久久婷婷六月综合欲色啪| 久久精品国产综合久久久| 婷婷精品国产亚洲av| 国产午夜精品论理片| 熟妇人妻久久中文字幕3abv| 亚洲成人免费电影在线观看| 国产男靠女视频免费网站| 久久人人精品亚洲av| 国产免费av片在线观看野外av| 十八禁网站免费在线| АⅤ资源中文在线天堂| 国产伦人伦偷精品视频| 国产精品久久久久久人妻精品电影| a在线观看视频网站| 免费在线观看成人毛片| 人妻久久中文字幕网| 亚洲在线观看片| 国产探花极品一区二区| 亚洲色图av天堂| 久久久久亚洲av毛片大全| 午夜a级毛片| 亚洲熟妇熟女久久| 丝袜美腿在线中文| 国产美女午夜福利| 国内久久婷婷六月综合欲色啪| 色综合婷婷激情| 婷婷亚洲欧美| 精品电影一区二区在线| 国产不卡一卡二| 亚洲18禁久久av| 国产精品爽爽va在线观看网站| www.www免费av| 在线看三级毛片| 最新美女视频免费是黄的| 在线观看舔阴道视频| 国产乱人伦免费视频| 精品人妻偷拍中文字幕| 一区福利在线观看| 亚洲精品粉嫩美女一区| 一个人观看的视频www高清免费观看| 热99re8久久精品国产| 久久伊人香网站| 亚洲不卡免费看| 久久精品综合一区二区三区| 午夜老司机福利剧场| 亚洲av熟女| 高清毛片免费观看视频网站| 在线看三级毛片| 欧美最黄视频在线播放免费| 国产亚洲精品一区二区www| 小蜜桃在线观看免费完整版高清| www国产在线视频色| 国产熟女xx| 午夜福利在线在线| 老熟妇仑乱视频hdxx| 精品人妻偷拍中文字幕| 亚洲熟妇中文字幕五十中出| 观看美女的网站| 可以在线观看的亚洲视频| 怎么达到女性高潮| 婷婷亚洲欧美| 国内精品美女久久久久久| 国产真人三级小视频在线观看| or卡值多少钱| 国产亚洲欧美在线一区二区| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av香蕉五月| 90打野战视频偷拍视频| 久久久久国内视频| 亚洲欧美激情综合另类| 欧美3d第一页| 两个人看的免费小视频| 国产亚洲精品久久久com| 桃红色精品国产亚洲av| 97超级碰碰碰精品色视频在线观看| 午夜精品一区二区三区免费看| 国产毛片a区久久久久| 成人三级黄色视频| 久久久久久久久久黄片| 51午夜福利影视在线观看| 国产麻豆成人av免费视频| 午夜精品在线福利| 免费看日本二区| 日韩欧美国产在线观看| 一本一本综合久久| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| 亚洲熟妇熟女久久| 色精品久久人妻99蜜桃| 国产精品美女特级片免费视频播放器| 日韩欧美在线二视频| 国产亚洲精品综合一区在线观看| 国产一级毛片七仙女欲春2| avwww免费| 露出奶头的视频| а√天堂www在线а√下载| 黄色片一级片一级黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品av在线| 91字幕亚洲| 波多野结衣高清作品| 我要搜黄色片| 99久国产av精品| 国产精品99久久久久久久久| 三级国产精品欧美在线观看| 日韩欧美三级三区| 麻豆国产97在线/欧美| 非洲黑人性xxxx精品又粗又长| 中文在线观看免费www的网站| 欧美精品啪啪一区二区三区| 久久亚洲精品不卡| 欧美一区二区亚洲| 真人一进一出gif抽搐免费| 首页视频小说图片口味搜索| 午夜免费男女啪啪视频观看 | 国产乱人伦免费视频| 嫩草影视91久久| 国产成年人精品一区二区| 国产精品嫩草影院av在线观看 | 亚洲av中文字字幕乱码综合| 老汉色∧v一级毛片| 亚洲av成人av| 久久久色成人| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看 | 亚洲国产中文字幕在线视频| 9191精品国产免费久久| 悠悠久久av| 麻豆国产97在线/欧美| 麻豆国产av国片精品| 亚洲人成网站高清观看| 国产午夜福利久久久久久| 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| 国内精品久久久久久久电影| 高潮久久久久久久久久久不卡| h日本视频在线播放| 最新中文字幕久久久久| 天美传媒精品一区二区| 久久伊人香网站| av天堂中文字幕网| 久久精品国产自在天天线| 色播亚洲综合网| 真实男女啪啪啪动态图| 一级黄色大片毛片| 亚洲片人在线观看| 欧美在线一区亚洲| 最新美女视频免费是黄的| av福利片在线观看| 99久久精品热视频| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 欧美乱码精品一区二区三区| 亚洲国产精品999在线| 