• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation?

    2021-06-26 03:05:00XuLiu劉旭JunChaoHuang黃俊超andXiangMeiDuan段香梅
    Chinese Physics B 2021年6期
    關(guān)鍵詞:劉旭

    Xu Liu(劉旭), Jun-Chao Huang(黃俊超), and Xiang-Mei Duan(段香梅)

    School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    Keywords: first-principles calculations,single-atom catalyst,CO oxidation,rate-limiting reaction barrier

    1. Introduction

    As greenhouse gases like CO get increased,[1]researchers are trying their best to find solutions to decrease the content of CO in the air.[2]One of the most promising methods is to convert CO to CO2by a highly effective catalyst.[3,4]So far,considerable efforts have been made to develop novel and efficient catalysts for CO oxidation. Some typical noble metals can effectively catalyze CO oxidation, such as Pt,[5]Pd,[6]Ru,[7]and Au.[8]However, considering the low cost, environmental friendliness, and outstanding thermal stability, researchers start to develop noble-free metals gradually and achieve certain success in CO oxidation.[9]Adhering to further increase the catalytic performance and reduce the cost,the view of researchers turns to single-atom catalysts (SACs)[10]for their high site density,high specify,and low cost.[11]

    Two-dimensional (2D) materials are extensively applied in various catalytic reactions as substrates owing to their large surface area, high thermal stability, and easily manufacture, such as graphene,[12,13]MoS,[14,15]hexagonal boron nitride monolayers (h-BN),[16,17]and graphic carbon nitride(CN,[18–20]C2N,[21,22]and C3N4[23–25]). Many 2D materials are rich in electron pairs to combine with metal ions, and it seems easy to recognize active sites. Besides,due to the crude or artificial vacancies, 2D materials can be used as prominent supports to host metal atoms and get high stable catalyst. In the experiment, SACs can be synthesized using the mass-selected soft-landing technique,improved wet chemistry methods, or atomic layer deposition methods. Many studies showed that defects of the support materials could serve as anchoring sites for metal clusters and even single atom.[26]

    It is reported that carbon nitride (CN), successfully synthesized in the experiment, can be applied in He separation,[25]H2storage,[27]water decomposition,[28,29]and CO oxidation.[20]Co atom, as an ideal noble-free metal, has a good performance in CO oxidation, even surpassing traditional noble metal catalysts. For instance,experimental works showed that the Co atom in Co3O4shows strong catalytic activity in CO oxidation at low temperature.[30,31]However,the reaction barrier of Co-anchored graphene(Co@Gra)is as high as 0.65 eV,[32]which cannot be carried out at room temperature. In order to improve the performance, researchers start to introduce defects in graphene-based SAC,and the reaction barrier of Co@Sv-Gra is decreased by 0.23 eV.[32]Co implanted h-BN and g-C3N4are also reported as excellent catalysts for CO oxidation, and the reaction barriers of Co@h-BN[33]and Co@g-C3N4[34]are 0.41 eV and 0.21 eV,respectively. The catalytic behavior of Co-anchored CN in the CO oxidation reaction is worth studying.

    Based on first-principles calculations,we investigated CO oxidation on Co anchored planar CN sheet. Our results show that the Co atom(s) can perfectly bind to the CN monolayer and maintain the stability of the whole system. When O2and CO molecules are adsorbed over Co/2Co@CN, the gas molecules are activated through electron “acceptance donation” interaction between gas molecules and the transition metal. Furthermore, Co anchored CN systems possess superior catalytic activity toward the CO oxidation reaction.

    2. Computation details

    The calculations are performed based on density functional theory (DFT) by the Viennaab initiosimulation package (VASP).[35]The Perdew–Burke–Ernzerh (PBE) functional of generalized gradient approximation (GGA) with the semi-empirical van der Waals (vdW) method of Grimme(DFT-D2) was used to handle the exchange and correlation functionals.[36,37]The cutoff energy is set to be 500 eV.The convergence tolerance for the geometry optimization is 10?4eV for the energy and 10?2eV/?A for the force. A vacuum space of 20 ?A is adopted to avoid interaction between two adjacent images. The reciprocal space is sampled with a 3×3×1k-point grid generated automatically using the Monkhorst-Pack method[38]for optimization. A HubbardUterm was added to the PBE functional (DFT+U) to describe partially filled d orbitals. The on-site Coulomb interaction(U)of 4 eV and exchange interaction(J)of 1 eV were applied.[39]Additionally,we used the climbing image nudged elastic band(CI-NEB) method[40]to search for transition states to investigate the reaction paths. Bader charge analysis is adopted to obtain the number of transferred electrons.[41]The first principles molecular dynamics(MD)simulations at 300 K with a time step of 1 fs are performed to check the structural stability.

    Taking Co@CN as an example, the binding energy (Eb)of Co on CN is defined as the energy difference between the Co atomically deposited CN and the separated CN plus the freestanding Co atom,that isEb=ECo@CN?ECN?ECo. The more negative binding energy,the more energy advantage the anchoring of Co on the substrate.

