• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation?

    2021-06-26 03:05:00XuLiu劉旭JunChaoHuang黃俊超andXiangMeiDuan段香梅
    Chinese Physics B 2021年6期
    關(guān)鍵詞:劉旭

    Xu Liu(劉旭), Jun-Chao Huang(黃俊超), and Xiang-Mei Duan(段香梅)

    School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    Keywords: first-principles calculations,single-atom catalyst,CO oxidation,rate-limiting reaction barrier

    1. Introduction

    As greenhouse gases like CO get increased,[1]researchers are trying their best to find solutions to decrease the content of CO in the air.[2]One of the most promising methods is to convert CO to CO2by a highly effective catalyst.[3,4]So far,considerable efforts have been made to develop novel and efficient catalysts for CO oxidation. Some typical noble metals can effectively catalyze CO oxidation, such as Pt,[5]Pd,[6]Ru,[7]and Au.[8]However, considering the low cost, environmental friendliness, and outstanding thermal stability, researchers start to develop noble-free metals gradually and achieve certain success in CO oxidation.[9]Adhering to further increase the catalytic performance and reduce the cost,the view of researchers turns to single-atom catalysts (SACs)[10]for their high site density,high specify,and low cost.[11]

    Two-dimensional (2D) materials are extensively applied in various catalytic reactions as substrates owing to their large surface area, high thermal stability, and easily manufacture, such as graphene,[12,13]MoS,[14,15]hexagonal boron nitride monolayers (h-BN),[16,17]and graphic carbon nitride(CN,[18–20]C2N,[21,22]and C3N4[23–25]). Many 2D materials are rich in electron pairs to combine with metal ions, and it seems easy to recognize active sites. Besides,due to the crude or artificial vacancies, 2D materials can be used as prominent supports to host metal atoms and get high stable catalyst. In the experiment, SACs can be synthesized using the mass-selected soft-landing technique,improved wet chemistry methods, or atomic layer deposition methods. Many studies showed that defects of the support materials could serve as anchoring sites for metal clusters and even single atom.[26]

    It is reported that carbon nitride (CN), successfully synthesized in the experiment, can be applied in He separation,[25]H2storage,[27]water decomposition,[28,29]and CO oxidation.[20]Co atom, as an ideal noble-free metal, has a good performance in CO oxidation, even surpassing traditional noble metal catalysts. For instance,experimental works showed that the Co atom in Co3O4shows strong catalytic activity in CO oxidation at low temperature.[30,31]However,the reaction barrier of Co-anchored graphene(Co@Gra)is as high as 0.65 eV,[32]which cannot be carried out at room temperature. In order to improve the performance, researchers start to introduce defects in graphene-based SAC,and the reaction barrier of Co@Sv-Gra is decreased by 0.23 eV.[32]Co implanted h-BN and g-C3N4are also reported as excellent catalysts for CO oxidation, and the reaction barriers of Co@h-BN[33]and Co@g-C3N4[34]are 0.41 eV and 0.21 eV,respectively. The catalytic behavior of Co-anchored CN in the CO oxidation reaction is worth studying.

    Based on first-principles calculations,we investigated CO oxidation on Co anchored planar CN sheet. Our results show that the Co atom(s) can perfectly bind to the CN monolayer and maintain the stability of the whole system. When O2and CO molecules are adsorbed over Co/2Co@CN, the gas molecules are activated through electron “acceptance donation” interaction between gas molecules and the transition metal. Furthermore, Co anchored CN systems possess superior catalytic activity toward the CO oxidation reaction.

    2. Computation details

    The calculations are performed based on density functional theory (DFT) by the Viennaab initiosimulation package (VASP).[35]The Perdew–Burke–Ernzerh (PBE) functional of generalized gradient approximation (GGA) with the semi-empirical van der Waals (vdW) method of Grimme(DFT-D2) was used to handle the exchange and correlation functionals.[36,37]The cutoff energy is set to be 500 eV.The convergence tolerance for the geometry optimization is 10?4eV for the energy and 10?2eV/?A for the force. A vacuum space of 20 ?A is adopted to avoid interaction between two adjacent images. The reciprocal space is sampled with a 3×3×1k-point grid generated automatically using the Monkhorst-Pack method[38]for optimization. A HubbardUterm was added to the PBE functional (DFT+U) to describe partially filled d orbitals. The on-site Coulomb interaction(U)of 4 eV and exchange interaction(J)of 1 eV were applied.[39]Additionally,we used the climbing image nudged elastic band(CI-NEB) method[40]to search for transition states to investigate the reaction paths. Bader charge analysis is adopted to obtain the number of transferred electrons.[41]The first principles molecular dynamics(MD)simulations at 300 K with a time step of 1 fs are performed to check the structural stability.

    Taking Co@CN as an example, the binding energy (Eb)of Co on CN is defined as the energy difference between the Co atomically deposited CN and the separated CN plus the freestanding Co atom,that isEb=ECo@CN?ECN?ECo. The more negative binding energy,the more energy advantage the anchoring of Co on the substrate.

