• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic thermoelectric transport properties in polycrystalline SnSe2?

    2021-06-26 03:04:22CaiyunLi李彩云WenkeHe何文科DongyangWang王東洋andLiDongZhao趙立東
    Chinese Physics B 2021年6期
    關(guān)鍵詞:東洋彩云文科

    Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王東洋), and Li-Dong Zhao(趙立東)

    School of Materials Science and Engineering,Beihang University,Beijing 100191,China

    Keywords: thermoelectric,SnSe2,anisotropic structure,Cl-doping

    1. Introduction

    Thermoelectric material, as the main body of device for reversible conversion between waste heat and electricity, can effectively alleviate the shortage of traditional primary energy and improve the situation of environmental degradation.[1,2]The dimensionless figure of merit (ZT) can be used to assess the conversion ability of thermoelectric materials for practical production and application,defined asZT=S2σT/κtot,whereS,σ,κtot, andTare the Seebeck coefficient, electrical conductivity,total thermal conductivity,and absolute temperature,respectively.[3–5]In recent years, a series of new theories and advanced material fabrication technologies have been developed to optimize the thermoelectric properties,[6–16]such as raising power factor(PF=S2σ)through employing the band structure engineering[7,8,17]or lowering thermal conductivity by adopting defect engineering.[11,18–23]In addition,a certain material with low intrinsic thermal conductivity is explored to evade election–phonon coupling effectively.[14,24–27]

    As a compound consisting of the same elements as SnSe,SnSe2has attracted much attention owing to not only its features of nontoxicity, non-pollution, earth-abundant, and low cost,[28]but also its natural layered structure leading to a low thermal conductivity,[29]making it become a competitive material in the field of thermoelectricity. Moreover, the firstprinciples calculations forecasted that SnSe2is able to reach a promisingZTvalue of~2.95 in n-type SnSe2crystals when the carrier concentration (n) is raised to~1020cm?3at 800 K.[30]SnSe2is crystallized in a typical structure of CdI2(Figs. 1(a)–1(c)), and Se accumulates in a densely arranged hexagonal form while Sn is in the octahedral interstice surrounded by six Se atoms.[31]Similar to many layered compounds (Bi2Se3, Bi2Te3, etc.),[32]n-type polycrystalline SnSe2exhibits anisotropic thermoelectric properties along thea-axis andc-axis,[33]the weaker van der Waals chemical bonding between the layers makes the acoustic phonon mode along thec-axis softer than that along thea-axis, and results in a much lower thermal conductivity along the interlayer direction(c-axis).[34]When sintering the polycrystalline SnSe2samples,the layered structures are inclined to distribute along the sintering pressure direction. Therefore,superiorZTvalues are generally obtained along the pressuring direction owing to the much lower thermal conductivity.[18,30,33]

    Among the diverse approaches for optimizing SnSe2,the substitution of halogen atoms in Se sites is proved to be a convenient and highly effective strategy to increase the carrier concentration, and thus improves its electrical performance.[29,33,35–37]Shuet al. reported a highZTof~0.56 at 773 K in n-type polycrystalline SnSe2as the doping concentration of Cl reaches to~6%.[36]Further, Liuet al. built an imbedded Ag+bridge in the layers of SnSe2and harvested a record-breakingZTof~1.03.[18]However, the excessive increment of carrier concentration in the SnSe2matrix will inevitably result in a higher thermal conductivity from the electron contribution. In this case,we first introduce SnSe phase into SnSe2to reduce the lattice thermal conductivity because of the inter-phase scattering between SnSe2matrix and the second phases.[38–41]Subsequently, we select Cl dopant to optimize the carrier concentration and improve the electrical performance. Meanwhile, the anisotropic thermoelectric transport properties are investigated and analyzed in SnSe2-based samples. We find a~3 times lower thermal conductivity along the direction parallel to the spark plasma sintering(SPS) pressure (‖P), and a~2 times higherPFalong the direction perpendicular to the SPS pressure (⊥P) in SnSe2-based samples. As a result, comprehensive consideration on the electrical properties and thermal conductivity,a higherZTis attained along the‖ Pdirection. Besides, the minimum thermal conductivity decreases from~0.57 W·m?1·K?1to~0.39 W·m?1·K?1after introducing 2%SnSe along the‖Pdirection. Then, the maximumPFyields a sharp increase in SnSe2-2% SnSe after 5% Cl doping, which increases from~1.70μW·cm?1·K?2to~9.76μW·cm?1·K?2along the⊥Pdirection. In the end, theZTvalue is improved to as high as~0.6 after the two-step optimization along the‖Pdirection.All above optimizing processes are summarized in Fig.2.