    The adsorption energy (Ea) of the gas molecules is obtained by the energy difference between the absorbed Co@CN and the gaseous species plus the bare Co@CN.Eacan be expressed asEa=Eadsorbate+Co@CN?Eadsorbate?ECo@CN. The charge density difference ?ρis used to describe the electronic interaction between the substrate and the adsorbate, ?ρ=ρa(bǔ)dsorbate/support?ρa(bǔ)dsorbate?ρsupport. Hereρa(bǔ)dsorbate/support,ρa(bǔ)dsorbate, andρsupportare the corresponding charge densities of the combined system,the free adsorbate,and the bare support,respectively.

    3. Results and discussion

    3.1. One and two Co atoms anchored CNs

    The calculated lattice constant of CN is 7.13 ?A, the C–N and C–C bond lengths are 1.35 ?A and 1.52 ?A,respectively.The results are in good agreement with the reported values of 7.12 ?A, 1.34 ?A, and 1.54 ?A.[27,28]A 2×2×1 supercell containing 24 carbon and 24 nitrogen atoms was established. The intrinsic hole surrounded by six sp2bonded nitrogen atoms is beneficial for Co atom anchoring. We consider three possible sites for Co landing on CN,find the most favorable configuration is the one shown in Fig. 1(a), where the Co atom bonds to two edge N atoms with a bond length of 1.85 ?A and keeps

    its planar geometric structure undistorted(see Fig.1(c)). The most stable geometry for two Co atoms on CN is shown in Fig.S1(a),with the Co–N bond length of 1.81 ?A and the Co–Co distance of 2.39 ?A. The corresponding binding energy is calculated to be?3.77 eV and?3.26 eV/atom for Co@CN and 2Co@CN, respectively, indicating the strong interaction between the Co atom and CN monolayer. For comparison,the data are listed in Table 1, where the cohesive energies per atom of the bulk metalsEc(?4.39 eV) are taken from experiments.[42]

    Table 1. The binding energies (eV) for Co, Bader charge Q (|e|) from Co to the substrate,the bond length of Co?N(A?),magnetic moment(μB),and the ratio of Eb/Ec for the most favorable Co adsorptions on CN.

    Fig. 1. The top (a) and side view (c) of optimized atomic configuration, the charge density difference plots (b) with an iso-surface value of 0.003|e|/Bohr3,as well as spin-polarized PDOS(d)for Co@CN.The charge accumulation and depletion regions are represented in yellow and blue, respectively. The bold blue short line points to the d-band center (?1.77 eV)of Co atom.

    The transition metals have a tendency of forming clusters,then we investigate the stability of Co@CN by CI–NEB and MD methods. As shown in Figs. 2(a) and 2(b), the diffusion barrier for Co from one stable site to another in the neighboring hole is 2.62 eV.Such a large diffusion barrier conforms that the single Co atom binds with the CN monolayer steadily and hard to move. On the other hand,the largeEb/Ecratios of 0.86 and 0.74 for single and double cobalt on the substrate manifest that Co atoms prefer a 2D growth morphology on CN.Furthermore, MD results manifest that the structure remains undistorted at room temperature (see Figs. 2(d) and 2(e)). Charge transfers from Co and 2Co to CN monolayer are 0.72|e| and 1.19|e|,respectively. Comparing the energy band structure of pure CN monolayer with that of Co@CN and 2Co@CN in Fig.S2,the bands dominated by N-2p orbitals in Co@CN and 2Co@CN show that there is a semiconductor to metal transition.

    Fig.2. The top(a)and side view(b)of diffusion path diagram and relative energy(c). The results of molecular dynamics(MD)simulations(d)and(e).

    As shown in Fig. 1(b) and Fig. S1(b), the charge rearrangement mainly occurs among the Co atom(s) and the twoedged N atoms. To better understand its physical mechanism, partial density of states(PDOS)is plotted in Fig.1(d)and Fig. S1(d). The overlapped peaks caused by orbital hybridization appearing between Co-3d and N-2p states illustrate that the single Co atom(s)can be viewed as an active site. The insertion of the second Co atom proves the ability of catalytic because the d-band center deviates from the Fermi level.[43]The magnetic momentum for Co and 2Co@CN is 2.68μBand 4.0μB,respectively.

    3.2. Adsorption of species involved in the CO oxidation

    The thermodynamics of a specific reaction are strongly affected by the stability of reactants, intermediates, transition orbitals,and products.[44]The ability to bind the gas molecules on catalytic active centers confirms the reaction efficiency.We then investigate the adsorption of reactants CO and O2over Co atom(s)anchored CN.

