• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation?

    2021-06-26 03:05:00XuLiu劉旭JunChaoHuang黃俊超andXiangMeiDuan段香梅
    Chinese Physics B 2021年6期
    關(guān)鍵詞:劉旭

    Xu Liu(劉旭), Jun-Chao Huang(黃俊超), and Xiang-Mei Duan(段香梅)

    School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    Keywords: first-principles calculations,single-atom catalyst,CO oxidation,rate-limiting reaction barrier

    1. Introduction

    As greenhouse gases like CO get increased,[1]researchers are trying their best to find solutions to decrease the content of CO in the air.[2]One of the most promising methods is to convert CO to CO2by a highly effective catalyst.[3,4]So far,considerable efforts have been made to develop novel and efficient catalysts for CO oxidation. Some typical noble metals can effectively catalyze CO oxidation, such as Pt,[5]Pd,[6]Ru,[7]and Au.[8]However, considering the low cost, environmental friendliness, and outstanding thermal stability, researchers start to develop noble-free metals gradually and achieve certain success in CO oxidation.[9]Adhering to further increase the catalytic performance and reduce the cost,the view of researchers turns to single-atom catalysts (SACs)[10]for their high site density,high specify,and low cost.[11]

    Two-dimensional (2D) materials are extensively applied in various catalytic reactions as substrates owing to their large surface area, high thermal stability, and easily manufacture, such as graphene,[12,13]MoS,[14,15]hexagonal boron nitride monolayers (h-BN),[16,17]and graphic carbon nitride(CN,[18–20]C2N,[21,22]and C3N4[23–25]). Many 2D materials are rich in electron pairs to combine with metal ions, and it seems easy to recognize active sites. Besides,due to the crude or artificial vacancies, 2D materials can be used as prominent supports to host metal atoms and get high stable catalyst. In the experiment, SACs can be synthesized using the mass-selected soft-landing technique,improved wet chemistry methods, or atomic layer deposition methods. Many studies showed that defects of the support materials could serve as anchoring sites for metal clusters and even single atom.[26]

    It is reported that carbon nitride (CN), successfully synthesized in the experiment, can be applied in He separation,[25]H2storage,[27]water decomposition,[28,29]and CO oxidation.[20]Co atom, as an ideal noble-free metal, has a good performance in CO oxidation, even surpassing traditional noble metal catalysts. For instance,experimental works showed that the Co atom in Co3O4shows strong catalytic activity in CO oxidation at low temperature.[30,31]However,the reaction barrier of Co-anchored graphene(Co@Gra)is as high as 0.65 eV,[32]which cannot be carried out at room temperature. In order to improve the performance, researchers start to introduce defects in graphene-based SAC,and the reaction barrier of Co@Sv-Gra is decreased by 0.23 eV.[32]Co implanted h-BN and g-C3N4are also reported as excellent catalysts for CO oxidation, and the reaction barriers of Co@h-BN[33]and Co@g-C3N4[34]are 0.41 eV and 0.21 eV,respectively. The catalytic behavior of Co-anchored CN in the CO oxidation reaction is worth studying.

    Based on first-principles calculations,we investigated CO oxidation on Co anchored planar CN sheet. Our results show that the Co atom(s) can perfectly bind to the CN monolayer and maintain the stability of the whole system. When O2and CO molecules are adsorbed over Co/2Co@CN, the gas molecules are activated through electron “acceptance donation” interaction between gas molecules and the transition metal. Furthermore, Co anchored CN systems possess superior catalytic activity toward the CO oxidation reaction.

    2. Computation details

    The calculations are performed based on density functional theory (DFT) by the Viennaab initiosimulation package (VASP).[35]The Perdew–Burke–Ernzerh (PBE) functional of generalized gradient approximation (GGA) with the semi-empirical van der Waals (vdW) method of Grimme(DFT-D2) was used to handle the exchange and correlation functionals.[36,37]The cutoff energy is set to be 500 eV.The convergence tolerance for the geometry optimization is 10?4eV for the energy and 10?2eV/?A for the force. A vacuum space of 20 ?A is adopted to avoid interaction between two adjacent images. The reciprocal space is sampled with a 3×3×1k-point grid generated automatically using the Monkhorst-Pack method[38]for optimization. A HubbardUterm was added to the PBE functional (DFT+U) to describe partially filled d orbitals. The on-site Coulomb interaction(U)of 4 eV and exchange interaction(J)of 1 eV were applied.[39]Additionally,we used the climbing image nudged elastic band(CI-NEB) method[40]to search for transition states to investigate the reaction paths. Bader charge analysis is adopted to obtain the number of transferred electrons.[41]The first principles molecular dynamics(MD)simulations at 300 K with a time step of 1 fs are performed to check the structural stability.

    Taking Co@CN as an example, the binding energy (Eb)of Co on CN is defined as the energy difference between the Co atomically deposited CN and the separated CN plus the freestanding Co atom,that isEb=ECo@CN?ECN?ECo. The more negative binding energy,the more energy advantage the anchoring of Co on the substrate.