    Fig.1. Crystal structure of SnSe2: (a)crystal structure along the a-axis;(b)the unit cell;(c)crystal structure along the c-axis.

    Fig. 2. A two-step optimization process for SnSe2 along the ‖P and ⊥P directions. The units of PFmax and κmin are μW·cm?1·K?2 and W·m?1·K?1,respectively.

    2. Results and discussion

    The powder XRD patterns of the SnSe2-x% SnSe composites (x=0, 1, 2, 3) are shown in Fig. 3(a). It is found that the diffraction peaks are well consistent with the simulated pattern (PDF# 01-089-2939). The lattice parameters do not change after adding 1% SnSe whatever the addition of SnSe content, which indicates the presence of SnSe phase(Fig.3(b)).From the band gap measurement results(Figs.3(c)and 3(d)), the band gap slightly decreases after adding SnSe into SnSe2,which is due to the relative low band gap of SnSe.

    The electrical conductivities of SnSe2-x% SnSe samples along the two directions (‖ Pand⊥P) are measured in the temperature range from 300 K to 773 K(Figs.4(a)and 4(b)).The electrical conductivity is very low at room temperature and then increases as the temperature rises, which is a typical temperature-dependent intrinsic semiconductor feature.The electrical conductivity depends weakly on the temperature from 300 K to 600 K.At high temperatures,the electrical conductivity after adding SnSe is higher than that of pristine SnSe2,which may come from that the reduced band gap from introducing SnSe is more conducive to thermal excitation as the temperature rises. This behavior is more striking along the⊥Pdirection in this layered compound. It is obvious that the electrical conductivity along the⊥Pdirection is superior to that along the‖Pdirection,which indicates an outstanding⊥Pdirection(can be considered as the in-plane direction in crystals)electrical transport property in SnSe2. Besides, the Seebeck coefficients of all samples are relatively large and maintain within the range of~?400μV·K?1to?600μV·K?1at the whole working temperature(Figs.4(c)and 4(d)).As a consequence,the power factors after introducing SnSe are higher than that of pristine SnSe2, especially in the polycrystalline samples along the⊥Pdirection(Figs.4(e)–4(f)). A maximum power factor of~1.7 μW·cm?1·K?2at 773 K is attained in SnSe2along the⊥Pdirection, and is twice of that along the‖Pdirection, which is ascribed to the excellent in-plane carrier mobility in SnSe2.

    Fig.3. (a)XRD patterns;(b)the lattice parameters;(c)UV–vis absorption spectra,and(d)band gaps for SnSe2-x%SnSe.

    Fig. 4. Temperature dependence of electrical transport properties along the ‖P and ⊥P directions for SnSe2-2% SnSe: (a)–(b) electrical conductivities;(c)–(d)Seebeck coefficients;(e)–(f)power factors.

    To further investigate the difference in electrical properties after adding SnSe and along the two directions in SnSe2, the Hall measurements are conducted. Since SnSe is a p-type phase in SnSe2, the room-temperature (RT) carrier concentration decreases from~1.17×1018cm?3to~5.62×1017cm?3, but a high carrier mobility (μ) is obtained from~1.82 cm2·V?1·s?1to~8.16 cm2·V?1·s?1and~10.57 cm2·V?1·s?1to~38.05 cm2·V?1·s?1along the‖Pand⊥Pdirections,respectively(Figs.5(a)and 5(b)). The carrier mobilities along these two directions also show a significant distinction,the values along the⊥Pdirection are~5–10 times higher than those along the‖Pdirection. Based on the single parabolic band model,[42]we have calculated the carrier mobility as a function of carrier concentration(Fig.5(c)). All the experimental data are under the simulated curve, which is attributed to the more complex scattering mechanism in polycrystalline samples, such as grain boundary, precipitated phase, etc.[39,43]Moreover, on the basis of the single band model,the Seebeck coefficient can be obtained as[44,45]

    wherekBrepresents the Boltzmann constant,hrepresents the Planck constant, andm?represents the density of state effective mass. The Pisarenko line shows that the effective masses along the two directions are almost unchanged after increasing the SnSe concentration,indicating a single band transport feature at low carrier concentration in SnSe2(Fig.5(d)).

    Fig. 5. (a) Carrier concentration; (b) carrier mobility; (c) carrier mobility, and (d) Seebeck coefficient as a function of carrier concentration along the‖P and ⊥P directions for SnSe2-x%SnSe.

    Fig. 6. The temperature dependence of thermal conductivity along the ‖P and ⊥P directions for SnSe2-2% SnSe: (a)–(b) total thermal conductivity;(c)–(d)electronic thermal conductivity;(e)–(f)lattice thermal conductivity.