    O2molecule is one of the most important participants in the whole process of CO oxidation. We consider both end-on and side-on adsorption of O2on both Co@CN and 2Co@CN,and find that the adsorption energy via side-on is more negative (see Table 2 and Table S1); therefore, we focus on this configuration. As shown in Fig.3(a),the O2molecule prefers to lie parallel to the plane of the substrate, on top of the implanted Co atom. The two nearest Co–O distances are both 1.8 ?A, the O–O bond length is 1.34 ?A, stretched by 0.11 ?A compared with the value of free O2(g), which indicates that the “donation–acceptance” between Co and edged N in CN that activates the reaction activity of the single Co atom. The charge transfer of 0.58|e|is mainly caused by the reduction of the Co atom and accumulation of O2molecule(see Fig.3(b)).Evidenced by DOS in Fig. 3(c), after adsorption, the Co-3d states are overlapped with O2-2π?state, the DOS peaks of O2-5σand O2-1πstates are downshifted, indicating that O2molecule accepts electrons from Co-3d orbital.The strong hybridization among them benefits the O2molecule to combine with Co@CN.

    Table 2. The adsorption energies(eV/atom)for CO and O2(side-on),Bader Charge Q(|e|/atom),and bond length(?A)for the Co implanted CN.

    Fig. 3. The side views of the most plausible adsorption structures, the corresponding charge density difference,which iso-surface value is set to 0.003 e/Bohr3 and the PDOS for O2 on Co@CN (a)–(c) and 2Co@CN(d)–(f).

    For 2Co@CN shown in Fig. 3(d), the O2molecule adsorbs over the catalyst,like a bridge connecting one Co atom to the other. TheEaof the O2molecule is?1.43 eV/atom,and it is relatively larger than that of the O2molecule on 2Cu@C2N(?0.67 eV/atom). The bond length of O–O(1.50 ?A)is longer than that of O2over Co@CN. Moreover, Bader charge analysis shows that each Co atom transfers 0.70|e| to the O2molecule. After O2adsorbing, there are several peaks overlapping with Co-3d and O2-2p states at the energy region of?2 eV to?5 eV,as shown in Figs.3(c)and 3(f).For Co@CN,the O2molecule donates 1πand 5σstate electrons to Co-3d state, and the occupied Co-3d states feedback electrons to 2π?state of O2molecule, which is evidenced by the spindown peak near Fermi level. The ability to adsorb O2of both Co@CN and 2Co@CN is strong, especially the latter, with more charge(0.70|e|vs.0.58|e|)transferred from the substrate to O2molecule,the length of O–O bond is more elongated.

    CO interacts strongly with the Co@CN.For the most stable configuration,the calculatedEaof CO is?1.14 eV,which is close to the value of O2(?1.27 eV),so CO poisoning may be avoided. As presented in Fig. 4(a), the CO molecule is not perpendicular to the Co@CN plane but is inclined. The length of the C–Co bond is 1.82 ?A. The C–O bond length increases by 0.02 ?A compared to the value of free CO(g)(1.14 ?A). The charge transfer is 0.07|e| from the substrate to CO.From the density of states in Fig.4(c),it can be seen that there is slight charge transfer between CO and the substrate due to the donation of CO-5σstate electrons to Co-3d state and the back-donation of Co-3d state electrons to the CO-2π?state. For CO on 2Co@CN, the adsorbate stands above the two Co atoms and is almost perpendicular to the CN sheet(see Fig.4(d)). TheEaof?1.48 eV/atom is closer to the value of O2(?1.43 eV/atom);therefore,CO poisoning will not occur.The bond lengths of C–O(1.18 ?A)are also longer than that of the CO molecule on Co@CN.Moreover,Bader charge analysis shows that the adsorbed CO molecule gains 0.085|e|/atom from 2Co@CN.The strong interaction between Co and CO is evidenced by the DOS in Fig.4(f). The slight charge transferring is mainly caused by the donation of CO-4π?,1π,5σelectrons to Co-3d state and back donation of Co-3d electrons to CO-2π?. Like the adsorption of O2,the more electrons transfer from the substrate to the CO molecule,the larger the C–O bond length.

    Fig. 4. The side views of the most stable adsorption structures, the corresponding charge density difference and the PDOS for CO on Co@CN(a)–(c)and 2Co@CN(d)–(f).

    We also consider the final products O atomic and CO2adsorption on both catalysts and summarize the data in Table S1. TheEaof O atom absorbed on Co@CN and 2Co@CN is?3.94 eV and?3.14 eV, respectively. Due to the strong hybridization between the O-2p and Co-3d states, the Co–O bond length is all less than 2 ?A. The bond length of the two C–O bonds,as well as the angle of O–C–O,is the same as that of free CO2(g). TheEaof CO2is?0.42 eV and?0.34 eV,respectively,both are less than 0.50 eV,indicating that CO2is easy to desorb.[33]

    3.3. CO oxidation on Co@CN and 2Co@CN

    Generally, the CO oxidation on catalysts can mainly be performed by three typical reaction mechanisms, namely Eley–Rideal (ER), Langmuir–Hinshelwood (LH), and termolecular Eley–Rideal (TER) mechanism. Considering the recycling of catalysts,we take catalysts themselves as the initial state in three mechanisms.