    The adsorption energy (Ea) of the gas molecules is obtained by the energy difference between the absorbed Co@CN and the gaseous species plus the bare Co@CN.Eacan be expressed asEa=Eadsorbate+Co@CN?Eadsorbate?ECo@CN. The charge density difference ?ρis used to describe the electronic interaction between the substrate and the adsorbate, ?ρ=ρa(bǔ)dsorbate/support?ρa(bǔ)dsorbate?ρsupport. Hereρa(bǔ)dsorbate/support,ρa(bǔ)dsorbate, andρsupportare the corresponding charge densities of the combined system,the free adsorbate,and the bare support,respectively.

    3. Results and discussion

    3.1. One and two Co atoms anchored CNs

    The calculated lattice constant of CN is 7.13 ?A, the C–N and C–C bond lengths are 1.35 ?A and 1.52 ?A,respectively.The results are in good agreement with the reported values of 7.12 ?A, 1.34 ?A, and 1.54 ?A.[27,28]A 2×2×1 supercell containing 24 carbon and 24 nitrogen atoms was established. The intrinsic hole surrounded by six sp2bonded nitrogen atoms is beneficial for Co atom anchoring. We consider three possible sites for Co landing on CN,find the most favorable configuration is the one shown in Fig. 1(a), where the Co atom bonds to two edge N atoms with a bond length of 1.85 ?A and keeps

    its planar geometric structure undistorted(see Fig.1(c)). The most stable geometry for two Co atoms on CN is shown in Fig.S1(a),with the Co–N bond length of 1.81 ?A and the Co–Co distance of 2.39 ?A. The corresponding binding energy is calculated to be?3.77 eV and?3.26 eV/atom for Co@CN and 2Co@CN, respectively, indicating the strong interaction between the Co atom and CN monolayer. For comparison,the data are listed in Table 1, where the cohesive energies per atom of the bulk metalsEc(?4.39 eV) are taken from experiments.[42]

    Table 1. The binding energies (eV) for Co, Bader charge Q (|e|) from Co to the substrate,the bond length of Co?N(A?),magnetic moment(μB),and the ratio of Eb/Ec for the most favorable Co adsorptions on CN.

    Fig. 1. The top (a) and side view (c) of optimized atomic configuration, the charge density difference plots (b) with an iso-surface value of 0.003|e|/Bohr3,as well as spin-polarized PDOS(d)for Co@CN.The charge accumulation and depletion regions are represented in yellow and blue, respectively. The bold blue short line points to the d-band center (?1.77 eV)of Co atom.

    The transition metals have a tendency of forming clusters,then we investigate the stability of Co@CN by CI–NEB and MD methods. As shown in Figs. 2(a) and 2(b), the diffusion barrier for Co from one stable site to another in the neighboring hole is 2.62 eV.Such a large diffusion barrier conforms that the single Co atom binds with the CN monolayer steadily and hard to move. On the other hand,the largeEb/Ecratios of 0.86 and 0.74 for single and double cobalt on the substrate manifest that Co atoms prefer a 2D growth morphology on CN.Furthermore, MD results manifest that the structure remains undistorted at room temperature (see Figs. 2(d) and 2(e)). Charge transfers from Co and 2Co to CN monolayer are 0.72|e| and 1.19|e|,respectively. Comparing the energy band structure of pure CN monolayer with that of Co@CN and 2Co@CN in Fig.S2,the bands dominated by N-2p orbitals in Co@CN and 2Co@CN show that there is a semiconductor to metal transition.

    Fig.2. The top(a)and side view(b)of diffusion path diagram and relative energy(c). The results of molecular dynamics(MD)simulations(d)and(e).

    As shown in Fig. 1(b) and Fig. S1(b), the charge rearrangement mainly occurs among the Co atom(s) and the twoedged N atoms. To better understand its physical mechanism, partial density of states(PDOS)is plotted in Fig.1(d)and Fig. S1(d). The overlapped peaks caused by orbital hybridization appearing between Co-3d and N-2p states illustrate that the single Co atom(s)can be viewed as an active site. The insertion of the second Co atom proves the ability of catalytic because the d-band center deviates from the Fermi level.[43]The magnetic momentum for Co and 2Co@CN is 2.68μBand 4.0μB,respectively.

    3.2. Adsorption of species involved in the CO oxidation

    The thermodynamics of a specific reaction are strongly affected by the stability of reactants, intermediates, transition orbitals,and products.[44]The ability to bind the gas molecules on catalytic active centers confirms the reaction efficiency.We then investigate the adsorption of reactants CO and O2over Co atom(s)anchored CN.

    O2molecule is one of the most important participants in the whole process of CO oxidation. We consider both end-on and side-on adsorption of O2on both Co@CN and 2Co@CN,and find that the adsorption energy via side-on is more negative (see Table 2 and Table S1); therefore, we focus on this configuration. As shown in Fig.3(a),the O2molecule prefers to lie parallel to the plane of the substrate, on top of the implanted Co atom. The two nearest Co–O distances are both 1.8 ?A, the O–O bond length is 1.34 ?A, stretched by 0.11 ?A compared with the value of free O2(g), which indicates that the “donation–acceptance” between Co and edged N in CN that activates the reaction activity of the single Co atom. The charge transfer of 0.58|e|is mainly caused by the reduction of the Co atom and accumulation of O2molecule(see Fig.3(b)).Evidenced by DOS in Fig. 3(c), after adsorption, the Co-3d states are overlapped with O2-2π?state, the DOS peaks of O2-5σand O2-1πstates are downshifted, indicating that O2molecule accepts electrons from Co-3d orbital.The strong hybridization among them benefits the O2molecule to combine with Co@CN.