    The total thermal conductivity(κtot)for all samples continuously decreases with elevating temperature(Figs.6(a)and 6(b)). It can be seen that theκtotwith SnSe phase along the‖Pand⊥Pdirections are lower than those of pristine SnSe2.Besides, theκtotalong the‖Pdirection is much lower than that along the⊥Pdirection. Theκtotmainly comes from the contributions of electronic thermal conductivity(κele)and lattice thermal conductivity (κlat). Theκeleis calculated byκele=LσT,whereLis the Lorentz constant,theκeleincreases as temperature rises,which is mainly due to the increased electrical conductivity at high temperatures (Figs. 6(c) and 6(d)).The lattice thermal conductivity(κlat)can be obtained by subtractingκelefromκtot,namely,κlat=κtot?κele. Interestingly,the overallκlatalong the‖ Pdirection is~3 times lower than that along the⊥Pdirection (Figs. 6(e) and 6(f)). Moreover,a lowκlatof~0.39 W·m?1·K?1is obtained at 773 K in SnSe2-2%SnSe sample along the‖Pdirection while theκlatin the pristine SnSe2sample is~0.56 W·m?1·K?1,implying a strong inter-phase scattering after introducing 2%SnSe.

    In order to further explore the decline of the lattice thermal conductivity, we calculate the Gr¨uneisen constant (γ) of these two samples along the‖Pdirection,[46,47]as shown in Table 1.Theγof these two samples are~3.03 and~2.95,respectively,which indicates that the sample with 2%SnSe has a stronger anharmonicity.

    Table 1. The longitude sound velocity(vl),shear sound velocity(vs),average sound velocity(va),and Gr¨uneisen parameters(γ)of SnSe2 and SnSe2-2%SnSe.

    Fig.7. Temperature dependent ZT values along the(a)‖P and(b)⊥P directions for SnSe2-2%SnSe.

    Fig.8. (a)XRD patterns;(b)lattice parameters;(c)UV–vis absorption spectra,and(d)band gap for SnSe2-2%SnSe-y%Cl.

    Compared with the excellent electrical transport properties along the⊥Pdirection,the contribution from thermal conductivity along the‖Pdirection to finalZTs is more strikingly, especially when introducing SnSe phase with intrinsically lowκlat. Therefore,combining the electrical and thermal properties along the two directions, relatively higherZTs are achieved along the‖Pdirection(Figs.7(a)and 7(b)). TheZTvalue along the‖Pdirection approaches to as high as~0.13 at 773 K for SnSe2-2%SnSe while is only~0.09 for SnSe2.

    Based on the obtained low thermal conductivity and highZTin SnSe2with 2% SnSe, we further improve the electrical transport properties through halogen element doping. The XRD data of all samples with Cl doping are shown in Fig.8(a).It is obvious that all the diffraction peaks agree well with the simulated pattern (PDF# 01-089-2939) (SnSe2-2% SnSe-y%Cl,y=0, 1, 2, 3, 4, 5, 6). Figure 8(b) shows that the lattice parameter gradually decreases with increasing Cl content, it proves that Cl is doped into SnSe2matrix as Cl has a smaller atomic radius than Se. The decrement of band gap from~1.0 eV to~0.83 eV is likely related to the introduction of impurity energy levels after Cl doping (Figs. 8(c) and 8(d)).

    After Cl doping, the carrier concentration is optimized,leading to a huge increment of electrical conductivity (σ) in SnSe2-2% SnSe samples. At room temperature, theσincreases from~4 S·cm?1to~78 S·cm?1and from~9 S·cm?1to~208 S·cm?1along the‖Pand⊥Pdirections after 5%Cl doping, respectively (Figs. 9(a) and 9(b)). This striking difference mainly derives from the unique layered structure of SnSe2as mentioned above. The Seebeck coefficient decreases after increasing carrier concentration along the two directions (Figs. 9(c) and 9(d)). Besides, it can be seen that thePFreaches to as high as~5.12 μW·cm?1·K?2and~9.76 μW·cm?1·K?2after 5% Cl doping along the‖Pand⊥Pdirections, respectively (Figs. 9(e) and 9(f)), which is an prominent enhancement compared to the undoped samples.