    The ER,a mechanism of single active state participating in the reaction,is initiated by the direct reaction of gaseous CO molecules with the adsorbed O atom at the reaction centers resulting in the activation of O2to form a carbonate-like CO3intermediate or a final product of CO2. The dissociation of O2is the rate-limiting step. For Co@CN,the interaction with CO is as strong as that with O2,which can avoid CO poisoning. The configuration of physically adsorbed CO above the pre-adsorbed O2is selected as the initial state(IS2). As shown in Fig. S3, a chemically adsorbed atomic O and a physically adsorbed CO2molecule are considered as the final state(FS).In IS2, when the CO molecule approaches the activated O2,the O–O distance increases from 1.34 ?A to 1.35 ?A.The insertion of CO is exothermic; the breaking of the O–O bond and the formation of the new C–O bonds need to cross a barrier of 0.73 eV.Then it forms carbonate–like CO3(TS1). The CO3in TS1 dissociates by scission of one C–O bond attached to the Co atom. The process has an energy barrier of 3.14 eV(from MS1 to TS2). As a result, there leaves a physically adsorbed CO2and an O atom adsorbing on the Co@CN(FS).CO2adsorption on Co@CN is quite weak,and entire CO oxidation is exothermic at 300 K.The ER mechanism is unfavorable due to its large reaction barriers(>3 eV).The reaction on 2Co@CN is shown in Fig.S5. The entire reaction progress of 2Co@CN is similar to that of Co@CN,and its reaction barrier is 2.65 eV.

    The LH,a mechanism of double active states(CO+O2)participating in the reaction, starts with the interaction between the co-adsorbed CO and O2molecules for forming a peroxide-like OCOO intermediate and then the O–O bond breaks. And there leaves a physically adsorbed CO2together with an adsorbed atomic O like the final state of ER.As shown in Fig.S4,the co-adsorption of CO and O2on Co@CN is selected as the initial state(IS).Then crossing an energy barrier of 0.25 eV,CO and O2are parallel with end-on configurations(TS1). The CO and O2are activated,the O–O and C–O bonds are elongated. The peroxide-like OCOO has formed (MS1)with new O–O bond(1.63 ?A).With the scission of the new O–O bond and Co–C in MS,a physically adsorbed CO2is formed together with an adsorbed atomic O(TS2). The reaction from MS1 to TS2 climbs the energy barriers of 0.79 eV.The entire progress is exothermic with a small reaction barrier of 1.69 eV.The reaction could process readily with the barrier of 0.8 eV or less.[44]The findings indicate that CO oxidation on Co@CN is not particularly desirable. Whereas, O2molecule prefers adsorbing on 2Co@CN (IS1). With CO molecule participating in, the O–O bond stretches. Then one of the O atoms approaches to adsorbed CO molecule, and it forms OCOO(MS1). Then it gets dispersed,the corresponding reaction barrier is only 0.62 eV. We conclude that 2Co@CN is superior in terms of a minor reaction barrier. Following this,as shown in Fig.S6,the left adsorbed atomic O will react with another gaseous CO molecule(IS)and form the second physically adsorbed CO2(FS). For Co@CN (2Co@CN), the formation of the second CO2needs to pass over a reaction barrier of 0.28 eV(0.34 eV) and release the heat of 3.82 eV (2.65 eV), respectively.

    Fig.5. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on Co@CN through TER mechanism. All energies are given with respect to the reference energies of IS0.

    Fig.6. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on 2Co@CN through TER mechanism.

    Similar to the LH mechanism,the TER is a mechanism of double active states (CO+CO) participating in the reaction.Free O2molecule can be activated by the two co–adsorbed CO molecules to form an OCO–M–OCO intermediate. Then CO2molecules gradually stay away from the catalysts after the breaking of the C–Co bond. As shown in Fig.5, two CO molecules are chemically co–adsorbed on the Co site,and one O2molecule approaches them from the top(IS).Then the insertion of O2actives the pre-adsorbed CO with the elongated O–O bond length of 1.28 ?A (TS1) via adsorbing energy of 0.47 eV.Once a free O2is close enough,two O atoms bind to the C atoms and form an OCO–Co–OCO intermediate(MS).From MS to TS1, as the O–O bond length continues to increase, it finally breaks, and OCO–Co–OCO dissociates into two CO2molecules with a small reaction barrier of 0.42 eV and a huge exothermic energy of 4.35 eV (TS2). Due to the smallEa(?0.42 eV)of CO2on Co@CN,they should desorb spontaneously and finish the reaction cycle. The rate–limiting step for the TER mechanism is the dissociative adsorption of O2,and the reaction energy of Co@CN is 0.42 eV.The result indicates that the CO oxidation on Co@CN through the TER mechanism is superior to Pd@CN (0.48 eV). For 2Co@CN,as shown in Fig. 6, the adsorbed O2molecule reacts with two CO molecules simultaneously and produces an OCO–Co–OCO intermediate.[45]The reaction barrier is 0.38 eV, a bit smaller than that of Co@CN.