    Table 2. The adsorption energies(eV/atom)for CO and O2(side-on),Bader Charge Q(|e|/atom),and bond length(?A)for the Co implanted CN.

    Fig. 3. The side views of the most plausible adsorption structures, the corresponding charge density difference,which iso-surface value is set to 0.003 e/Bohr3 and the PDOS for O2 on Co@CN (a)–(c) and 2Co@CN(d)–(f).

    For 2Co@CN shown in Fig. 3(d), the O2molecule adsorbs over the catalyst,like a bridge connecting one Co atom to the other. TheEaof the O2molecule is?1.43 eV/atom,and it is relatively larger than that of the O2molecule on 2Cu@C2N(?0.67 eV/atom). The bond length of O–O(1.50 ?A)is longer than that of O2over Co@CN. Moreover, Bader charge analysis shows that each Co atom transfers 0.70|e| to the O2molecule. After O2adsorbing, there are several peaks overlapping with Co-3d and O2-2p states at the energy region of?2 eV to?5 eV,as shown in Figs.3(c)and 3(f).For Co@CN,the O2molecule donates 1πand 5σstate electrons to Co-3d state, and the occupied Co-3d states feedback electrons to 2π?state of O2molecule, which is evidenced by the spindown peak near Fermi level. The ability to adsorb O2of both Co@CN and 2Co@CN is strong, especially the latter, with more charge(0.70|e|vs.0.58|e|)transferred from the substrate to O2molecule,the length of O–O bond is more elongated.

    CO interacts strongly with the Co@CN.For the most stable configuration,the calculatedEaof CO is?1.14 eV,which is close to the value of O2(?1.27 eV),so CO poisoning may be avoided. As presented in Fig. 4(a), the CO molecule is not perpendicular to the Co@CN plane but is inclined. The length of the C–Co bond is 1.82 ?A. The C–O bond length increases by 0.02 ?A compared to the value of free CO(g)(1.14 ?A). The charge transfer is 0.07|e| from the substrate to CO.From the density of states in Fig.4(c),it can be seen that there is slight charge transfer between CO and the substrate due to the donation of CO-5σstate electrons to Co-3d state and the back-donation of Co-3d state electrons to the CO-2π?state. For CO on 2Co@CN, the adsorbate stands above the two Co atoms and is almost perpendicular to the CN sheet(see Fig.4(d)). TheEaof?1.48 eV/atom is closer to the value of O2(?1.43 eV/atom);therefore,CO poisoning will not occur.The bond lengths of C–O(1.18 ?A)are also longer than that of the CO molecule on Co@CN.Moreover,Bader charge analysis shows that the adsorbed CO molecule gains 0.085|e|/atom from 2Co@CN.The strong interaction between Co and CO is evidenced by the DOS in Fig.4(f). The slight charge transferring is mainly caused by the donation of CO-4π?,1π,5σelectrons to Co-3d state and back donation of Co-3d electrons to CO-2π?. Like the adsorption of O2,the more electrons transfer from the substrate to the CO molecule,the larger the C–O bond length.

    Fig. 4. The side views of the most stable adsorption structures, the corresponding charge density difference and the PDOS for CO on Co@CN(a)–(c)and 2Co@CN(d)–(f).

    We also consider the final products O atomic and CO2adsorption on both catalysts and summarize the data in Table S1. TheEaof O atom absorbed on Co@CN and 2Co@CN is?3.94 eV and?3.14 eV, respectively. Due to the strong hybridization between the O-2p and Co-3d states, the Co–O bond length is all less than 2 ?A. The bond length of the two C–O bonds,as well as the angle of O–C–O,is the same as that of free CO2(g). TheEaof CO2is?0.42 eV and?0.34 eV,respectively,both are less than 0.50 eV,indicating that CO2is easy to desorb.[33]

    3.3. CO oxidation on Co@CN and 2Co@CN

    Generally, the CO oxidation on catalysts can mainly be performed by three typical reaction mechanisms, namely Eley–Rideal (ER), Langmuir–Hinshelwood (LH), and termolecular Eley–Rideal (TER) mechanism. Considering the recycling of catalysts,we take catalysts themselves as the initial state in three mechanisms.