    To further investigate the dramatic increase in theσ, thenandμat room-temperature are measured. As Fig.10(a)depicts, thenis largely enhanced from~5.6×1017cm?3to~6.2×1019cm?3after Cl doping, which benefits from the fact that Cl is an effective electron donor.[35]It is worth noting that theμincreases with rising the doping concentration from 1%to 5%(Fig.10(b)),which may be due to the microregulation of Cl on SnSe2and SnSe phases.[36]In other word,Cl replaces Se not only in SnSe2but also in SnSe, making the SnSe phase be changed from intrinsic p-type to n-type,therefore, the n–p phase in SnSe2convert to n–n phase thus reducing the energy barrier between SnSe2and SnSe, which makes the carriers facilely migrate. As a consequence, theμincreases up to~12 cm2·V?1·s?1after 5% Cl doping along the‖Pdirection. Based on the single parabolic model,[42]experimental data locate under the simulated relationship curve ofμwith increasednobviously (Fig. 10(c)), which is attributed to the dominance of grain boundary scattering in polycrystalline SnSe2at low temperatures.[48]Based on the Pisarenko relationship,[38,44]it is found that the effective mass increases after Cl doping(Fig.10(d)),which implies a multiple band transport behavior in SnSe2as the carrier concentration rises.[35]

    Fig. 9. The temperature dependence of electrical transport properties along the ‖P and ⊥P directions for SnSe2-2% SnSe-y% Cl samples:(a)–(b)electrical conductivities;(c)–(d)Seebeck coefficients;(e)–(f)power factors.

    It is found that the wholeκtotafter Cl doping are slightly higher compared to those of the undoped 2% SnSe samples, which are in the range of~0.45 W·m?1·K?1to~1.35 W·m?1·K?1at 773 K (Figs. 11(a) and 11(b)). Besides, theκeleincreases rapidly with increasing the doping content owing to the contribution from the increased carrier concentration (Figs. 11(c)and 11(d)). In the end, theκlatincreases slightly after Cl doping along the two directions,which may come from the reduced energy barrier between SnSe2and SnSe phases weakening the inter-phase scattering after Cl doping(Figs.11(e)and 11(f)).

    Fig.10. (a)Carrier concentration;(b)carrier mobility;(c)carrier mobility,and(d)Seebeck coefficient as function of carrier concentration for SnSe2-2%SnSe-y%Cl.

    Fig. 11. The temperature dependence of thermal conductivities along the ‖P and ⊥P directions for SnSe2-2% SnSe-y% Cl: (a)–(b) total thermal conductivities;(c)–(d)electronic thermal conductivities;(e)–(f)lattice thermal conductivities.

    Fig.12. Temperature dependent ZT values along the(a)‖P and(b)⊥P directions for SnSe2-2%SnSe-y%Cl.

    Through the comprehensive evaluation on the anisotropic electrical properties and thermal conductivity of SnSe2-2%SnSe with Cl doping, the samples show higherZTvalues along the‖Pdirection than the⊥Pdirection(Figs.12(a)and 12(b)). Finally,a maximumZTof~0.6 at 773 K is achieved in SnSe2-2%SnSe-5%Cl along the‖Pdirection, which is a great improvement compared toZTof~0.13 for the SnSe2-2%SnSe sample without Cl doping.

    2.1. Conclusion

    In summary, the thermoelectric performance of SnSe2is improved successfully by a two-step optimization strategy,namely,reducing the thermal conductivity by introducing SnSe and then increasing the power factor through Cl doping.Specifically, introducing SnSe phase can significantly reduce the lattice thermal conductivity in SnSe2due to the inter-phase scattering and strong anharmonicity,then Cl doping optimizes the carrier concentration thus improving the electrical properties. Meanwhile,we also estimate that the anisotropic thermoelectric properties along the‖Pand⊥Pdirections in SnSe2-based samples, and find a more prominent contribution from the thermal conductivity to the finalZTs along the‖Pdirection. Ultimately,a highZTof~0.6 along the‖Pdirection is achieved for SnSe2-2% SnSe-5% Cl sample at 773 K, which makes it a promising candidate for thermoelectric application.