    4. Conclusion

    We have investigated the electronic structure of one and two Co atoms implanted on CN monolayer and their catalytic role played in CO oxidation by first-principles calculations.Our results show that the large binding energy and high diffusion barrier ensure that Co atoms are steadily anchored on CN and hard to form clusters,which are beneficial for the reactions. The adsorption energies of CO and O2on both catalysts are comparable, and the reactants molecules can be effectively captured and activated. Via three typical reaction mechanisms, we find that CO oxidation can favorably be in progress over both catalysts,and the TER mechanism is more preferable with a fairly small rate-limiting reaction barrier.

    猜你喜歡
    劉旭
    Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
    綁錯(cuò)的女友,騙錢騙色的渣女竟查無此人
    某新型航空材料加速腐蝕當(dāng)量關(guān)系試驗(yàn)研究
    17歲少年捐腎之死:有個(gè)孝子醫(yī)生深淵沉淪
    讓不愉快化成過眼云煙
    西門警事之四十二
    派出所工作(2018年6期)2018-09-10 23:01:56
    雨中情
    派出所工作(2017年6期)2017-05-30 10:48:04
    西門警事之十四困局
    派出所工作(2016年2期)2016-05-30 05:20:20
    一把折扇有乾坤,北京老宅挖寶一波三折
    The Short-term Effects of Temperature and Free Ammonia onAmmonium Oxidization in Granular and Floccular Nitrifying System*
    免费人妻精品一区二区三区视频| 亚洲成人免费电影在线观看 | 最黄视频免费看| 国产成人免费观看mmmm| 日日夜夜操网爽| 免费日韩欧美在线观看| 新久久久久国产一级毛片| 啦啦啦 在线观看视频| 国产成人影院久久av| 最新在线观看一区二区三区 | 久久久精品免费免费高清| videosex国产| 中文字幕人妻熟女乱码| 脱女人内裤的视频| 欧美 日韩 精品 国产| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 午夜激情久久久久久久| 一本大道久久a久久精品| www.自偷自拍.com| 免费高清在线观看日韩| 成人国产av品久久久| 18禁黄网站禁片午夜丰满| 久久综合国产亚洲精品| 免费看av在线观看网站| 精品人妻熟女毛片av久久网站| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久| 国产日韩欧美视频二区| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 国产精品欧美亚洲77777| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 在线天堂中文资源库| 亚洲美女黄色视频免费看| 久久影院123| 国产精品免费视频内射| 午夜免费观看性视频| 最近最新中文字幕大全免费视频 | 久久毛片免费看一区二区三区| 久久精品国产亚洲av高清一级| 精品久久久久久电影网| 超碰成人久久| 精品一区二区三卡| 亚洲国产欧美一区二区综合| 成人影院久久| 黄网站色视频无遮挡免费观看| 国产午夜精品一二区理论片| 欧美成狂野欧美在线观看| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 91国产中文字幕| 亚洲av电影在线观看一区二区三区| 一边摸一边做爽爽视频免费| 一二三四社区在线视频社区8| 欧美日韩成人在线一区二区| 久久99热这里只频精品6学生| 免费看av在线观看网站| 国产精品一区二区在线观看99| 午夜老司机福利片| 一本久久精品| 美女午夜性视频免费| 免费女性裸体啪啪无遮挡网站| 国产97色在线日韩免费| 国产片特级美女逼逼视频| 国产野战对白在线观看| 亚洲一码二码三码区别大吗| 国产高清国产精品国产三级| 飞空精品影院首页| 国产精品av久久久久免费| 精品一区二区三区四区五区乱码 | 欧美黄色片欧美黄色片| 国产欧美日韩综合在线一区二区| 王馨瑶露胸无遮挡在线观看| tube8黄色片| 亚洲七黄色美女视频| 777米奇影视久久| 国产精品久久久久久精品电影小说| 亚洲国产看品久久| 男女下面插进去视频免费观看| 国产精品人妻久久久影院| 99国产精品免费福利视频| 久久性视频一级片| 啦啦啦在线免费观看视频4| 婷婷色av中文字幕| 亚洲精品美女久久av网站| 后天国语完整版免费观看| 精品第一国产精品| 晚上一个人看的免费电影| 在线天堂中文资源库| 在线观看免费午夜福利视频| 国产免费一区二区三区四区乱码| 精品人妻一区二区三区麻豆| 亚洲一码二码三码区别大吗| 国产精品一区二区在线不卡| 美女视频免费永久观看网站| 中文字幕另类日韩欧美亚洲嫩草| 国产一区亚洲一区在线观看| 日韩中文字幕欧美一区二区 | 亚洲精品国产av成人精品| 天天影视国产精品| 超色免费av| 精品一区二区三区av网在线观看 | 国产成人免费无遮挡视频| www.