• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen-induced dynamic slowdown of metallic glass-forming liquids?

    2021-06-26 03:05:00JinAiGao高津愛HaiShenHuang黃海深andYongJun呂勇軍
    Chinese Physics B 2021年6期
    關(guān)鍵詞:黃海

    Jin-Ai Gao(高津愛), Hai-Shen Huang(黃海深), and Yong-Jun L¨u(呂勇軍)

    School of Physics,Beijing Institute of Technology,Beijing 100081,China

    Keywords: metallic glasses,hydrogen,dynamics

    1. Introduction

    Metallic glasses have potential application in the fields of hydrogen storage and biomaterials.[1,2]Understanding the influence of hydrogen on the properties of metallic glasses is of importance for optimizing the performance of the materials. Experimental and simulation studies have shown that the hydrogen microalloying has beneficial effect on glassforming ability (GFA) and mechanical properties of bulk metallic glasses (BMG). For example, both GFA and malleability of Zr-based BMG are improved by doping hydrogen due to strong binding to Zr.[3,4]In contrast, Pd-based BMG shows low hydrogen affinity and thus the effect of hydrogen doping is less significant.[5]Ab initiomolecular dynamics (MD) simulations have revealed that a small addition of H atoms can decrease the icosahedral order and slow down the atomic mobility in CuZrAl glass.[6]Experimental results argued that more large free volume regions collapse by the addition of hydrogen and the denser random packed structure is formed,thus enhancing GFA.[7]In addition,the doping of hydrogen was found to enhance the diversity of locally ordered structures, which was believed to be responsible for the improved ductility.[8]In fact, the performance modification of metallic glasses via hydrogen doping largely depends on the concentration of hydrogen. With increasing addition of hydrogen,the thermal stability of metallic glasses inevitably becomes poor, ultimately leading to crystallization. The amorphous Cu–Zr alloy has been proved to be decomposed into a mixture of crystalline phase Cu, CuxZrycompound and ZrH2at high temperature and high hydrogen pressure.[9]In most cases, the effect of hydrogen has been involved in the preparation stage of metals, where the melts are quenched in the protective atmosphere composed of a small amount of hydrogen as reductant.[10,11]The effect of hydrogen doping on properties of supercooled glass-forming liquids therefore should be clarified first. In this work, we optimize the potential parameters of Cu/Zr/H system within the framework of modified embedded atomic method(MEAM).Based on the interatomic potential,we study the dynamic properties of hydrogen doped Cu50Zr50glass-forming liquids using MD simulations,and reveal the structural origin of hydrogen-induced dynamic slowdown.

    2. Computational methods

    2.1. MEAM potential for Cu/Zr/H system

    We use the MEAM potential to describe the interactions between hydrogen and metallic base in MD simulaitons. This model was first proposed by Baskeset al. In the MEAM,the total energy of a system is approximated as a sum of the pairwise interaction and the embedding energy as a function of background electron density by taking the bonding directionality into consideration.[12,13]For liquid systems, the MEAM potential shows a good application provided appropriate parameters or functional forms. Also, the MEAM potential is capable of describing the bonding characteristic of hydrogen and metallic elements,thus it is preferred in this work. Leeet al.developed an original version of the MEAM potential for Cu/Zr/H system.[14,15]The calculations based on their parameters show that the energies of Cu–Zr as well as the diffusion of hydrogen are not sufficiently accurate. Therefore, at first, we optimized the MEAM parameters based on Lee’s work. The present training set is composed of several Cu–Zr compounds and Cu and Zr hydrides. We used the single parameter optimizer in training. Tables 1–3 provide the MEAM parameters for Cu/Zr/H developed in this work.

    Table 1. 2NN MEAM potential parameters sets for pure Cu,Zr,and H.

    Table 2. 2NN MEAM potential parameters for the binary M–M and M–H(M=Cu,Zr)systems.

    Table 3. Parameter sets of Cmin and Cmax for Cu–Zr–H system.