欧美日韩乱码在线| 亚洲成a人片在线一区二区| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 人人妻人人澡欧美一区二区| 久久亚洲精品不卡| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 一级黄片播放器| 天天一区二区日本电影三级| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 欧美丝袜亚洲另类 | 亚洲无线观看免费| 精品人妻偷拍中文字幕| 国产av不卡久久| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区三区四区免费观看 | 99视频精品全部免费 在线| 少妇丰满av| 啪啪无遮挡十八禁网站| 精品久久久久久成人av| 熟妇人妻久久中文字幕3abv| 国产男靠女视频免费网站| 天天添夜夜摸| 国产69精品久久久久777片| 午夜日韩欧美国产| 亚洲精品亚洲一区二区| a级毛片a级免费在线| 一级作爱视频免费观看| 男女那种视频在线观看| 成年女人看的毛片在线观看| 草草在线视频免费看| 国产精品av视频在线免费观看| 露出奶头的视频| 一进一出抽搐动态| 亚洲午夜理论影院| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 免费在线观看成人毛片| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 母亲3免费完整高清在线观看| 51国产日韩欧美| 国产在视频线在精品| 老熟妇乱子伦视频在线观看| 亚洲成人中文字幕在线播放| 国产精品久久久久久人妻精品电影| 精品久久久久久成人av| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 久久久精品大字幕| 国产三级在线视频| 日韩欧美一区二区三区在线观看| 啪啪无遮挡十八禁网站| 精品人妻一区二区三区麻豆 | 免费高清视频大片| 国产真实乱freesex| 中文字幕高清在线视频| 国产高清激情床上av| 精品久久久久久久末码| 亚洲第一电影网av| 在线观看66精品国产| 国产蜜桃级精品一区二区三区| 欧美成人性av电影在线观看| 国产成人av激情在线播放| 嫩草影视91久久| 午夜亚洲福利在线播放| 亚洲久久久久久中文字幕| 欧美日韩综合久久久久久 | 国产一区在线观看成人免费| 在线观看美女被高潮喷水网站 | 欧美大码av| 国产一级毛片七仙女欲春2| 国产一区二区亚洲精品在线观看| 精品无人区乱码1区二区| 人人妻人人看人人澡| 大型黄色视频在线免费观看| 乱人视频在线观看| 婷婷丁香在线五月| 亚洲色图av天堂| 美女黄网站色视频| 国产欧美日韩一区二区精品| 亚洲国产精品久久男人天堂| 免费无遮挡裸体视频| 国产91精品成人一区二区三区| 男插女下体视频免费在线播放| av片东京热男人的天堂| 久久久久久久久中文| 亚洲美女黄片视频| 日本 欧美在线| 亚洲人成网站在线播| 免费一级毛片在线播放高清视频| 神马国产精品三级电影在线观看| 国产精品三级大全| 国产97色在线日韩免费| 国产亚洲精品一区二区www| 草草在线视频免费看| 国产精品美女特级片免费视频播放器| 国产高清videossex| 午夜视频国产福利| 一a级毛片在线观看| 男人的好看免费观看在线视频| 欧美国产日韩亚洲一区| 国产极品精品免费视频能看的| 中文字幕熟女人妻在线| 老司机午夜福利在线观看视频| 国产精品1区2区在线观看.| 热99在线观看视频| 午夜福利视频1000在线观看| 国产激情欧美一区二区| 一级黄色大片毛片| 高清日韩中文字幕在线| 国产欧美日韩一区二区精品| 9191精品国产免费久久| 国产三级在线视频| 男女视频在线观看网站免费| 看免费av毛片| 欧美日本亚洲视频在线播放| or卡值多少钱| 精品午夜福利视频在线观看一区| 久久精品91蜜桃| 欧美性感艳星| 天堂影院成人在线观看| 99视频精品全部免费 在线| 中文字幕熟女人妻在线| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 亚洲狠狠婷婷综合久久图片| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 久久久久久久久久黄片| aaaaa片日本免费| 在线观看66精品国产| 欧美又色又爽又黄视频| 久久精品夜夜夜夜夜久久蜜豆| 最近最新免费中文字幕在线| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品热视频| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 