    The adsorption energy (Ea) of the gas molecules is obtained by the energy difference between the absorbed Co@CN and the gaseous species plus the bare Co@CN.Eacan be expressed asEa=Eadsorbate+Co@CN?Eadsorbate?ECo@CN. The charge density difference ?ρis used to describe the electronic interaction between the substrate and the adsorbate, ?ρ=ρa(bǔ)dsorbate/support?ρa(bǔ)dsorbate?ρsupport. Hereρa(bǔ)dsorbate/support,ρa(bǔ)dsorbate, andρsupportare the corresponding charge densities of the combined system,the free adsorbate,and the bare support,respectively.

    3. Results and discussion

    3.1. One and two Co atoms anchored CNs

    The calculated lattice constant of CN is 7.13 ?A, the C–N and C–C bond lengths are 1.35 ?A and 1.52 ?A,respectively.The results are in good agreement with the reported values of 7.12 ?A, 1.34 ?A, and 1.54 ?A.[27,28]A 2×2×1 supercell containing 24 carbon and 24 nitrogen atoms was established. The intrinsic hole surrounded by six sp2bonded nitrogen atoms is beneficial for Co atom anchoring. We consider three possible sites for Co landing on CN,find the most favorable configuration is the one shown in Fig. 1(a), where the Co atom bonds to two edge N atoms with a bond length of 1.85 ?A and keeps

    its planar geometric structure undistorted(see Fig.1(c)). The most stable geometry for two Co atoms on CN is shown in Fig.S1(a),with the Co–N bond length of 1.81 ?A and the Co–Co distance of 2.39 ?A. The corresponding binding energy is calculated to be?3.77 eV and?3.26 eV/atom for Co@CN and 2Co@CN, respectively, indicating the strong interaction between the Co atom and CN monolayer. For comparison,the data are listed in Table 1, where the cohesive energies per atom of the bulk metalsEc(?4.39 eV) are taken from experiments.[42]

    Table 1. The binding energies (eV) for Co, Bader charge Q (|e|) from Co to the substrate,the bond length of Co?N(A?),magnetic moment(μB),and the ratio of Eb/Ec for the most favorable Co adsorptions on CN.

    Fig. 1. The top (a) and side view (c) of optimized atomic configuration, the charge density difference plots (b) with an iso-surface value of 0.003|e|/Bohr3,as well as spin-polarized PDOS(d)for Co@CN.The charge accumulation and depletion regions are represented in yellow and blue, respectively. The bold blue short line points to the d-band center (?1.77 eV)of Co atom.

    The transition metals have a tendency of forming clusters,then we investigate the stability of Co@CN by CI–NEB and MD methods. As shown in Figs. 2(a) and 2(b), the diffusion barrier for Co from one stable site to another in the neighboring hole is 2.62 eV.Such a large diffusion barrier conforms that the single Co atom binds with the CN monolayer steadily and hard to move. On the other hand,the largeEb/Ecratios of 0.86 and 0.74 for single and double cobalt on the substrate manifest that Co atoms prefer a 2D growth morphology on CN.Furthermore, MD results manifest that the structure remains undistorted at room temperature (see Figs. 2(d) and 2(e)). Charge transfers from Co and 2Co to CN monolayer are 0.72|e| and 1.19|e|,respectively. Comparing the energy band structure of pure CN monolayer with that of Co@CN and 2Co@CN in Fig.S2,the bands dominated by N-2p orbitals in Co@CN and 2Co@CN show that there is a semiconductor to metal transition.

    Fig.2. The top(a)and side view(b)of diffusion path diagram and relative energy(c). The results of molecular dynamics(MD)simulations(d)and(e).

    As shown in Fig. 1(b) and Fig. S1(b), the charge rearrangement mainly occurs among the Co atom(s) and the twoedged N atoms. To better understand its physical mechanism, partial density of states(PDOS)is plotted in Fig.1(d)and Fig. S1(d). The overlapped peaks caused by orbital hybridization appearing between Co-3d and N-2p states illustrate that the single Co atom(s)can be viewed as an active site. The insertion of the second Co atom proves the ability of catalytic because the d-band center deviates from the Fermi level.[43]The magnetic momentum for Co and 2Co@CN is 2.68μBand 4.0μB,respectively.

    3.2. Adsorption of species involved in the CO oxidation

    The thermodynamics of a specific reaction are strongly affected by the stability of reactants, intermediates, transition orbitals,and products.[44]The ability to bind the gas molecules on catalytic active centers confirms the reaction efficiency.We then investigate the adsorption of reactants CO and O2over Co atom(s)anchored CN.