    猜你喜歡
    東洋彩云文科
    Majorana zero modes induced by skyrmion lattice
    小院的夜·東洋畫
    彩云之南
    一路彩云奔小康
    香格里拉(2021年2期)2021-07-28 06:50:48
    文科不懂理科的傷悲
    當(dāng)時(shí)明月在,曾照彩云歸
    海峽姐妹(2020年5期)2020-06-22 08:26:08
    鄭和下東洋
    彩云問
    民族音樂(2019年3期)2019-08-14 01:05:16
    求學(xué)·文科版2019年6、7期合刊
    豆文科作品
    藝術(shù)家(2018年7期)2018-09-22 02:09:20
    每晚都被弄得嗷嗷叫到高潮| 精品日产1卡2卡| 伊人久久大香线蕉亚洲五| 成人精品一区二区免费| 精品无人区乱码1区二区| 国产高清有码在线观看视频| 美女午夜性视频免费| 小说图片视频综合网站| 国产激情欧美一区二区| 国产日本99.免费观看| 国产精品av久久久久免费| 亚洲自拍偷在线| 婷婷亚洲欧美| 国产综合懂色| 老司机午夜十八禁免费视频| 一个人免费在线观看电影 | a在线观看视频网站| 国产精品爽爽va在线观看网站| 久久这里只有精品中国| 好男人电影高清在线观看| 特级一级黄色大片| 99精品在免费线老司机午夜| 97超级碰碰碰精品色视频在线观看| 国产黄色小视频在线观看| 欧美在线黄色| 国产真人三级小视频在线观看| 又粗又爽又猛毛片免费看| 亚洲中文字幕一区二区三区有码在线看 | АⅤ资源中文在线天堂| 亚洲国产精品sss在线观看| 一区二区三区激情视频| 老司机在亚洲福利影院| 岛国在线观看网站| 日韩免费av在线播放| 欧美午夜高清在线| 亚洲av电影在线进入| 日韩高清综合在线| 亚洲人成伊人成综合网2020| 久久草成人影院| 亚洲精品乱码久久久v下载方式 | 久久久国产成人精品二区| 欧美日韩亚洲国产一区二区在线观看| 91麻豆av在线| 日韩欧美国产在线观看| 99精品在免费线老司机午夜| 99热这里只有是精品50| 美女被艹到高潮喷水动态| 国产aⅴ精品一区二区三区波| 亚洲 欧美一区二区三区| 精品久久久久久久久久久久久| 天堂网av新在线| 最近最新中文字幕大全电影3| 一本精品99久久精品77| 久久热在线av| 久久午夜综合久久蜜桃| 欧美一级a爱片免费观看看| 久久人妻av系列| 日本在线视频免费播放| 九色国产91popny在线| 天堂影院成人在线观看| 色尼玛亚洲综合影院| 最新在线观看一区二区三区| 首页视频小说图片口味搜索| 欧美黄色淫秽网站| 三级毛片av免费| xxxwww97欧美| 亚洲精品456在线播放app | 免费看日本二区| 亚洲男人的天堂狠狠| 黄色丝袜av网址大全| 午夜久久久久精精品| 国产成人av激情在线播放| 丰满人妻熟妇乱又伦精品不卡| 老司机午夜十八禁免费视频| aaaaa片日本免费| 午夜精品久久久久久毛片777| 国产麻豆成人av免费视频| 日韩有码中文字幕| 国产69精品久久久久777片 | 日韩欧美 国产精品| 韩国av一区二区三区四区| www日本在线高清视频| 国产精品99久久久久久久久| www日本在线高清视频| 国产精品国产高清国产av| 日韩国内少妇激情av| 色老头精品视频在线观看| 老司机深夜福利视频在线观看| 成人精品一区二区免费| 在线国产一区二区在线| 亚洲午夜理论影院| 一级毛片精品| 天天一区二区日本电影三级| 两性午夜刺激爽爽歪歪视频在线观看| 欧美精品啪啪一区二区三区| 国产毛片a区久久久久| 欧美激情久久久久久爽电影| 欧美日韩瑟瑟在线播放| 日韩国内少妇激情av| 中文亚洲av片在线观看爽| 免费在线观看影片大全网站| 免费看a级黄色片| 国产一区在线观看成人免费| 一区福利在线观看| 1024香蕉在线观看| 深夜精品福利| 国产av不卡久久| 久久久久久久久久黄片| 精品久久久久久久毛片微露脸| 91在线精品国自产拍蜜月 | 99国产综合亚洲精品| 亚洲五月天丁香| 久久精品91无色码中文字幕| 香蕉av资源在线| 亚洲激情在线av| 亚洲av成人av| 波多野结衣高清无吗| 午夜福利在线在线| 曰老女人黄片| 成人av一区二区三区在线看| 久久久国产欧美日韩av| 丰满的人妻完整版| 色噜噜av男人的天堂激情| 国产主播在线观看一区二区| 草草在线视频免费看| 久久亚洲精品不卡| 国产精品免费一区二区三区在线| avwww免费| 91麻豆精品激情在线观看国产| 久久精品夜夜夜夜夜久久蜜豆| 欧美在线黄色| 一级a爱片免费观看的视频| 午夜福利欧美成人| 丰满的人妻完整版| 日韩欧美一区二区三区在线观看| 热99在线观看视频| 九色成人免费人妻av| 国产一区二区三区在线臀色熟女| 成人午夜高清在线视频| 国产精品久久视频播放| 国产淫片久久久久久久久 | 97超级碰碰碰精品色视频在线观看| 欧美3d第一页| 2021天堂中文幕一二区在线观| 日韩免费av在线播放| 无遮挡黄片免费观看| 国产精品香港三级国产av潘金莲| 国产精品一及| 