自偷自拍.com| 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 青春草视频在线免费观看| 人人妻人人澡人人看| 久久精品久久精品一区二区三区| 亚洲成人免费av在线播放| 最近中文字幕2019免费版| 久久久久视频综合| 国产精品一二三区在线看| 中文字幕人妻丝袜一区二区| 七月丁香在线播放| 久久久久国产精品人妻一区二区| 99国产精品免费福利视频| 女警被强在线播放| 男人爽女人下面视频在线观看| 午夜福利乱码中文字幕| 青草久久国产| 亚洲欧美一区二区三区久久| 人妻 亚洲 视频| 中国美女看黄片| 久久热在线av| 十八禁高潮呻吟视频| 51午夜福利影视在线观看| 亚洲精品国产一区二区精华液| 久久人人爽人人片av| 91精品三级在线观看| 午夜影院在线不卡| 午夜福利一区二区在线看| 国产熟女欧美一区二区| 大话2 男鬼变身卡| 中文字幕亚洲精品专区| 人人妻,人人澡人人爽秒播 | 欧美人与善性xxx| 欧美激情高清一区二区三区| 久久精品亚洲av国产电影网| 九色亚洲精品在线播放| 久久精品久久久久久久性| 日本91视频免费播放| 国产一区二区三区综合在线观看| 国产免费福利视频在线观看| 日本午夜av视频| 男女高潮啪啪啪动态图| 午夜福利影视在线免费观看| 亚洲av综合色区一区| 精品人妻一区二区三区麻豆| 国产三级黄色录像| 日韩av在线免费看完整版不卡| 精品久久久久久电影网| 色综合欧美亚洲国产小说| 99久久综合免费| 欧美av亚洲av综合av国产av| 亚洲熟女精品中文字幕| 欧美日韩国产mv在线观看视频| 亚洲国产毛片av蜜桃av| 久久九九热精品免费| 少妇猛男粗大的猛烈进出视频| 免费黄频网站在线观看国产| 日本午夜av视频| 高清欧美精品videossex| 赤兔流量卡办理| 大香蕉久久成人网| av电影中文网址| 午夜福利一区二区在线看| 美女主播在线视频| 黄色视频在线播放观看不卡| 国产精品九九99| 成人国语在线视频| 999精品在线视频| 丝袜美腿诱惑在线| 久久久久久久精品精品| 日韩电影二区| 别揉我奶头~嗯~啊~动态视频 | 国产亚洲精品第一综合不卡| 亚洲激情五月婷婷啪啪| 啦啦啦中文免费视频观看日本| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 91精品伊人久久大香线蕉| 日韩 欧美 亚洲 中文字幕| 国产精品成人在线| 亚洲精品国产av成人精品| 亚洲精品一二三| 黄色片一级片一级黄色片| www日本在线高清视频| 男女床上黄色一级片免费看| 久久久久久亚洲精品国产蜜桃av| 超碰97精品在线观看| 黑丝袜美女国产一区| 免费av中文字幕在线| 国产高清视频在线播放一区 | 欧美日韩亚洲国产一区二区在线观看 | 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 久久精品国产综合久久久| 精品人妻在线不人妻| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 你懂的网址亚洲精品在线观看| 久久热在线av| 无遮挡黄片免费观看| 超色免费av| 一区二区三区乱码不卡18| 久久久欧美国产精品| 精品一区二区三区四区五区乱码 | 男女免费视频国产| 91精品伊人久久大香线蕉| 两个人免费观看高清视频| 精品国产乱码久久久久久小说| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 成人三级做爰电影| 国产亚洲精品第一综合不卡| 国产极品粉嫩免费观看在线| 丰满饥渴人妻一区二区三| 亚洲九九香蕉| 黄片播放在线免费| 午夜免费观看性视频| 国产成人av教育| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久久久久久久久大奶| 亚洲国产最新在线播放| 久久久久精品人妻al黑| 欧美大码av| 免费黄频网站在线观看国产| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 国产女主播在线喷水免费视频网站| 一区二区三区四区激情视频| av欧美777| 亚洲国产av新网站| 国产视频一区二区在线看| 免费高清在线观看日韩| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| 久久这里只有精品19| 国产精品国产三级国产专区5o| 久久中文字幕一级| 精品高清国产在线一区| 高清视频免费观看一区二区| 久久久国产一区二区| 国产爽快片一区二区三区| 男女边摸边吃奶| 99九九在线精品视频| 欧美黄色片欧美黄色片| av一本久久久久| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o| 黄频高清免费视频| 午夜日韩欧美国产| 亚洲第一青青草原| 夫妻午夜视频| 免费少妇av软件| 亚洲av成人精品一二三区| 国产视频一区二区在线看| 免费观看av网站的网址| 