    We first check the application of the present MEAM potential in describing the energy and structure of Cu–Zr systems. Here,the embedded atomic method(EAM)potential[16]for Cu–Zr alloys developed by Mendelevet al.is used as a reference, which has been proved to have high accuracy in reproducing various properties of Cu–Zr liquids and glasses.Figure 1 shows that the present MEAM potential well predicts the potential energies of Cu50Zr50over the range from hightemperature liquid state to glass state compared to the results from reported MEAM potentials. Based on the temperature dependence of the potential energies, our model predicts that the glass transition occurs atT=733 K,which is much close to the value ofT=736 K by the EAM potential and better than the result ofT=768 K predicted by Lee’s potential. Table 4 provides the comparison of the nearest neighboring distance in Cu50Zr50glass. The value for Cu–Zr pair predicted by our model potential is more consistent with the experimental and EAM results. We further check the diffusion coefficients of hydrogen in face-centered cubic (fcc) Cu and body-centered cubic/hexagonal close-packed(bcc/hcp)Zr by referring to experimental data. The results shown in Fig.2 indicate that the present MEAM parameters have a better application of predicting hydrogen dynamics. The above comparisons confirm that the MEAM potential developed in this work can more reasonably describe the interactions among Cu,Zr,and H,especially in liquid and glassy states.

    Fig.1. Comparisons of potential energies of Cu50Zr50 between MEAM and EAM potentials.

    Table 4. Nearest neighboring distances of Cu–Cu, Zr–Zr, and Cu–Zr pairs in Cu50Zr50 glass at T =300 K.

    Fig. 2. Self-diffusion coefficients of hydrogen atom in (a) fcc Cu and(b) bcc/hcp Zr predicted by MEAM potentials in comparison with experimental data.

    2.2. MD simulations

    The quenching processes of (Cu50Zr50)100?xHx(x=0–10) were simulated by using MD simulations based on the newly developed MEAM potential. The systems consisting of 10976 atoms were equilibrated at 1800 K and then quenched to 500 K at zero pressure with a cooling rate of 0.1 K/ps,i.e.,a relaxation of 1 ns every 100 K.The MD simulations were performed in the isothermal and isobaric ensemble (NPT) with the periodic boundary condition along the three dimensions and a time step of 0.25 fs was used.

    3. Results and discussion

    3.1. Dynamic properties of(Cu50Zr50)100?xHx system

    For the H-free Cu50Zr50melt,the calorimetric glass transition temperatureTgis 733 K under the present simulation conditions. The addition of H is found to universally increaseTgto 800±10 K. Clearly, the melt is more easily quenched into glassy state with hydrogen, which is consistent with the experimental results of CuZrNiAl alloy.[7]We analyze the relaxation dynamics of supercooled melts by calculating the intermediate self-scattering function(ISF)

    whereqis the wave vector,and|q|=2.688 ?A?1corresponding to the first peak of the static structure factor. The structural relaxation timeταis estimated by the time decaying to 1/e.[25]Figure 3 shows the logarithm plot of the relaxation time as a function of the inverse of temperature upon approaching glass transition. The relaxation is shown to be slowed down by doping H atoms, and moreover, it is more pronounced with increasing concentration of H.All the temperature dependences of relaxation time obey the Vogel–Fulcher–Tamman law(VFT)[26]τα=τ0exp[DTT0/(T ?T0)].However,the fitted values of the parameterDTincrease from 0.877 for the H-free,1.028 for 2 at.% H to 1.211 for 8 at.% H. It means that the supercooled liquid becomes stronger with more H atoms.

    Fig. 3. Logarithm relaxation time as a function of the inverse of temperature,and the solid lines are fits to VFT law.

    The fragility of supercooled liquids can also be measured from a thermodynamic point of view. We calculate the specific heatCpin the NPT ensemble through glass transition. In general,the abrupt decrease of specific heat across glass transition varies with the fragility of supercooled glass-forming liquids: considerable changes in stronger glass formers but small ones in fragile formers like GeO2.[27,28]Figure 4 shows that ?Cprises significantly with increasing content of H,from 9.170 J·mol?1·K?1to 10.629 J·mol?1·K?1for 2 at.% and 14.128 J·mol?1·K?1for 8 at.%. It indicates that the liquid becomes stronger as more H atoms are added, which is consistent with the results from the dynamic fragility in Fig. 3.On the other hand, the contribution of the thermal motion of H atoms is ignorable considering its very small amount,thus,the rise of ?Cpactually implies that the addition of H atoms induces more complex atomic motions of base elements.