麻豆国产97在线/欧美| 亚洲狠狠婷婷综合久久图片| 亚洲av第一区精品v没综合| 这个男人来自地球电影免费观看| 日本一二三区视频观看| 亚洲人成电影免费在线| www国产在线视频色| 精品日产1卡2卡| 观看免费一级毛片| 一级毛片高清免费大全| 亚洲专区字幕在线| 在线十欧美十亚洲十日本专区| 国产毛片a区久久久久| 国产一区二区三区视频了| 日韩人妻高清精品专区| 亚洲国产精品999在线| 国产精品一及| 亚洲av电影在线进入| 国产高清有码在线观看视频| 精品欧美国产一区二区三| 免费在线观看亚洲国产| 国产精品亚洲av一区麻豆| 欧美国产日韩亚洲一区| 欧美最黄视频在线播放免费| 精品国内亚洲2022精品成人| 老司机深夜福利视频在线观看| 在线观看免费视频日本深夜| 久久精品人妻少妇| 最新中文字幕久久久久 | 精品免费久久久久久久清纯| 给我免费播放毛片高清在线观看| 国产成人一区二区三区免费视频网站| av片东京热男人的天堂| 99久国产av精品| 天堂影院成人在线观看| 亚洲av成人一区二区三| 久久国产精品影院| 波多野结衣高清无吗| 国产伦精品一区二区三区视频9 | 亚洲欧美精品综合一区二区三区| 变态另类成人亚洲欧美熟女| 日韩欧美 国产精品| 巨乳人妻的诱惑在线观看| 国产主播在线观看一区二区| 九色成人免费人妻av| 国产成人精品久久二区二区91| 午夜免费激情av| 亚洲人成伊人成综合网2020| 亚洲精品乱码久久久v下载方式 | 久久草成人影院| 久久国产精品人妻蜜桃| 午夜日韩欧美国产| 亚洲一区二区三区色噜噜| 无遮挡黄片免费观看| 国产免费av片在线观看野外av| 欧美黄色片欧美黄色片| 天天添夜夜摸| 嫁个100分男人电影在线观看| 久久久久性生活片| 中文字幕最新亚洲高清| 免费在线观看视频国产中文字幕亚洲| ponron亚洲| 色噜噜av男人的天堂激情| 成在线人永久免费视频| 亚洲精华国产精华精| 成年女人毛片免费观看观看9| 国产在线精品亚洲第一网站| 特级一级黄色大片| 欧美日韩黄片免| 91av网一区二区| 亚洲熟妇熟女久久| 亚洲欧美一区二区三区黑人| 欧美成狂野欧美在线观看| 黄色丝袜av网址大全| 91麻豆av在线| 9191精品国产免费久久| 99视频精品全部免费 在线 | 欧美成人一区二区免费高清观看 | 亚洲成人久久性| 国产精品免费一区二区三区在线| 午夜福利免费观看在线| 黄片大片在线免费观看| 特大巨黑吊av在线直播| 午夜日韩欧美国产| 九九在线视频观看精品| 99久久精品热视频| 欧美激情在线99| 成年免费大片在线观看| 久久热在线av| 曰老女人黄片| 18禁观看日本| 久久精品aⅴ一区二区三区四区| 九九热线精品视视频播放| 日本 欧美在线| 久久草成人影院| 亚洲国产欧美网| 悠悠久久av| 国产精品免费一区二区三区在线| 国产高清有码在线观看视频| 国产成人av教育| 午夜成年电影在线免费观看| 亚洲中文日韩欧美视频| 久久久久国产一级毛片高清牌| 淫妇啪啪啪对白视频| 在线观看舔阴道视频| 国产一级毛片七仙女欲春2| 最新中文字幕久久久久 | 久久久色成人| 国产激情久久老熟女| 人人妻人人看人人澡| 身体一侧抽搐| 欧美午夜高清在线| 黄频高清免费视频| bbb黄色大片| av黄色大香蕉| 特级一级黄色大片| ponron亚洲| 久久久久久久久久黄片| 久久久久久久精品吃奶| 亚洲成a人片在线一区二区| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 亚洲国产精品999在线| 欧美xxxx黑人xx丫x性爽| 亚洲在线自拍视频| 此物有八面人人有两片| 欧美成人性av电影在线观看| 国产高清videossex| 亚洲成人久久性| 18禁美女被吸乳视频| 欧美国产日韩亚洲一区| 精品一区二区三区视频在线观看免费| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美在线一区二区| 两人在一起打扑克的视频| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 午夜免费激情av| 99久久99久久久精品蜜桃| 九九久久精品国产亚洲av麻豆 | 久久精品国产99精品国产亚洲性色| 看免费av毛片| 伊人久久大香线蕉亚洲五| 亚洲国产看品久久| 两个人视频免费观看高清| 欧美3d第一页| 国产亚洲精品av在线| 香蕉av资源在线| 久久精品综合一区二区三区| 黄片大片在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美在线一区二区| 亚洲第一欧美日韩一区二区三区| 国产乱人伦免费视频| 男女床上黄色一级片免费看| 午夜亚洲福利在线播放| 99久久成人亚洲精品观看| 亚洲中文日韩欧美视频| 激情在线观看视频在线高清| 美女午夜性视频免费| 91av网站免费观看| 性欧美人与动物交配| 亚洲午夜理论影院| av欧美777| 欧美成狂野欧美在线观看| 国产亚洲精品综合一区在线观看| 国产三级在线视频| 麻豆av在线久日| 久久人妻av系列| 亚洲 国产 