    O2molecule is one of the most important participants in the whole process of CO oxidation. We consider both end-on and side-on adsorption of O2on both Co@CN and 2Co@CN,and find that the adsorption energy via side-on is more negative (see Table 2 and Table S1); therefore, we focus on this configuration. As shown in Fig.3(a),the O2molecule prefers to lie parallel to the plane of the substrate, on top of the implanted Co atom. The two nearest Co–O distances are both 1.8 ?A, the O–O bond length is 1.34 ?A, stretched by 0.11 ?A compared with the value of free O2(g), which indicates that the “donation–acceptance” between Co and edged N in CN that activates the reaction activity of the single Co atom. The charge transfer of 0.58|e|is mainly caused by the reduction of the Co atom and accumulation of O2molecule(see Fig.3(b)).Evidenced by DOS in Fig. 3(c), after adsorption, the Co-3d states are overlapped with O2-2π?state, the DOS peaks of O2-5σand O2-1πstates are downshifted, indicating that O2molecule accepts electrons from Co-3d orbital.The strong hybridization among them benefits the O2molecule to combine with Co@CN.

    Table 2. The adsorption energies(eV/atom)for CO and O2(side-on),Bader Charge Q(|e|/atom),and bond length(?A)for the Co implanted CN.

    Fig. 3. The side views of the most plausible adsorption structures, the corresponding charge density difference,which iso-surface value is set to 0.003 e/Bohr3 and the PDOS for O2 on Co@CN (a)–(c) and 2Co@CN(d)–(f).

    For 2Co@CN shown in Fig. 3(d), the O2molecule adsorbs over the catalyst,like a bridge connecting one Co atom to the other. TheEaof the O2molecule is?1.43 eV/atom,and it is relatively larger than that of the O2molecule on 2Cu@C2N(?0.67 eV/atom). The bond length of O–O(1.50 ?A)is longer than that of O2over Co@CN. Moreover, Bader charge analysis shows that each Co atom transfers 0.70|e| to the O2molecule. After O2adsorbing, there are several peaks overlapping with Co-3d and O2-2p states at the energy region of?2 eV to?5 eV,as shown in Figs.3(c)and 3(f).For Co@CN,the O2molecule donates 1πand 5σstate electrons to Co-3d state, and the occupied Co-3d states feedback electrons to 2π?state of O2molecule, which is evidenced by the spindown peak near Fermi level. The ability to adsorb O2of both Co@CN and 2Co@CN is strong, especially the latter, with more charge(0.70|e|vs.0.58|e|)transferred from the substrate to O2molecule,the length of O–O bond is more elongated.

    CO interacts strongly with the Co@CN.For the most stable configuration,the calculatedEaof CO is?1.14 eV,which is close to the value of O2(?1.27 eV),so CO poisoning may be avoided. As presented in Fig. 4(a), the CO molecule is not perpendicular to the Co@CN plane but is inclined. The length of the C–Co bond is 1.82 ?A. The C–O bond length increases by 0.02 ?A compared to the value of free CO(g)(1.14 ?A). The charge transfer is 0.07|e| from the substrate to CO.From the density of states in Fig.4(c),it can be seen that there is slight charge transfer between CO and the substrate due to the donation of CO-5σstate electrons to Co-3d state and the back-donation of Co-3d state electrons to the CO-2π?state. For CO on 2Co@CN, the adsorbate stands above the two Co atoms and is almost perpendicular to the CN sheet(see Fig.4(d)). TheEaof?1.48 eV/atom is closer to the value of O2(?1.43 eV/atom);therefore,CO poisoning will not occur.The bond lengths of C–O(1.18 ?A)are also longer than that of the CO molecule on Co@CN.Moreover,Bader charge analysis shows that the adsorbed CO molecule gains 0.085|e|/atom from 2Co@CN.The strong interaction between Co and CO is evidenced by the DOS in Fig.4(f). The slight charge transferring is mainly caused by the donation of CO-4π?,1π,5σelectrons to Co-3d state and back donation of Co-3d electrons to CO-2π?. Like the adsorption of O2,the more electrons transfer from the substrate to the CO molecule,the larger the C–O bond length.

    Fig. 4. The side views of the most stable adsorption structures, the corresponding charge density difference and the PDOS for CO on Co@CN(a)–(c)and 2Co@CN(d)–(f).

    We also consider the final products O atomic and CO2adsorption on both catalysts and summarize the data in Table S1. TheEaof O atom absorbed on Co@CN and 2Co@CN is?3.94 eV and?3.14 eV, respectively. Due to the strong hybridization between the O-2p and Co-3d states, the Co–O bond length is all less than 2 ?A. The bond length of the two C–O bonds,as well as the angle of O–C–O,is the same as that of free CO2(g). TheEaof CO2is?0.42 eV and?0.34 eV,respectively,both are less than 0.50 eV,indicating that CO2is easy to desorb.[33]

    3.3. CO oxidation on Co@CN and 2Co@CN

    Generally, the CO oxidation on catalysts can mainly be performed by three typical reaction mechanisms, namely Eley–Rideal (ER), Langmuir–Hinshelwood (LH), and termolecular Eley–Rideal (TER) mechanism. Considering the recycling of catalysts,we take catalysts themselves as the initial state in three mechanisms.