    Fig.4. Specific heat as a function of temperature at different concentrations of hydrogen across glass transitions.

    Fig. 5. Logarithm plots of diffusion coefficients of (Cu50Zr50)1?xHx(x=0,2,8)as a function of the inverse of temperature. (a)Cu and(b)Zr. The dashed lines are fits to the Arrhenius relation.

    Figure 3 reflects the slowdown of the overall structural relaxation. To clarify the chemical dependence of the dynamic slowdown, we calculate the self-diffusion coefficients of Cu and Zr during quenching, respectively, which is given by the long-time limit of the mean squared displacements[29]

    Figure 5(a) shows that the diffusion of Cu atoms is not markedly influenced by the addition of H atoms.The Cu diffusion coefficients in both H-free and H-doped systems display approximately the same super-Arrhenius temperature dependence. In contrast,the diffusion coefficients of Zr atoms have a distinct decrease with increasing content of H,displaying a growing deviation from the Arrhenius relation, as shown in Fig. 5(b). It is clear that the dynamic slowdown of Cu50Zr50melts is mainly contributed by more sluggish Zr atoms due to the doping of H. In short, the addition of H atoms is able to slow down the diffusion,relaxation process of base melts and make the system stronger.

    3.2. Structural characteristics of(Cu50Zr50)100?xHx melts

    We aim to reveal the structural origin of the slowdown dynamics. We analyze the local structure of supercooled liquids using the Voronoi polyhedron method. For glassy systems,icosahedrons were believed to be of importance in featuring local structure, and therefore were often taken as the characteristic quantity to understand the relation between structure and dynamic properties.[30]More general, the dynamic properties were found to be closely related to the local five-fold symmetry associated with Voronoi polyhedron,[31]which is defined asW=∑i(f5i×Pi),wheref5irepresents the proportion of pentagons,f5i=n5i/∑inki,nki(k= 3, 4, 5, 6) is the number ofk-side polygons in Voronoi polyhedroni,andPiis the fraction of Voronoi polyhedroni. We count the number of various polyhedrons in supercooled liquids, and find that the polyhedrons with high five-fold symmetry rank in the top ones regardless of the addition of H atoms. It is consistent with the locally structural characteristics of metallic glasses,whereas the fractions of these polyhedrons have a overall decrease with increasing content of H.Figure 6 presents the average five-fold symmetry in the melts as a function of temperature. It shows a distinct decrease as more H atoms are doped. These results indicate that H atoms tend to decompose the local five-fold symmetry structure,which agrees with the reportedab initiosimulations.[7]The five-fold symmetry structure was argued to facilitate the glass transition due to the frustration of crystallization.[32]Obviously,its reduction is contradictory to the fact that the glass transition is enhanced in the present simulations. In addition,we find that the high fivefold symmetry polyhedrons are not decomposed into denser packing structure. Figure 7(a) shows that the average atomic volumeVactually is increased by doping H atoms. It suggests that H atoms segregate in interstices of polyhedrons and result in the expansion of atomic volumes for both Cu and Zr,forming more large-volume polyhedrons. Such volume expansion is relatively weak and does not significantly change the global structure of the base alloys, as evidenced by the radial distribution functions (RDFs) for Cu–Zr, Cu–Cu, and Zr–Zr pairs shown in Fig. 7(b). Although that, Fig. 4 clearly shows that the atomic mobility is slowed down. Therefore,more intrinsic structural cause is needed to resolve these contradictions.

    Fig.6. Average five-fold local symmetry of(Cu50Zr50)1?xHx (x=0,2,8)versus temperature.

    Fig.7. (a)Average atomic volume as a function of temperature for Hfree,2 at.%and 8 at.%H systems. (b)Partial RDFs of Cu–Zr,Cu–Cu,and Zr–Zr pairs at T =500 K.

    Fig.8. Partial radial distribution functions of(Cu50Zr50)1?xHx (x=2,8)at 500 K.(a)Cu–H pair and(b)Zr–H pair.