在线| 亚洲欧美一区二区三区黑人| 色av中文字幕| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 午夜视频精品福利| 亚洲狠狠婷婷综合久久图片| 国产69精品久久久久777片 | 免费看美女性在线毛片视频| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产私拍福利视频在线观看| 国产淫片久久久久久久久 | 男人舔女人下体高潮全视频| 极品教师在线免费播放| 成人三级做爰电影| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人欧美精品刺激| 99热6这里只有精品| 成人精品一区二区免费| 久久人人精品亚洲av| 欧美黑人欧美精品刺激| 一夜夜www| 女警被强在线播放| 夜夜夜夜夜久久久久| 欧美最黄视频在线播放免费| 香蕉久久夜色| 中文亚洲av片在线观看爽| 91av网一区二区| 国产成人福利小说| 99riav亚洲国产免费| 老汉色∧v一级毛片| 成年女人永久免费观看视频| 91av网站免费观看| 女警被强在线播放| 欧美精品啪啪一区二区三区| 丰满的人妻完整版| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 婷婷亚洲欧美| 一级a爱片免费观看的视频| 欧美xxxx黑人xx丫x性爽| 欧美一级a爱片免费观看看| 91字幕亚洲| 日本a在线网址| 午夜久久久久精精品| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 中文字幕最新亚洲高清| 国产高清视频在线播放一区| 中文字幕熟女人妻在线| 亚洲avbb在线观看| 999久久久精品免费观看国产| 噜噜噜噜噜久久久久久91| 18禁观看日本| 丰满的人妻完整版| 99久久国产精品久久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产真人三级小视频在线观看| 极品教师在线免费播放| 国产亚洲精品久久久com| 国产高清三级在线| 亚洲一区二区三区色噜噜| 国产午夜精品久久久久久| 非洲黑人性xxxx精品又粗又长| 好看av亚洲va欧美ⅴa在| 美女免费视频网站| 两性夫妻黄色片| 中文字幕av在线有码专区| 九九久久精品国产亚洲av麻豆 | 一本精品99久久精品77| 欧美日本亚洲视频在线播放| 男人的好看免费观看在线视频| 国产精品乱码一区二三区的特点| 国产欧美日韩精品亚洲av| 国产激情久久老熟女| 午夜影院日韩av| 成人av在线播放网站| 一区二区三区国产精品乱码| 亚洲片人在线观看| bbb黄色大片| 在线观看66精品国产| 九九热线精品视视频播放| 精品久久久久久成人av| 国产高清视频在线播放一区| 成人午夜高清在线视频| 欧美最黄视频在线播放免费| 99re在线观看精品视频| 久久九九热精品免费| 欧美日本视频| 亚洲国产看品久久| 在线观看午夜福利视频| 亚洲欧美日韩高清在线视频| 午夜福利高清视频| 亚洲中文av在线| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| 男人舔女人下体高潮全视频| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 一进一出抽搐gif免费好疼| 久久久国产精品麻豆| 欧美黄色淫秽网站| 亚洲 欧美 日韩 在线 免费| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 久久国产乱子伦精品免费另类| 青草久久国产| 又黄又粗又硬又大视频| 欧美一区二区国产精品久久精品| 国产成人啪精品午夜网站| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影 | 五月伊人婷婷丁香| 国产亚洲精品久久久com| 国产成+人综合+亚洲专区| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| xxx96com| 1024手机看黄色片| 真人做人爱边吃奶动态| 国产一区二区在线观看日韩 | av中文乱码字幕在线| 搡老妇女老女人老熟妇| 国产又黄又爽又无遮挡在线| 欧美三级亚洲精品| 精品久久久久久久毛片微露脸| 成人亚洲精品av一区二区| 国产99白浆流出| 亚洲精品中文字幕一二三四区| 日日夜夜操网爽| 午夜福利欧美成人| 无人区码免费观看不卡| 又紧又爽又黄一区二区| 极品教师在线免费播放| 色综合婷婷激情| 91麻豆精品激情在线观看国产| 久久久久性生活片| 在线a可以看的网站| 久久久精品欧美日韩精品| xxx96com| 日本 av在线| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 叶爱在线成人免费视频播放| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 国产视频内射| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 