    The ER,a mechanism of single active state participating in the reaction,is initiated by the direct reaction of gaseous CO molecules with the adsorbed O atom at the reaction centers resulting in the activation of O2to form a carbonate-like CO3intermediate or a final product of CO2. The dissociation of O2is the rate-limiting step. For Co@CN,the interaction with CO is as strong as that with O2,which can avoid CO poisoning. The configuration of physically adsorbed CO above the pre-adsorbed O2is selected as the initial state(IS2). As shown in Fig. S3, a chemically adsorbed atomic O and a physically adsorbed CO2molecule are considered as the final state(FS).In IS2, when the CO molecule approaches the activated O2,the O–O distance increases from 1.34 ?A to 1.35 ?A.The insertion of CO is exothermic; the breaking of the O–O bond and the formation of the new C–O bonds need to cross a barrier of 0.73 eV.Then it forms carbonate–like CO3(TS1). The CO3in TS1 dissociates by scission of one C–O bond attached to the Co atom. The process has an energy barrier of 3.14 eV(from MS1 to TS2). As a result, there leaves a physically adsorbed CO2and an O atom adsorbing on the Co@CN(FS).CO2adsorption on Co@CN is quite weak,and entire CO oxidation is exothermic at 300 K.The ER mechanism is unfavorable due to its large reaction barriers(>3 eV).The reaction on 2Co@CN is shown in Fig.S5. The entire reaction progress of 2Co@CN is similar to that of Co@CN,and its reaction barrier is 2.65 eV.

    The LH,a mechanism of double active states(CO+O2)participating in the reaction, starts with the interaction between the co-adsorbed CO and O2molecules for forming a peroxide-like OCOO intermediate and then the O–O bond breaks. And there leaves a physically adsorbed CO2together with an adsorbed atomic O like the final state of ER.As shown in Fig.S4,the co-adsorption of CO and O2on Co@CN is selected as the initial state(IS).Then crossing an energy barrier of 0.25 eV,CO and O2are parallel with end-on configurations(TS1). The CO and O2are activated,the O–O and C–O bonds are elongated. The peroxide-like OCOO has formed (MS1)with new O–O bond(1.63 ?A).With the scission of the new O–O bond and Co–C in MS,a physically adsorbed CO2is formed together with an adsorbed atomic O(TS2). The reaction from MS1 to TS2 climbs the energy barriers of 0.79 eV.The entire progress is exothermic with a small reaction barrier of 1.69 eV.The reaction could process readily with the barrier of 0.8 eV or less.[44]The findings indicate that CO oxidation on Co@CN is not particularly desirable. Whereas, O2molecule prefers adsorbing on 2Co@CN (IS1). With CO molecule participating in, the O–O bond stretches. Then one of the O atoms approaches to adsorbed CO molecule, and it forms OCOO(MS1). Then it gets dispersed,the corresponding reaction barrier is only 0.62 eV. We conclude that 2Co@CN is superior in terms of a minor reaction barrier. Following this,as shown in Fig.S6,the left adsorbed atomic O will react with another gaseous CO molecule(IS)and form the second physically adsorbed CO2(FS). For Co@CN (2Co@CN), the formation of the second CO2needs to pass over a reaction barrier of 0.28 eV(0.34 eV) and release the heat of 3.82 eV (2.65 eV), respectively.

    Fig.5. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on Co@CN through TER mechanism. All energies are given with respect to the reference energies of IS0.

    Fig.6. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on 2Co@CN through TER mechanism.

    Similar to the LH mechanism,the TER is a mechanism of double active states (CO+CO) participating in the reaction.Free O2molecule can be activated by the two co–adsorbed CO molecules to form an OCO–M–OCO intermediate. Then CO2molecules gradually stay away from the catalysts after the breaking of the C–Co bond. As shown in Fig.5, two CO molecules are chemically co–adsorbed on the Co site,and one O2molecule approaches them from the top(IS).Then the insertion of O2actives the pre-adsorbed CO with the elongated O–O bond length of 1.28 ?A (TS1) via adsorbing energy of 0.47 eV.Once a free O2is close enough,two O atoms bind to the C atoms and form an OCO–Co–OCO intermediate(MS).From MS to TS1, as the O–O bond length continues to increase, it finally breaks, and OCO–Co–OCO dissociates into two CO2molecules with a small reaction barrier of 0.42 eV and a huge exothermic energy of 4.35 eV (TS2). Due to the smallEa(?0.42 eV)of CO2on Co@CN,they should desorb spontaneously and finish the reaction cycle. The rate–limiting step for the TER mechanism is the dissociative adsorption of O2,and the reaction energy of Co@CN is 0.42 eV.The result indicates that the CO oxidation on Co@CN through the TER mechanism is superior to Pd@CN (0.48 eV). For 2Co@CN,as shown in Fig. 6, the adsorbed O2molecule reacts with two CO molecules simultaneously and produces an OCO–Co–OCO intermediate.[45]The reaction barrier is 0.38 eV, a bit smaller than that of Co@CN.