    The ER,a mechanism of single active state participating in the reaction,is initiated by the direct reaction of gaseous CO molecules with the adsorbed O atom at the reaction centers resulting in the activation of O2to form a carbonate-like CO3intermediate or a final product of CO2. The dissociation of O2is the rate-limiting step. For Co@CN,the interaction with CO is as strong as that with O2,which can avoid CO poisoning. The configuration of physically adsorbed CO above the pre-adsorbed O2is selected as the initial state(IS2). As shown in Fig. S3, a chemically adsorbed atomic O and a physically adsorbed CO2molecule are considered as the final state(FS).In IS2, when the CO molecule approaches the activated O2,the O–O distance increases from 1.34 ?A to 1.35 ?A.The insertion of CO is exothermic; the breaking of the O–O bond and the formation of the new C–O bonds need to cross a barrier of 0.73 eV.Then it forms carbonate–like CO3(TS1). The CO3in TS1 dissociates by scission of one C–O bond attached to the Co atom. The process has an energy barrier of 3.14 eV(from MS1 to TS2). As a result, there leaves a physically adsorbed CO2and an O atom adsorbing on the Co@CN(FS).CO2adsorption on Co@CN is quite weak,and entire CO oxidation is exothermic at 300 K.The ER mechanism is unfavorable due to its large reaction barriers(>3 eV).The reaction on 2Co@CN is shown in Fig.S5. The entire reaction progress of 2Co@CN is similar to that of Co@CN,and its reaction barrier is 2.65 eV.

    The LH,a mechanism of double active states(CO+O2)participating in the reaction, starts with the interaction between the co-adsorbed CO and O2molecules for forming a peroxide-like OCOO intermediate and then the O–O bond breaks. And there leaves a physically adsorbed CO2together with an adsorbed atomic O like the final state of ER.As shown in Fig.S4,the co-adsorption of CO and O2on Co@CN is selected as the initial state(IS).Then crossing an energy barrier of 0.25 eV,CO and O2are parallel with end-on configurations(TS1). The CO and O2are activated,the O–O and C–O bonds are elongated. The peroxide-like OCOO has formed (MS1)with new O–O bond(1.63 ?A).With the scission of the new O–O bond and Co–C in MS,a physically adsorbed CO2is formed together with an adsorbed atomic O(TS2). The reaction from MS1 to TS2 climbs the energy barriers of 0.79 eV.The entire progress is exothermic with a small reaction barrier of 1.69 eV.The reaction could process readily with the barrier of 0.8 eV or less.[44]The findings indicate that CO oxidation on Co@CN is not particularly desirable. Whereas, O2molecule prefers adsorbing on 2Co@CN (IS1). With CO molecule participating in, the O–O bond stretches. Then one of the O atoms approaches to adsorbed CO molecule, and it forms OCOO(MS1). Then it gets dispersed,the corresponding reaction barrier is only 0.62 eV. We conclude that 2Co@CN is superior in terms of a minor reaction barrier. Following this,as shown in Fig.S6,the left adsorbed atomic O will react with another gaseous CO molecule(IS)and form the second physically adsorbed CO2(FS). For Co@CN (2Co@CN), the formation of the second CO2needs to pass over a reaction barrier of 0.28 eV(0.34 eV) and release the heat of 3.82 eV (2.65 eV), respectively.

    Fig.5. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on Co@CN through TER mechanism. All energies are given with respect to the reference energies of IS0.

    Fig.6. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on 2Co@CN through TER mechanism.

    Similar to the LH mechanism,the TER is a mechanism of double active states (CO+CO) participating in the reaction.Free O2molecule can be activated by the two co–adsorbed CO molecules to form an OCO–M–OCO intermediate. Then CO2molecules gradually stay away from the catalysts after the breaking of the C–Co bond. As shown in Fig.5, two CO molecules are chemically co–adsorbed on the Co site,and one O2molecule approaches them from the top(IS).Then the insertion of O2actives the pre-adsorbed CO with the elongated O–O bond length of 1.28 ?A (TS1) via adsorbing energy of 0.47 eV.Once a free O2is close enough,two O atoms bind to the C atoms and form an OCO–Co–OCO intermediate(MS).From MS to TS1, as the O–O bond length continues to increase, it finally breaks, and OCO–Co–OCO dissociates into two CO2molecules with a small reaction barrier of 0.42 eV and a huge exothermic energy of 4.35 eV (TS2). Due to the smallEa(?0.42 eV)of CO2on Co@CN,they should desorb spontaneously and finish the reaction cycle. The rate–limiting step for the TER mechanism is the dissociative adsorption of O2,and the reaction energy of Co@CN is 0.42 eV.The result indicates that the CO oxidation on Co@CN through the TER mechanism is superior to Pd@CN (0.48 eV). For 2Co@CN,as shown in Fig. 6, the adsorbed O2molecule reacts with two CO molecules simultaneously and produces an OCO–Co–OCO intermediate.[45]The reaction barrier is 0.38 eV, a bit smaller than that of Co@CN.

    4. Conclusion

    We have investigated the electronic structure of one and two Co atoms implanted on CN monolayer and their catalytic role played in CO oxidation by first-principles calculations.Our results show that the large binding energy and high diffusion barrier ensure that Co atoms are steadily anchored on CN and hard to form clusters,which are beneficial for the reactions. The adsorption energies of CO and O2on both catalysts are comparable, and the reactants molecules can be effectively captured and activated. Via three typical reaction mechanisms, we find that CO oxidation can favorably be in progress over both catalysts,and the TER mechanism is more preferable with a fairly small rate-limiting reaction barrier.