精品少妇久久久久久888优播| 日韩 欧美 亚洲 中文字幕| 久久这里只有精品19| 亚洲精品在线美女| 免费高清在线观看视频在线观看| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频 | 电影成人av| 人妻人人澡人人爽人人| 亚洲av电影在线进入| 国产一区二区 视频在线| 国产又爽黄色视频| 桃花免费在线播放| 国产深夜福利视频在线观看| 99香蕉大伊视频| 亚洲专区国产一区二区| 一级片免费观看大全| 咕卡用的链子| 久久精品人人爽人人爽视色| 日日摸夜夜添夜夜爱| 亚洲成人国产一区在线观看 | 捣出白浆h1v1| 国产高清videossex| 国产一区有黄有色的免费视频| bbb黄色大片| 婷婷成人精品国产| 亚洲人成电影观看| 久久性视频一级片| 女警被强在线播放| 热99久久久久精品小说推荐| 久久久亚洲精品成人影院| 亚洲国产中文字幕在线视频| 一区二区三区四区激情视频| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 香蕉丝袜av| 女警被强在线播放| 高清不卡的av网站| 精品亚洲成国产av| 视频区欧美日本亚洲| 最新在线观看一区二区三区 | 久久久精品区二区三区| 亚洲av美国av| 国产三级黄色录像| 国产一区二区在线观看av| 高清欧美精品videossex| 国产av一区二区精品久久| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 波多野结衣av一区二区av| 成人亚洲欧美一区二区av| 首页视频小说图片口味搜索 | 大话2 男鬼变身卡| 高潮久久久久久久久久久不卡| 91成人精品电影| 亚洲精品久久久久久婷婷小说| 91九色精品人成在线观看| a级片在线免费高清观看视频| 一区在线观看完整版| 男人爽女人下面视频在线观看| 色94色欧美一区二区| 久久久久国产一级毛片高清牌| 飞空精品影院首页| 欧美日韩福利视频一区二区| 晚上一个人看的免费电影| 国产色视频综合| 久久国产精品影院| 亚洲精品自拍成人| 少妇 在线观看| 母亲3免费完整高清在线观看| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 欧美日韩国产mv在线观看视频| 视频区欧美日本亚洲| 亚洲精品av麻豆狂野| 男女床上黄色一级片免费看| 校园人妻丝袜中文字幕| 99re6热这里在线精品视频| 亚洲国产精品一区三区| 欧美人与善性xxx| 丰满迷人的少妇在线观看| 国产午夜精品一二区理论片| 制服人妻中文乱码| a级片在线免费高清观看视频| 成人影院久久| 高清视频免费观看一区二区| 免费在线观看日本一区| 看免费成人av毛片| 少妇猛男粗大的猛烈进出视频| 国产精品九九99| 脱女人内裤的视频| 日韩熟女老妇一区二区性免费视频| 久久久久久久精品精品| 大香蕉久久网| 中文字幕高清在线视频| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 久久中文字幕一级| 欧美精品啪啪一区二区三区 | 午夜av观看不卡| 另类精品久久| 操出白浆在线播放| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx| 久久久国产欧美日韩av| 啦啦啦在线观看免费高清www| 国产在线观看jvid| 国产精品人妻久久久影院| 国产日韩欧美在线精品| 日韩av免费高清视频| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 国产淫语在线视频| 欧美另类一区| 男女床上黄色一级片免费看| 国产99久久九九免费精品| 19禁男女啪啪无遮挡网站| 国产av国产精品国产| 国产亚洲欧美在线一区二区| 亚洲av片天天在线观看| 欧美激情高清一区二区三区| a级毛片黄视频| 亚洲国产欧美一区二区综合| 一区二区三区激情视频| 精品熟女少妇八av免费久了| 嫩草影视91久久| 亚洲欧美成人综合另类久久久| 欧美+亚洲+日韩+国产| 日韩一卡2卡3卡4卡2021年| 男女午夜视频在线观看| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 人人妻人人添人人爽欧美一区卜| 19禁男女啪啪无遮挡网站| 美女福利国产在线| 丝袜美腿诱惑在线| 亚洲国产精品成人久久小说| 日韩大码丰满熟妇| 欧美成人精品欧美一级黄| 18禁黄网站禁片午夜丰满| 亚洲av在线观看美女高潮| 极品人妻少妇av视频| 午夜福利视频在线观看免费| www.精华液| 国产欧美日韩一区二区三 | 91九色精品人成在线观看| 少妇裸体淫交视频免费看高清 | www.自偷自拍.com| 少妇的丰满在线观看| 精品一区二区三卡| 在线观看国产h片| 亚洲精品美女久久久久99蜜臀 | 最近最新中文字幕大全免费视频 | 国产极品粉嫩免费观看在线| 在线观看人妻少妇| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免| 久久精品久久精品一区二区三区| 成在线人永久免费视频| 热99国产精品久久久久久7| 欧美精品人与动牲交sv欧美| 另类精品久久| 国产一区二区在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 亚洲精品美女久久久久99蜜臀 | 美女大奶头黄色视频| 日韩一区二区三区影片| av福利片在线| 欧美av亚洲av综合av国产av| 国产一卡二卡三卡精品| 黑人猛操日本美女一级片| 午夜免费男女啪啪视频观看| 久久久久久久精品精品| 欧美日韩综合久久久久久| 