    4. Conclusion

    We have investigated the electronic structure of one and two Co atoms implanted on CN monolayer and their catalytic role played in CO oxidation by first-principles calculations.Our results show that the large binding energy and high diffusion barrier ensure that Co atoms are steadily anchored on CN and hard to form clusters,which are beneficial for the reactions. The adsorption energies of CO and O2on both catalysts are comparable, and the reactants molecules can be effectively captured and activated. Via three typical reaction mechanisms, we find that CO oxidation can favorably be in progress over both catalysts,and the TER mechanism is more preferable with a fairly small rate-limiting reaction barrier.

    猜你喜歡
    劉旭
    Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
    綁錯(cuò)的女友,騙錢騙色的渣女竟查無此人
    某新型航空材料加速腐蝕當(dāng)量關(guān)系試驗(yàn)研究
    17歲少年捐腎之死:有個(gè)孝子醫(yī)生深淵沉淪
    讓不愉快化成過眼云煙
    西門警事之四十二
    派出所工作(2018年6期)2018-09-10 23:01:56
    雨中情
    派出所工作(2017年6期)2017-05-30 10:48:04
    西門警事之十四困局
    派出所工作(2016年2期)2016-05-30 05:20:20
    一把折扇有乾坤,北京老宅挖寶一波三折
    The Short-term Effects of Temperature and Free Ammonia onAmmonium Oxidization in Granular and Floccular Nitrifying System*
    久久久久久免费高清国产稀缺| a级片在线免费高清观看视频| 国产又爽黄色视频| 久久久国产欧美日韩av| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美精品济南到| 久久久久精品国产欧美久久久| 无限看片的www在线观看| 中文字幕制服av| 国产不卡av网站在线观看| 啪啪无遮挡十八禁网站| 老司机福利观看| 一本久久精品| 国产成人系列免费观看| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 国产精品久久久久久精品电影小说| 丝袜喷水一区| 免费女性裸体啪啪无遮挡网站| 色婷婷av一区二区三区视频| 久久精品亚洲精品国产色婷小说| 少妇精品久久久久久久| 黄色视频,在线免费观看| 日本一区二区免费在线视频| 大片免费播放器 马上看| 亚洲国产欧美日韩在线播放| 国产在线视频一区二区| 国产成人av教育| 看免费av毛片| 午夜精品国产一区二区电影| 亚洲人成77777在线视频| 人人妻人人澡人人看| 一级毛片女人18水好多| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看 | 亚洲av欧美aⅴ国产| 少妇的丰满在线观看| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 亚洲熟妇熟女久久| 波多野结衣一区麻豆| 制服人妻中文乱码| 国产在视频线精品| 夜夜爽天天搞| 黄色视频,在线免费观看| 香蕉国产在线看| 伦理电影免费视频| 一区二区三区乱码不卡18| 建设人人有责人人尽责人人享有的| 大型黄色视频在线免费观看| 日韩视频在线欧美| 十八禁网站免费在线| 大型av网站在线播放| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 色视频在线一区二区三区| 老司机亚洲免费影院| 另类精品久久| 精品亚洲成国产av| 精品少妇黑人巨大在线播放| 午夜福利免费观看在线| 在线天堂中文资源库| 91av网站免费观看| 亚洲av国产av综合av卡| 欧美成狂野欧美在线观看| 日本wwww免费看| 欧美成人免费av一区二区三区 | 午夜福利在线免费观看网站| 国产精品.