    猜你喜歡
    劉旭
    Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
    綁錯(cuò)的女友,騙錢騙色的渣女竟查無此人
    某新型航空材料加速腐蝕當(dāng)量關(guān)系試驗(yàn)研究
    17歲少年捐腎之死:有個(gè)孝子醫(yī)生深淵沉淪
    讓不愉快化成過眼云煙
    西門警事之四十二
    派出所工作(2018年6期)2018-09-10 23:01:56
    雨中情
    派出所工作(2017年6期)2017-05-30 10:48:04
    西門警事之十四困局
    派出所工作(2016年2期)2016-05-30 05:20:20
    一把折扇有乾坤,北京老宅挖寶一波三折
    The Short-term Effects of Temperature and Free Ammonia onAmmonium Oxidization in Granular and Floccular Nitrifying System*
    国内精品久久久久精免费| 手机成人av网站| 亚洲精品乱码久久久v下载方式 | 亚洲av五月六月丁香网| 亚洲成人久久爱视频| 草草在线视频免费看| 亚洲国产高清在线一区二区三| 老司机午夜福利在线观看视频| 欧美一区二区国产精品久久精品| 亚洲精品日韩av片在线观看 | 又黄又爽又免费观看的视频| 可以在线观看毛片的网站| 成人亚洲精品av一区二区| 久久久国产精品麻豆| 伊人久久大香线蕉亚洲五| 级片在线观看| 狂野欧美激情性xxxx| 在线观看日韩欧美| 变态另类丝袜制服| 亚洲中文字幕日韩| 特大巨黑吊av在线直播| 一区二区三区免费毛片| 午夜a级毛片| 亚洲国产精品合色在线| 欧美日韩黄片免| 伊人久久大香线蕉亚洲五| 午夜a级毛片| 岛国视频午夜一区免费看| 人人妻,人人澡人人爽秒播| 精品一区二区三区人妻视频| 国产高清视频在线播放一区| 精品电影一区二区在线| 国产熟女xx| 国产成人av激情在线播放| 欧美黄色淫秽网站| 99精品久久久久人妻精品| 亚洲无线在线观看| 欧美日韩黄片免| 在线十欧美十亚洲十日本专区| 国产激情偷乱视频一区二区| 国产美女午夜福利| 丝袜美腿在线中文| 叶爱在线成人免费视频播放| 九九久久精品国产亚洲av麻豆| 亚洲精品在线观看二区| 成人av一区二区三区在线看| 韩国av一区二区三区四区| 日韩欧美国产在线观看| 少妇的丰满在线观看| 在线观看免费视频日本深夜| 欧美色欧美亚洲另类二区| 一边摸一边抽搐一进一小说| 亚洲av电影在线进入| 久久精品国产清高在天天线| 91av网一区二区| 国产av在哪里看| 亚洲中文字幕一区二区三区有码在线看| 精品福利观看| svipshipincom国产片| 精品熟女少妇八av免费久了| 极品教师在线免费播放| 中文字幕av成人在线电影| 九九久久精品国产亚洲av麻豆| 国产亚洲精品综合一区在线观看| 在线播放国产精品三级| 久久草成人影院| 无人区码免费观看不卡| 日本一二三区视频观看| 久久天躁狠狠躁夜夜2o2o| 免费看十八禁软件| 嫩草影院精品99| 国产成年人精品一区二区| 亚洲片人在线观看| 久久精品91蜜桃| 欧美日韩瑟瑟在线播放| 在线播放无遮挡| 午夜福利成人在线免费观看| 午夜免费激情av| or卡值多少钱| 麻豆成人av在线观看| 亚洲人成网站在线播放欧美日韩| 欧美日韩综合久久久久久 | 在线观看66精品国产| 手机成人av网站| 日韩精品中文字幕看吧| 国产精品乱码一区二三区的特点| 黄色日韩在线| 亚洲国产高清在线一区二区三| 日本免费一区二区三区高清不卡| 日本五十路高清| 美女大奶头视频| 好男人电影高清在线观看| 日本与韩国留学比较| 一a级毛片在线观看| 一级a爱片免费观看的视频| 国产蜜桃级精品一区二区三区| 国产精品久久久久久精品电影| 国产免费av片在线观看野外av| 久久久久亚洲av毛片大全| 日韩中文字幕欧美一区二区| 757午夜福利合集在线观看| 国产伦精品一区二区三区四那| 一进一出抽搐动态| 久9热在线精品视频| 国产亚洲精品久久久com| 欧美黑人巨大hd| 偷拍熟女少妇极品色| 国产精品自产拍在线观看55亚洲| 最近视频中文字幕2019在线8| 国产精品av视频在线免费观看| 日韩成人在线观看一区二区三区| av中文乱码字幕在线| 此物有八面人人有两片| 久久精品人妻少妇| 动漫黄色视频在线观看| 国产精品久久久久久久电影 | 亚洲精品亚洲一区二区| ponron亚洲| 亚洲成人中文字幕在线播放| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区| 十八禁网站免费在线| 久久久精品欧美日韩精品| 欧美成人一区二区免费高清观看| 免费人成视频x8x8入口观看| 国产成人福利小说| 日韩精品青青久久久久久| 成人精品一区二区免费| 尤物成人国产欧美一区二区三区| 日本在线视频免费播放| 少妇的丰满在线观看| 色综合欧美亚洲国产小说| 免费在线观看成人毛片| 