免费大片18禁| 国产69精品久久久久777片| 亚洲人成网站在线播放欧美日韩| 欧美在线黄色| 在线看三级毛片| 九九在线视频观看精品| 国产成人福利小说| 国产精品 欧美亚洲| 久久精品91蜜桃| 精品久久久久久久毛片微露脸| 亚洲男人的天堂狠狠| 麻豆久久精品国产亚洲av| 岛国视频午夜一区免费看| 很黄的视频免费| 在线观看免费视频日本深夜| 中文字幕熟女人妻在线| 两个人看的免费小视频| 神马国产精品三级电影在线观看| 亚洲七黄色美女视频| 91在线观看av| 国产精品久久久人人做人人爽| 亚洲欧美激情综合另类| 婷婷亚洲欧美| 久久久久久大精品| 最新美女视频免费是黄的| 无遮挡黄片免费观看| 久久久久九九精品影院| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 日本免费a在线| 女人被狂操c到高潮| 久久精品91蜜桃| 日本免费a在线| 99热精品在线国产| 村上凉子中文字幕在线| 一本一本综合久久| 国产伦精品一区二区三区四那| 少妇丰满av| 国产日本99.免费观看| 国产色婷婷99| 亚洲精品成人久久久久久| 亚洲av第一区精品v没综合| 亚洲不卡免费看| 日韩人妻高清精品专区| 69人妻影院| 看黄色毛片网站| 欧美黄色片欧美黄色片| 久久精品国产99精品国产亚洲性色| 成人特级黄色片久久久久久久| 亚洲欧美一区二区三区黑人| 国产激情欧美一区二区| 宅男免费午夜| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美丝袜亚洲另类 | 久久精品国产亚洲av香蕉五月| 好男人在线观看高清免费视频| 手机成人av网站| 久久久久久大精品| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 国产亚洲欧美98| 手机成人av网站| 国产91精品成人一区二区三区| 亚洲精品国产精品久久久不卡| 国产aⅴ精品一区二区三区波| 天堂影院成人在线观看| 日本与韩国留学比较| 好男人在线观看高清免费视频| 婷婷精品国产亚洲av| 两个人视频免费观看高清| 18+在线观看网站| 天堂√8在线中文| 日本在线视频免费播放| 亚洲 国产 在线| 国产亚洲av嫩草精品影院| 日韩精品中文字幕看吧| 精品久久久久久久毛片微露脸| 亚洲人成网站在线播| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 1000部很黄的大片| 最近最新免费中文字幕在线| 好看av亚洲va欧美ⅴa在| 少妇的逼好多水| 天堂网av新在线| 人妻夜夜爽99麻豆av| 99国产精品一区二区蜜桃av| 欧美精品啪啪一区二区三区| 波多野结衣高清作品| 黄色丝袜av网址大全| 五月伊人婷婷丁香| 亚洲久久久久久中文字幕| 亚洲片人在线观看| 久久久国产成人精品二区| 伊人久久大香线蕉亚洲五| 男人的好看免费观看在线视频| 亚洲精品在线美女| 亚洲五月天丁香| 好看av亚洲va欧美ⅴa在| 亚洲国产欧美人成| 亚洲欧美日韩高清在线视频| 啦啦啦免费观看视频1| 国产麻豆成人av免费视频| 亚洲色图av天堂| 欧美日韩乱码在线| 欧美高清成人免费视频www| 岛国视频午夜一区免费看| 美女高潮的动态| 亚洲成人中文字幕在线播放| 欧美日韩一级在线毛片| 国产99白浆流出| 青草久久国产| 在线十欧美十亚洲十日本专区| 综合色av麻豆| 麻豆一二三区av精品| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 精品人妻偷拍中文字幕| x7x7x7水蜜桃| 日韩免费av在线播放| 国产淫片久久久久久久久 | 欧美日韩一级在线毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久6这里有精品| 国产亚洲精品一区二区www| 久久久国产精品麻豆| 99久久成人亚洲精品观看| 精品国产三级普通话版| 一本一本综合久久| 国产三级中文精品| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 免费大片18禁| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 琪琪午夜伦伦电影理论片6080| 99精品在免费线老司机午夜| 亚洲av美国av| 久久国产精品人妻蜜桃| 精品国产美女av久久久久小说| 校园春色视频在线观看| 97碰自拍视频| 亚洲av第一区精品v没综合| 99久久九九国产精品国产免费| 亚洲av熟女| 一个人看的www免费观看视频| 久久午夜亚洲精品久久|