久久久| 日韩视频一区二区在线观看| cao死你这个sao货| 亚洲熟女精品中文字幕| 黄色片一级片一级黄色片| 久久久久国产一级毛片高清牌| 一级毛片电影观看| 久久国产精品人妻蜜桃| 91精品国产国语对白视频| 久久久久久人人人人人| 黄频高清免费视频| 黑人猛操日本美女一级片| 国产精品1区2区在线观看. | 欧美精品高潮呻吟av久久| 捣出白浆h1v1| 天天操日日干夜夜撸| 男女免费视频国产| 国产免费福利视频在线观看| 又大又爽又粗| 精品一区二区三区四区五区乱码| svipshipincom国产片| 国产1区2区3区精品| a级毛片黄视频| 日韩免费av在线播放| 在线观看一区二区三区激情| av视频免费观看在线观看| 国产一区二区激情短视频| 欧美在线一区亚洲| 国产欧美日韩综合在线一区二区| 国产区一区二久久| 亚洲精品久久午夜乱码| 9191精品国产免费久久| 一边摸一边抽搐一进一出视频| 超色免费av| 69精品国产乱码久久久| 国产成人免费观看mmmm| 久久国产精品人妻蜜桃| 欧美乱码精品一区二区三区| 亚洲专区国产一区二区| 亚洲精品国产区一区二| 999久久久国产精品视频| 午夜精品国产一区二区电影| 国产在线一区二区三区精| 精品人妻在线不人妻| 国产一卡二卡三卡精品| 大香蕉久久网| 一级片免费观看大全| 久久ye,这里只有精品| 日本黄色视频三级网站网址 | 母亲3免费完整高清在线观看| 国产精品一区二区在线不卡| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 中国美女看黄片| 久久久精品国产亚洲av高清涩受| 国产男女内射视频| 少妇的丰满在线观看| 成年人黄色毛片网站| 99香蕉大伊视频| 免费久久久久久久精品成人欧美视频| 搡老乐熟女国产| 国产在线精品亚洲第一网站| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| svipshipincom国产片| 桃花免费在线播放| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 国产色视频综合| 色综合婷婷激情| 亚洲欧美色中文字幕在线| 国产成人精品久久二区二区91| 亚洲免费av在线视频| 50天的宝宝边吃奶边哭怎么回事| 夜夜骑夜夜射夜夜干| 热re99久久国产66热| 美国免费a级毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图av天堂| 欧美日韩黄片免| 在线观看人妻少妇| 在线天堂中文资源库| 18在线观看网站| 大片电影免费在线观看免费| 亚洲专区字幕在线| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 亚洲人成电影观看| 丰满少妇做爰视频| 两个人免费观看高清视频| 亚洲色图 男人天堂 中文字幕| 亚洲午夜理论影院| 亚洲第一青青草原| 最新在线观看一区二区三区| 一二三四在线观看免费中文在| 国产欧美亚洲国产| svipshipincom国产片| 12—13女人毛片做爰片一| 99精国产麻豆久久婷婷| 国产在线精品亚洲第一网站| 97在线人人人人妻| 亚洲人成电影观看| 在线十欧美十亚洲十日本专区| 蜜桃在线观看..| 国产精品美女特级片免费视频播放器 | 欧美人与性动交α欧美精品济南到| 国产欧美亚洲国产| 一边摸一边抽搐一进一小说 | 国产精品 国内视频| 黄色a级毛片大全视频| 国产男靠女视频免费网站| 欧美黑人巨大hd| 免费在线观看日本一区| 国产不卡一卡二| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品av在线| 99re在线观看精品视频| 狂野欧美白嫩少妇大欣赏| 看片在线看免费视频| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 一本综合久久免费| 国产av不卡久久| 久久草成人影院| 日韩中文字幕欧美一区二区| 91在线精品国自产拍蜜月 | 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 男人舔女人下体高潮全视频| x7x7x7水蜜桃| 一区二区三区激情视频| 国产成人精品无人区| 日本一本二区三区精品| 无遮挡黄片免费观看| 免费观看的影片在线观看| netflix在线观看网站| 欧美午夜高清在线| 婷婷丁香在线五月| 97碰自拍视频| 后天国语完整版免费观看| 日本熟妇午夜| 成在线人永久免费视频| 黑人欧美特级aaaaaa片| 男人舔女人下体高潮全视频| 最新在线观看一区二区三区| 午夜视频精品福利| 99国产精品一区二区蜜桃av| 在线国产一区二区在线| 午夜免费观看网址| 精品99又大又爽又粗少妇毛片 | 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 免费观看精品视频网站| 色吧在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲国产看品久久| 免费在线观看成人毛片| 我的老师免费观看完整版| 亚洲欧美一区二区三区黑人| 99久久99久久久精品蜜桃| 久久中文看片网| av片东京热男人的天堂| 国产午夜福利久久久久久| 日本免费a在线| 高潮久久久久久久久久久不卡| www日本黄色视频网| av女优亚洲男人天堂 | 欧美色视频一区免费| www日本在线高清视频| АⅤ资源中文在线天堂| 欧美中文综合在线视频| 男人舔奶头视频| 在线观看午夜福利视频| 成年版毛片免费区| 午夜福利免费观看在线| 久久久精品大字幕| 他把我摸到了高潮在线观看| www国产在线视频色| 久久久久久人人人人人| 一本一本综合久久| 手机成人av网站| 国产一区二区三区在线臀色熟女| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 老司机福利观看| 大型黄色视频在线免费观看| 一本一本综合久久| 亚洲 欧美 日韩 在线 免费| 91久久精品国产一区二区成人 | 变态另类成人亚洲欧美熟女| 一夜夜www| 国产欧美日韩精品一区二区| 美女高潮喷水抽搐中文字幕| 欧美大码av| 精品久久久久久,| 欧美日韩一级在线毛片| 麻豆成人av在线观看| 一夜夜www| 人人妻人人看人人澡| 99精品欧美一区二区三区四区| 99热这里只有精品一区 | 