    Experimental and numerical studies have found that the relative peak positions in RDFs of metallic glasses are identical with the values of their crystalline counterparts,which suggests that disordered systems may hide the translational order inherited from crystal phases.[31,32]It is possible that there is a competition between the five-fold symmetry and the crystalline ordering in metallic glasses. To some extent H atoms tend to bond to base elements,forming metal hydrides,in particular with Zr atoms. We explore this possibility by means of RDFs. Figure 8 shows the partial RDFs of Cu–H and Zr–H pairs. We calculate the peak positions relative to the nearest neighboring distance,and compare them with several typical hydride compounds.[33,34]We find that the second, third,and forth relative peak positions of Zr–H pairs have a good match with those of ZrH3;[35]comparatively,for Cu–H pairs,the second and third relative peaks match with those of CuH compound but a bit large deviation is found in the forth peak position, as listed in Table 5. The translational order associated with crystal phases indeed exists between H and metallic components, especially between Zr and H. To further reveal the hidden ordering, the bond angle distributions around Zr atoms are provided in Fig.9.[36]

    Table 5. Ratios of the second,third,and fourth peak positions in RDF to the nearest neighboring distance for Cu–H and Zr–H pairs.

    Fig. 9. Distributions of bond angle centering Zr atoms in supercooled CuZrH liquids at T =700 K.The inset schematically illustrates the structure of ZrH3 compound. The cyan and blue balls denote Zr and H atoms.

    The bond angle at the first peak well corresponds to the value of ∠HZrH (~54?) in the nearest neighboring distance of ZrH3, and the one at the second peak corresponds to the∠HZrH in the second nearest neighboring distance of ZrH3(~106?). Therefore, the orientational order also exists between H and Zr. In fact, ZrH3has stronger cohesive energy among Zr hydrides, and it is more stable at high Hconcentration. The tendency of forming ordered bonds between Zr and H induces the slowdown of Zr mobility,despite that the atomic volume is expanded. Meanwhile, we analyze the spatial distribution of H atoms and find that more H atoms segregate around Zr atoms with decreasing temperature, for example, exceeding 60% in 2 at.% system at 800 K. Therefore,the interactions between Zr and H play a primary role in H-induced dynamics. The addition of H atoms destroys the high five-fold symmetry polyhedron, and on the other hand,the bonding between Zr and H slows down the dynamics. The tradeoff between them determines the dynamic behavior and thermal stability. In the case of small addition of H atoms,the latter is dominant and the dynamics of the melts becomes slow.Furthermore, due to the ordered bonding, more thermal motion modes are expected in the base metals,which provides an explanation for the increasing ?Cpacross glass transition with increasing H content. In simulations,we increase the concentration of H up to 10 at.%and find that more H atoms tend to segregate, which will inevitably influence the phase stability.If the H concentration is further increased, the crystallization of metallic hydrides is expected to occur.

    4. Conclusion

    In summary, we optimize the MEAM potential parameters of Cu/Zr/H system. The newly developed parameters show a better application of describing the structure and dynamic properties of Cu/Zr/H system. Based on the potential,we use MD simulations to study the dynamics of H doped Cu50Zr50liquid. The results reveal that the doping of H atoms in the supercooled glass-forming liquid induces the slowdown of structural relaxation and stronger liquid state. The dynamic changes are closely related to the interplay between H and Zr atoms. Structural analyses indicate that the local five-fold symmetry is reduced by adding H and ordered bonding between Zr and H is enhanced. The latter is the dominant cause for the slow dynamics and the enhanced glass transition. This work is helpful to comprehensively understand the dynamics of H-metallic glass systems as well as its structural origin.