2021少妇久久久久久久久久久| 老鸭窝网址在线观看| 亚洲中文字幕日韩| 亚洲欧洲国产日韩| 国产xxxxx性猛交| av一本久久久久| 久久久久精品人妻al黑| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| 国产熟女午夜一区二区三区| 午夜免费成人在线视频| 高清av免费在线| 国产一卡二卡三卡精品| 99国产精品99久久久久| 最近最新中文字幕大全免费视频 | 精品一区二区三区四区五区乱码 | 国产精品麻豆人妻色哟哟久久| 国产亚洲欧美精品永久| 久久久欧美国产精品| av国产精品久久久久影院| 99国产综合亚洲精品| 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 国产精品亚洲av一区麻豆| 久久久精品免费免费高清| 我的亚洲天堂| 黑丝袜美女国产一区| 一边摸一边抽搐一进一出视频| 亚洲五月婷婷丁香| 亚洲图色成人| √禁漫天堂资源中文www| 黄片小视频在线播放| 美女福利国产在线| 交换朋友夫妻互换小说| 国产一级毛片在线| 亚洲成国产人片在线观看| 久久毛片免费看一区二区三区| 啦啦啦中文免费视频观看日本| 国产有黄有色有爽视频| 国产视频一区二区在线看| 视频区图区小说| 国产又爽黄色视频| 精品一区二区三区av网在线观看 | 国产一区有黄有色的免费视频| 久久久久精品国产欧美久久久 | 免费高清在线观看日韩| 水蜜桃什么品种好| 欧美成狂野欧美在线观看| 午夜免费成人在线视频| 激情五月婷婷亚洲| 久久精品人人爽人人爽视色| 精品福利观看| 国产欧美日韩综合在线一区二区| 日韩 欧美 亚洲 中文字幕| 天堂8中文在线网| 99国产综合亚洲精品| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站 | 天天添夜夜摸| 黄色视频在线播放观看不卡| 99热国产这里只有精品6| 欧美在线黄色| 青青草视频在线视频观看| 99国产综合亚洲精品| 又紧又爽又黄一区二区| 精品久久久久久电影网| 久久久欧美国产精品| 中文字幕高清在线视频| 日本a在线网址| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 国产精品秋霞免费鲁丝片| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| videos熟女内射| 国产一区二区在线观看av| 午夜福利视频在线观看免费| 少妇人妻久久综合中文| 男人舔女人的私密视频| 操出白浆在线播放| 晚上一个人看的免费电影| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站| 亚洲人成电影免费在线| 丝袜在线中文字幕| 美女主播在线视频| 黑人巨大精品欧美一区二区蜜桃| 操出白浆在线播放| 91字幕亚洲| 少妇人妻久久综合中文| 一个人免费看片子| 啦啦啦在线观看免费高清www| 日韩 欧美 亚洲 中文字幕| 多毛熟女@视频| 久久av网站| 99国产精品99久久久久| 免费女性裸体啪啪无遮挡网站| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 亚洲专区中文字幕在线| 十分钟在线观看高清视频www| 午夜影院在线不卡| 亚洲精品国产色婷婷电影| 国产一区二区三区综合在线观看| 99久久99久久久精品蜜桃| 男女免费视频国产| 女性被躁到高潮视频| 亚洲激情五月婷婷啪啪| 一区二区三区激情视频| 久9热在线精品视频| 自线自在国产av| av又黄又爽大尺度在线免费看| 成人午夜精彩视频在线观看| 两个人看的免费小视频| 女人久久www免费人成看片| 欧美人与性动交α欧美软件| 日韩人妻精品一区2区三区| 丰满饥渴人妻一区二区三| 国产极品粉嫩免费观看在线| 丁香六月天网| 亚洲欧洲日产国产| 精品少妇黑人巨大在线播放| 免费一级毛片在线播放高清视频 | 国产一区二区三区av在线| 免费在线观看影片大全网站 | 久久精品国产综合久久久| 你懂的网址亚洲精品在线观看| 又黄又粗又硬又大视频| 国产精品久久久久久人妻精品电影 | 国产av一区二区精品久久| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品一区二区三区| 亚洲国产欧美一区二区综合| 亚洲三区欧美一区| 国产精品一国产av| 三上悠亚av全集在线观看| 99热网站在线观看| 国产精品香港三级国产av潘金莲 | 久久精品熟女亚洲av麻豆精品| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 高清不卡的av网站| 国产有黄有色有爽视频| 黄色视频在线播放观看不卡| 国产精品成人在线| www.自偷自拍.com| 中文字幕色久视频| 久久毛片免费看一区二区三区| xxxhd国产人妻xxx| 亚洲成色77777| 老司机影院成人| 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美| 性少妇av在线| 国产精品香港三级国产av潘金莲 | 99国产精品免费福利视频| 好男人视频免费观看在线| 国产成人精品久久二区二区91| 韩国高清视频一区二区三区| 国产麻豆69| 精品一品国产午夜福利视频| 精品一区二区三区av网在线观看 | 黄色毛片三级朝国网站| 国产免费福利视频在线观看| 激情视频va一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 国产成人av教育| 欧美黄色片欧美黄色片| 丝袜脚勾引网站| 日本vs欧美在线观看视频|