亚洲国产色片| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 一级毛片女人18水好多| 91麻豆精品激情在线观看国产| 久久久久国产一级毛片高清牌| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 午夜福利在线观看免费完整高清在 | 亚洲av成人不卡在线观看播放网| 黄色视频,在线免费观看| 色精品久久人妻99蜜桃| 精品乱码久久久久久99久播| 91在线精品国自产拍蜜月 | 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站 | aaaaa片日本免费| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av| 免费大片18禁| 国产伦在线观看视频一区| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 日本 av在线| 色视频www国产| 伊人久久大香线蕉亚洲五| 美女cb高潮喷水在线观看 | 亚洲国产色片| 成人av一区二区三区在线看| 精品一区二区三区视频在线 | 天堂动漫精品| 观看免费一级毛片| 99热只有精品国产| 久久热在线av| 日韩欧美三级三区| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 亚洲自拍偷在线| 国内精品久久久久久久电影| 日韩精品青青久久久久久| 亚洲色图 男人天堂 中文字幕| 精品不卡国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 网址你懂的国产日韩在线| а√天堂www在线а√下载| 亚洲国产日韩欧美精品在线观看 | 美女 人体艺术 gogo| 三级国产精品欧美在线观看 | 18禁观看日本| 操出白浆在线播放| 国内少妇人妻偷人精品xxx网站 | 日本 av在线| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 91字幕亚洲| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站 | 久久这里只有精品中国| 国内久久婷婷六月综合欲色啪| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 黄色女人牲交| 久久人妻av系列| 在线永久观看黄色视频| 中文在线观看免费www的网站| 国产精品久久久人人做人人爽| 色av中文字幕| 久久婷婷人人爽人人干人人爱| 99热这里只有精品一区 | e午夜精品久久久久久久| 午夜福利在线在线| 两人在一起打扑克的视频| 男人舔奶头视频| 可以在线观看的亚洲视频| ponron亚洲| 1024手机看黄色片| 日韩人妻高清精品专区| 免费在线观看成人毛片| 天天躁狠狠躁夜夜躁狠狠躁| 99久国产av精品| 久久国产乱子伦精品免费另类| 成年免费大片在线观看| av国产免费在线观看| 99久国产av精品| 欧美在线黄色| 法律面前人人平等表现在哪些方面| 99re在线观看精品视频| 日本三级黄在线观看| 在线观看一区二区三区| 99久久成人亚洲精品观看| 色综合亚洲欧美另类图片| 99久久成人亚洲精品观看| 国产欧美日韩一区二区三| 国内久久婷婷六月综合欲色啪| 国产精品久久久人人做人人爽| 精品久久久久久久久久久久久| 亚洲美女视频黄频| 精品久久久久久久久久久久久| 欧美午夜高清在线| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 欧美最黄视频在线播放免费| 亚洲av电影在线进入| 波多野结衣巨乳人妻| 国产精品爽爽va在线观看网站| 麻豆一二三区av精品| 久久久久久大精品| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 成年版毛片免费区| 男插女下体视频免费在线播放| 亚洲中文字幕日韩| 99在线视频只有这里精品首页| 一区二区三区高清视频在线| aaaaa片日本免费| 日韩欧美精品v在线| 久久精品国产99精品国产亚洲性色| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月 | 五月伊人婷婷丁香| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 五月玫瑰六月丁香| 中文字幕av在线有码专区| 99国产综合亚洲精品| 一个人看视频在线观看www免费 | 欧美大码av| 欧美黑人欧美精品刺激| 成人一区二区视频在线观看| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| 嫩草影院入口| 欧美日韩黄片免| 久久九九热精品免费| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线 | 国产精品精品国产色婷婷| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区91| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 亚洲成人中文字幕在线播放| 黄色丝袜av网址大全| 久久中文看片网| 脱女人内裤的视频| 亚洲九九香蕉| 国产精品98久久久久久宅男小说| 男人和女人高潮做爰伦理| ponron亚洲| 成年免费大片在线观看| 国产高清激情床上av| 亚洲欧洲精品一区二区精品久久久| 男女床上黄色一级片免费看| 亚洲av成人一区二区三| 69av精品久久久久久| 国产精品亚洲一级av第二区| 在线观看日韩欧美| 