欧美xxxx黑人xx丫x性爽| 舔av片在线| 亚洲无线在线观看| 欧美一区二区国产精品久久精品| 久久久久久久午夜电影| 国产一区二区在线观看日韩 | av天堂在线播放| 18禁国产床啪视频网站| a级毛片a级免费在线| 亚洲无线在线观看| 亚洲熟妇熟女久久| 极品教师在线免费播放| 老汉色av国产亚洲站长工具| 国产免费av片在线观看野外av| 欧美日本亚洲视频在线播放| 两个人的视频大全免费| 国产伦人伦偷精品视频| 欧美一区二区国产精品久久精品| 一个人免费在线观看的高清视频| 一个人免费在线观看的高清视频| 夜夜爽天天搞| 宅男免费午夜| 国产高清激情床上av| 美女黄网站色视频| 久久久精品欧美日韩精品| 国产精品av视频在线免费观看| 亚洲精品成人久久久久久| 熟女电影av网| 欧美一区二区精品小视频在线| 久久精品人妻少妇| 亚洲欧美日韩无卡精品| 日本免费一区二区三区高清不卡| 亚洲一区二区三区色噜噜| a级一级毛片免费在线观看| 中文字幕av在线有码专区| av在线蜜桃| 在线a可以看的网站| 在线播放无遮挡| 丁香六月欧美| 一个人看视频在线观看www免费 | 大型黄色视频在线免费观看| 神马国产精品三级电影在线观看| 国产精品久久久久久亚洲av鲁大| 日本免费一区二区三区高清不卡| 伊人久久大香线蕉亚洲五| 男女午夜视频在线观看| 美女免费视频网站| 欧美一区二区精品小视频在线| 亚洲电影在线观看av| 老汉色∧v一级毛片| 亚洲成av人片在线播放无| 高清在线国产一区| 欧美成人免费av一区二区三区| 久久精品国产99精品国产亚洲性色| 好男人在线观看高清免费视频| 一进一出抽搐动态| xxxwww97欧美| 人妻久久中文字幕网| 免费观看精品视频网站| 国产精品亚洲美女久久久| 国产极品精品免费视频能看的| 变态另类成人亚洲欧美熟女| av福利片在线观看| 九九在线视频观看精品| 欧美最新免费一区二区三区 | 国产精品 国内视频| 亚洲欧美日韩卡通动漫| 五月玫瑰六月丁香| 美女高潮喷水抽搐中文字幕| 香蕉av资源在线| 国产精品一及| 极品教师在线免费播放| 亚洲av日韩精品久久久久久密| 亚洲欧美一区二区三区黑人| 国产高清有码在线观看视频| 成年人黄色毛片网站| 一个人观看的视频www高清免费观看| 亚洲欧美日韩卡通动漫| 午夜福利视频1000在线观看| 国产视频内射| 亚洲人与动物交配视频| 欧美中文综合在线视频| 中文资源天堂在线| 亚洲最大成人中文| 日韩精品中文字幕看吧| 国产高清视频在线播放一区| 精华霜和精华液先用哪个| 中文字幕人成人乱码亚洲影| 在线观看av片永久免费下载| 欧美最新免费一区二区三区 | 午夜福利欧美成人| 久久99热这里只有精品18| 亚洲无线在线观看| 亚洲国产精品成人综合色| 午夜福利视频1000在线观看| 国产成人欧美在线观看| 18+在线观看网站| 国产伦精品一区二区三区四那| 又黄又粗又硬又大视频| 每晚都被弄得嗷嗷叫到高潮| 草草在线视频免费看| 舔av片在线| 麻豆国产av国片精品| 亚洲人成网站在线播| 性欧美人与动物交配| 亚洲男人的天堂狠狠| 欧美一级a爱片免费观看看| 在线播放无遮挡| 99久久久亚洲精品蜜臀av| 久久亚洲精品不卡| 搡老妇女老女人老熟妇| 亚洲成av人片免费观看| 国产久久久一区二区三区| 欧美日本视频| 成人av一区二区三区在线看| 亚洲18禁久久av| 国产一区二区在线av高清观看| 一个人观看的视频www高清免费观看| 成年免费大片在线观看| 18+在线观看网站| 1000部很黄的大片| 丰满人妻一区二区三区视频av | 嫩草影院精品99| 亚洲av熟女| 99精品久久久久人妻精品| aaaaa片日本免费| 欧洲精品卡2卡3卡4卡5卡区| 韩国av一区二区三区四区| 亚洲 国产 在线| 精品乱码久久久久久99久播| 亚洲av熟女| x7x7x7水蜜桃| 国产色爽女视频免费观看| 成人国产综合亚洲| 亚洲精品日韩av片在线观看 | 欧美激情在线99| 国产成人欧美在线观看| 日韩欧美在线乱码| 国产三级在线视频| 国产av不卡久久| 久久久国产成人免费| 成人性生交大片免费视频hd| 国产美女午夜福利| 99热6这里只有精品| 蜜桃亚洲精品一区二区三区| 日韩欧美国产在线观看| 亚洲av中文字字幕乱码综合| 在线十欧美十亚洲十日本专区| 欧美又色又爽又黄视频| 黄片小视频在线播放| 51午夜福利影视在线观看| 国产精品美女特级片免费视频播放器| 成人一区二区视频在线观看| 日本黄大片高清| 美女大奶头视频| 亚洲精品国产精品久久久不卡| 午夜福利在线观看吧| 欧美极品一区二区三区四区| 成人欧美大片| 欧美+日韩+精品| 无限看片的www在线观看| 亚洲专区国产一区二区| 好男人电影高清在线观看| 国产高潮美女av| 欧美日本亚洲视频在线播放| 亚洲av日韩精品久久久久久密| 色精品久久人妻99蜜桃| 首页视频小说图片口味搜索| 在线播放无遮挡| 日韩人妻高清精品专区| 精品国产美女av久久久久小说| 国产三级黄色录像| 天天躁日日操中文字幕| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲美女久久久| 99国产极品粉嫩在线观看| 男女床上黄色一级片免费看| 乱人视频在线观看| a在线观看视频网站| 欧美3d第一页| 窝窝影院91人妻| 欧美不卡视频在线免费观看| 亚洲精品在线观看二区| 国产成人福利小说| 国产亚洲精品久久久com| 国产成人啪精品午夜网站| 婷婷亚洲欧美| 亚洲精品成人久久久久久| 天美传媒精品一区二区| 国产精品久久久久久人妻精品电影| 亚洲成人久久爱视频| 亚洲人成网站高清观看| 国产精品1区2区在线观看.| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 国产成人av教育| 内射极品少妇av片p| 精华霜和精华液先用哪个| 国产精品精品国产色婷婷| 国产欧美日韩一区二区精品| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| 国产黄片美女视频| 国产乱人视频| 岛国视频午夜一区免费看| 男插女下体视频免费在线播放| 级片在线观看| 日本黄大片高清| 亚洲av美国av| 午夜精品在线福利| 国产色婷婷99| 精品电影一区二区在线| 日韩成人在线观看一区二区三区| 变态另类丝袜制服| 成人av在线播放网站| 99热这里只有精品一区| 国产成+人综合+亚洲专区| 亚洲中文字幕一区二区三区有码在线看| 亚洲中文字幕日韩| 国产三级中文精品| 日本精品一区二区三区蜜桃| av视频在线观看入口| 黄色片一级片一级黄色片| 小蜜桃在线观看免费完整版高清| 好男人电影高清在线观看| 叶爱在线成人免费视频播放| 国产麻豆成人av免费视频| 少妇的逼水好多| 亚洲精品一区av在线观看| 一个人免费在线观看的高清视频| 成人av在线播放网站| 男女那种视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久九九热精品免费| 成人亚洲精品av一区二区| 国产精品一区二区免费欧美| 欧美不卡视频在线免费观看| 人人妻人人澡欧美一区二区| 岛国视频午夜一区免费看| 免费人成视频x8x8入口观看| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区在线观看成人免费| 日本 欧美在线| 99热这里只有是精品50| 不卡一级毛片| a级毛片a级免费在线| 亚洲av电影不卡..在线观看| av福利片在线观看| 国产免费av片在线观看野外av| 国产成人aa在线观看| 午夜视频国产福利| 精品电影一区二区在线| 最近视频中文字幕2019在线8| 亚洲精品456在线播放app | 色综合婷婷激情| 又黄又粗又硬又大视频| 欧美又色又爽又黄视频| 国产成人福利小说| 桃色一区二区三区在线观看| 国产精品99久久久久久久久| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 久久国产乱子伦精品免费另类| 国产精品 国内视频| 高潮久久久久久久久久久不卡| 亚洲精品一区av在线观看| 久久6这里有精品| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| 欧美性感艳星| 久久久久精品国产欧美久久久| 麻豆成人av在线观看| 国产一区二区激情短视频| www国产在线视频色| 成人永久免费在线观看视频| 亚洲精品一区av在线观看| 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看| 丰满人妻熟妇乱又伦精品不卡| 国产一级毛片七仙女欲春2| 日本精品一区二区三区蜜桃| 欧美日韩一级在线毛片| 内射极品少妇av片p| 久久婷婷人人爽人人干人人爱| 久99久视频精品免费| 天天一区二区日本电影三级| 99热只有精品国产| av片东京热男人的天堂| 免费av不卡在线播放| 乱人视频在线观看| 黄色丝袜av网址大全| 我的老师免费观看完整版| 偷拍熟女少妇极品色| www.熟女人妻精品国产| 大型黄色视频在线免费观看| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件 | 国产精品综合久久久久久久免费| 国产精品三级大全| 午夜精品一区二区三区免费看| 精品久久久久久久末码| 亚洲欧美日韩高清在线视频| 一级a爱片免费观看的视频| 毛片女人毛片| 欧美乱色亚洲激情| 日韩欧美三级三区| 桃色一区二区三区在线观看| 国产视频一区二区在线看| a级毛片a级免费在线| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 性色avwww在线观看| 激情在线观看视频在线高清| 听说在线观看完整版免费高清| 一本精品99久久精品77| 91字幕亚洲| 岛国在线免费视频观看| 制服人妻中文乱码| 婷婷精品国产亚洲av在线| 母亲3免费完整高清在线观看| 亚洲无线观看免费| 亚洲激情在线av| 免费看日本二区| 国产爱豆传媒在线观看| 亚洲最大成人手机在线| h日本视频在线播放| 黄色视频,在线免费观看| 脱女人内裤的视频| 