国产综合懂色| 一a级毛片在线观看| 在线观看日韩欧美| 国产乱人伦免费视频| 午夜福利免费观看在线| 久久午夜综合久久蜜桃| 国产精品99久久99久久久不卡| 精品乱码久久久久久99久播| 国产精品永久免费网站| 精品国产美女av久久久久小说| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 日本 欧美在线| 久久久久免费精品人妻一区二区| 精品乱码久久久久久99久播| 99久久综合精品五月天人人| 成人国产一区最新在线观看| 午夜免费激情av| 成人国产综合亚洲| or卡值多少钱| 久久久久久久久免费视频了| 精华霜和精华液先用哪个| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 18禁美女被吸乳视频| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 国产 一区 欧美 日韩| 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 国产三级中文精品| 国产欧美日韩一区二区精品| 在线a可以看的网站| 少妇裸体淫交视频免费看高清| 亚洲在线观看片| 97超视频在线观看视频| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 久久这里只有精品19| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 曰老女人黄片| 一个人免费在线观看电影 | 最新中文字幕久久久久 | 怎么达到女性高潮| 国产蜜桃级精品一区二区三区| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 在线观看午夜福利视频| 欧美日韩国产亚洲二区| 观看美女的网站| 婷婷亚洲欧美| 国产成人影院久久av| 一区二区三区激情视频| 男插女下体视频免费在线播放| 久久精品国产综合久久久| 九九热线精品视视频播放| 免费观看精品视频网站| 精品乱码久久久久久99久播| 99久久综合精品五月天人人| 此物有八面人人有两片| 香蕉国产在线看| 精品国产亚洲在线| 老鸭窝网址在线观看| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| 天堂影院成人在线观看| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 亚洲色图 男人天堂 中文字幕| 精品不卡国产一区二区三区| 久久精品91无色码中文字幕| 一二三四在线观看免费中文在| 午夜福利在线观看吧| 亚洲av五月六月丁香网| 制服丝袜大香蕉在线| 亚洲中文日韩欧美视频| 久久久精品欧美日韩精品| 99国产精品99久久久久| 琪琪午夜伦伦电影理论片6080| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 中文字幕av在线有码专区| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区av网在线观看| 丰满的人妻完整版| 精品久久久久久久久久久久久| 久久婷婷人人爽人人干人人爱| 国产成人啪精品午夜网站| 美女午夜性视频免费| 人妻久久中文字幕网| 午夜福利18| 国内精品久久久久久久电影| 男人舔女人的私密视频| 国产真实乱freesex| 全区人妻精品视频| 91久久精品国产一区二区成人 | 欧美日韩一级在线毛片| 国产一级毛片七仙女欲春2| 亚洲五月婷婷丁香| 亚洲熟女毛片儿| 在线观看午夜福利视频| 亚洲欧美精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 老司机深夜福利视频在线观看| 最近视频中文字幕2019在线8| 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 国产激情欧美一区二区| 久久久水蜜桃国产精品网| 淫妇啪啪啪对白视频| 欧美黄色片欧美黄色片| 日本一本二区三区精品| 久久精品国产清高在天天线| 淫妇啪啪啪对白视频| 久久久久久国产a免费观看| 看免费av毛片| 久久中文字幕人妻熟女| 国产黄片美女视频| 国产精品 国内视频| 亚洲午夜精品一区,二区,三区| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看 | 久久中文字幕一级| 中文资源天堂在线| 欧美日韩中文字幕国产精品一区二区三区| 午夜日韩欧美国产| 久久久久久大精品| 看黄色毛片网站| 国产精品自产拍在线观看55亚洲| 99久久99久久久精品蜜桃| 久久中文字幕一级| 老司机深夜福利视频在线观看| 99久久无色码亚洲精品果冻| 国产精品99久久99久久久不卡| 国产精品久久视频播放| 精品国产亚洲在线| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 国产v大片淫在线免费观看|