亚洲国产精品sss在线观看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清作品| 亚洲中文日韩欧美视频| av视频在线观看入口| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 又粗又爽又猛毛片免费看| 国产97色在线日韩免费| 婷婷六月久久综合丁香| 99热精品在线国产| 观看美女的网站| 免费av不卡在线播放| 黄片大片在线免费观看| 男人舔奶头视频| 欧美一级毛片孕妇| 亚洲激情在线av| 日日夜夜操网爽| 亚洲九九香蕉| 麻豆成人av在线观看| 午夜精品久久久久久毛片777| 日本五十路高清| 麻豆国产av国片精品| 精品国产亚洲在线| 在线看三级毛片| 亚洲国产看品久久| 亚洲欧美日韩高清在线视频| 噜噜噜噜噜久久久久久91| 欧美激情久久久久久爽电影| 嫁个100分男人电影在线观看| 欧美日韩黄片免| 狂野欧美白嫩少妇大欣赏| 亚洲成人中文字幕在线播放| 两个人看的免费小视频| 最近视频中文字幕2019在线8| 国产精品一区二区三区四区免费观看 | 亚洲色图 男人天堂 中文字幕| 波多野结衣高清无吗| 欧美极品一区二区三区四区| 欧美黑人欧美精品刺激| 欧美日韩国产亚洲二区| 母亲3免费完整高清在线观看| 国内精品美女久久久久久| 97超级碰碰碰精品色视频在线观看| 最新中文字幕久久久久 | 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 欧美激情在线99| 欧美日韩黄片免| 成年免费大片在线观看| 久久精品国产清高在天天线| 波多野结衣巨乳人妻| 亚洲欧美日韩卡通动漫| 黄色 视频免费看| 欧美中文日本在线观看视频| 宅男免费午夜| 9191精品国产免费久久| 成人无遮挡网站| 久久精品人妻少妇| 法律面前人人平等表现在哪些方面| 免费高清视频大片| 亚洲va日本ⅴa欧美va伊人久久| 十八禁人妻一区二区| 欧美又色又爽又黄视频| 国产成人啪精品午夜网站| 哪里可以看免费的av片| 国产精品乱码一区二三区的特点| 欧美乱妇无乱码| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 久久久久久久午夜电影| 网址你懂的国产日韩在线| 欧美日韩一级在线毛片| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| 日本免费a在线| 欧美三级亚洲精品| 欧美中文日本在线观看视频| 99精品欧美一区二区三区四区| 香蕉久久夜色| 高清毛片免费观看视频网站| 欧美日本亚洲视频在线播放| 观看免费一级毛片| 亚洲性夜色夜夜综合| 女同久久另类99精品国产91| 欧美色欧美亚洲另类二区| 精品国产美女av久久久久小说| 国内精品久久久久精免费| 男女之事视频高清在线观看| 精品国产亚洲在线| 亚洲精品456在线播放app | 国产欧美日韩精品一区二区| 亚洲黑人精品在线| 日本免费一区二区三区高清不卡| 国产成人啪精品午夜网站| 天堂√8在线中文| 免费看光身美女| 最近在线观看免费完整版| av国产免费在线观看| 一级毛片女人18水好多| 欧美zozozo另类| 久久久久久九九精品二区国产| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 变态另类成人亚洲欧美熟女| 国产成人一区二区三区免费视频网站| 国产精品久久久人人做人人爽| 欧美高清成人免费视频www| 在线观看午夜福利视频| 亚洲美女黄片视频| 天堂网av新在线| 91在线精品国自产拍蜜月 | 久久香蕉国产精品| 国产精品1区2区在线观看.| 99久久国产精品久久久| 国产精品久久久久久精品电影| 日日夜夜操网爽| 亚洲七黄色美女视频| 两个人的视频大全免费| 法律面前人人平等表现在哪些方面| 国产午夜精品久久久久久| 国产黄片美女视频| 99热6这里只有精品| 一进一出好大好爽视频| 国产伦一二天堂av在线观看| 1024手机看黄色片| 国产高清激情床上av| 99久久99久久久精品蜜桃| www.www免费av| 久久国产乱子伦精品免费另类| 高潮久久久久久久久久久不卡| 搡老妇女老女人老熟妇| 人妻夜夜爽99麻豆av| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 老司机在亚洲福利影院| 麻豆成人午夜福利视频| 久久婷婷人人爽人人干人人爱| 亚洲国产日韩欧美精品在线观看 | 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 精品电影一区二区在线| 久久伊人香网站| 俄罗斯特黄特色一大片| 精品国产超薄肉色丝袜足j| 精品午夜福利视频在线观看一区| 国产一区二区在线av高清观看| 国产精品一区二区精品视频观看| 午夜激情福利司机影院| 久久精品国产清高在天天线| 一个人看视频在线观看www免费 | 一区二区三区国产精品乱码| 这个男人来自地球电影免费观看| 人人妻人人澡欧美一区二区| 啦啦啦观看免费观看视频高清| 天天躁日日操中文字幕| 国产野战对白在线观看| 中文在线观看免费www的网站| 搡老妇女老女人老熟妇| 日韩人妻高清精品专区| 最近最新中文字幕大全电影3| 日日干狠狠操夜夜爽| 欧美+亚洲+日韩+国产| 国产精品一区二区免费欧美| 欧美激情在线99| 亚洲真实伦在线观看| 亚洲人成网站高清观看| 亚洲黑人精品在线| 久久人人精品亚洲av| 一级毛片精品| 午夜免费激情av| 少妇丰满av| 久久精品国产综合久久久| 亚洲色图 男人天堂 中文字幕| 九九久久精品国产亚洲av麻豆 | 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品久久久久久毛片| 午夜福利成人在线免费观看| 亚洲性夜色夜夜综合|