国产精品av视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 我的老师免费观看完整版| 女人十人毛片免费观看3o分钟| 午夜精品一区二区三区免费看| 国产av在哪里看| 午夜免费激情av| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 免费看日本二区| 国内精品美女久久久久久| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 国产高清激情床上av| 桃色一区二区三区在线观看| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| av专区在线播放| 久久精品国产清高在天天线| 首页视频小说图片口味搜索| 一区二区三区激情视频| 精品免费久久久久久久清纯| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| 91久久精品国产一区二区成人 | 看黄色毛片网站| 国产欧美日韩精品亚洲av| 国产在视频线在精品| 一区福利在线观看| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 麻豆成人午夜福利视频| 在线观看66精品国产| 一夜夜www| 国产亚洲精品综合一区在线观看| 黄片小视频在线播放| 国产97色在线日韩免费| 国产精品综合久久久久久久免费| 久久久精品欧美日韩精品| 观看免费一级毛片| 在线视频色国产色| 亚洲国产色片| 国产毛片a区久久久久| 搡老妇女老女人老熟妇| 好看av亚洲va欧美ⅴa在| 波多野结衣高清作品| 尤物成人国产欧美一区二区三区| 欧美在线黄色| 99热6这里只有精品| 国产免费一级a男人的天堂| 久久精品91无色码中文字幕| 久久精品国产亚洲av涩爱 | 日日夜夜操网爽| АⅤ资源中文在线天堂| 99热精品在线国产| 五月玫瑰六月丁香| 国产高清三级在线| 久久这里只有精品中国| 国产亚洲欧美98| 又粗又爽又猛毛片免费看| 给我免费播放毛片高清在线观看| 一个人看视频在线观看www免费 | 99热这里只有是精品50| 国产精品久久久久久精品电影| 国产精品久久久久久久久免 | 亚洲人成电影免费在线| 99久久九九国产精品国产免费| 国产三级黄色录像| 亚洲av成人精品一区久久| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 啦啦啦韩国在线观看视频| 久久这里只有精品中国| 成年女人毛片免费观看观看9| 亚洲 国产 在线| 精品一区二区三区视频在线 | 性色av乱码一区二区三区2| 小蜜桃在线观看免费完整版高清| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av不卡在线观看| av中文乱码字幕在线| 一进一出抽搐动态| 国产高潮美女av| 别揉我奶头~嗯~啊~动态视频| 久久香蕉精品热| 老鸭窝网址在线观看| 亚洲一区二区三区不卡视频| 90打野战视频偷拍视频| 国产伦精品一区二区三区四那| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久久久久| 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 熟女人妻精品中文字幕| 麻豆久久精品国产亚洲av| 18美女黄网站色大片免费观看| 婷婷亚洲欧美| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 91久久精品国产一区二区成人 | 最新中文字幕久久久久| 99热这里只有精品一区| 亚洲激情在线av| 亚洲在线观看片| 久久精品综合一区二区三区| 99久久精品一区二区三区| a级毛片a级免费在线| 在线观看舔阴道视频| 69人妻影院| 亚洲色图av天堂| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区人妻视频| 日韩有码中文字幕| 国产男靠女视频免费网站| 狂野欧美激情性xxxx| 午夜a级毛片| 国产aⅴ精品一区二区三区波| 日韩欧美精品v在线| 欧洲精品卡2卡3卡4卡5卡区| 丰满人妻一区二区三区视频av | 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 神马国产精品三级电影在线观看| e午夜精品久久久久久久| 精品久久久久久,| 99久久综合精品五月天人人| 最新中文字幕久久久久| 两个人看的免费小视频| 欧美性猛交黑人性爽| 99国产精品一区二区三区| a在线观看视频网站| 1000部很黄的大片| 亚洲一区高清亚洲精品| 国产伦精品一区二区三区视频9 | 欧美日韩综合久久久久久 | 国产免费男女视频| 免费搜索国产男女视频| 99视频精品全部免费 在线| 麻豆国产av国片精品| 一区二区三区激情视频| 国产淫片久久久久久久久 | 熟妇人妻久久中文字幕3abv| 99久久无色码亚洲精品果冻| 日本成人三级电影网站| 18禁黄网站禁片午夜丰满|