    猜你喜歡
    黃海
    你不會(huì)是……強(qiáng)迫癥吧
    大眾健康(2022年4期)2022-04-27 21:48:15
    刻舟求劍
    幼兒畫刊(2022年4期)2022-04-21 02:50:54
    東方濕地 黃海明珠
    黃海綠洲的燈
    黃海簡(jiǎn)介
    黃海 用海報(bào)為電影打開一扇窗
    海峽姐妹(2019年8期)2019-09-03 01:00:54
    黃海生教授
    First-principles investigations on the mechanical,thermal, electronic,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)?
    三角恒等變換去哪兒了
    Solurion ro Beacon Conflicr Based on IEEE 802.15.4
    久久久欧美国产精品| www.熟女人妻精品国产| www日本在线高清视频| 韩国精品一区二区三区| 欧美日本中文国产一区发布| 日本av免费视频播放| 国产亚洲午夜精品一区二区久久| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 成人毛片60女人毛片免费| 极品人妻少妇av视频| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 久久久精品免费免费高清| 免费观看在线日韩| 精品久久蜜臀av无| 国产片特级美女逼逼视频| 国产乱人偷精品视频| 美女高潮到喷水免费观看| 91国产中文字幕| www.熟女人妻精品国产| 丰满饥渴人妻一区二区三| 少妇的逼水好多| 国产女主播在线喷水免费视频网站| 国产成人免费观看mmmm| 国语对白做爰xxxⅹ性视频网站| 伊人久久大香线蕉亚洲五| 日韩,欧美,国产一区二区三区| 久久精品亚洲av国产电影网| 午夜免费鲁丝| 999精品在线视频| 久久av网站| freevideosex欧美| 久久热在线av| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 视频区图区小说| 啦啦啦中文免费视频观看日本| 久久久精品区二区三区| 欧美日本中文国产一区发布| 精品一区二区免费观看| 不卡av一区二区三区| 老女人水多毛片| 精品国产露脸久久av麻豆| 美女国产视频在线观看| 国产精品熟女久久久久浪| 日本91视频免费播放| 久久久久久久久久人人人人人人| 久久久久久伊人网av| 亚洲国产欧美网| 黄色 视频免费看| 高清视频免费观看一区二区| 成人黄色视频免费在线看| 国产综合精华液| 韩国高清视频一区二区三区| 五月开心婷婷网| 欧美日韩一级在线毛片| 亚洲婷婷狠狠爱综合网| 日本欧美视频一区| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 99精国产麻豆久久婷婷| 高清av免费在线| 亚洲欧美中文字幕日韩二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄色毛片三级朝国网站| 精品亚洲乱码少妇综合久久| 亚洲av电影在线进入| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| 成年美女黄网站色视频大全免费| www.精华液| 一区二区三区乱码不卡18| 亚洲五月色婷婷综合| 熟妇人妻不卡中文字幕| 亚洲国产毛片av蜜桃av| 深夜精品福利| 欧美老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 亚洲成人手机| 男女午夜视频在线观看| 精品福利永久在线观看| 国产人伦9x9x在线观看 | 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 久久久久久久大尺度免费视频| 国产欧美亚洲国产| 日韩三级伦理在线观看| 国产日韩欧美视频二区| 九草在线视频观看| 人人妻人人澡人人看| 精品少妇内射三级| 久久精品熟女亚洲av麻豆精品| 美女大奶头黄色视频| 国产视频首页在线观看| 国产欧美日韩一区二区三区在线| 欧美日韩综合久久久久久| 色吧在线观看| 少妇人妻精品综合一区二区| 看免费成人av毛片| 中文字幕色久视频| 亚洲五月色婷婷综合| 深夜精品福利| 又大又黄又爽视频免费| 国产免费一区二区三区四区乱码| 国产在线视频一区二区| 人人妻人人澡人人看| av电影中文网址| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av高清一级| 国产亚洲欧美精品永久| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 国产精品免费视频内射| 亚洲国产精品999| av免费观看日本| 亚洲国产欧美网| 日本欧美视频一区| 大香蕉久久成人网| 国产精品久久久久久av不卡| 成年动漫av网址| 最新的欧美精品一区二区| 青青草视频在线视频观看| 在线亚洲精品国产二区图片欧美| 亚洲精品aⅴ在线观看| av一本久久久久| 亚洲av综合色区一区| av有码第一页| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| 久久久久精品人妻al黑| 国产成人精品婷婷| 黄色 视频免费看| 国产av精品麻豆| 欧美精品国产亚洲| 欧美成人精品欧美一级黄| 亚洲经典国产精华液单| 久久久精品94久久精品| 自线自在国产av| 久久精品国产亚洲av高清一级| 成人影院久久| 亚洲国产欧美日韩在线播放| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆 | 久久婷婷青草| 国产欧美日韩综合在线一区二区| 欧美日韩av久久| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 久久精品aⅴ一区二区三区四区 | 亚洲精品在线美女| 国产精品av久久久久免费| 国产激情久久老熟女| 在线观看www视频免费| 性高湖久久久久久久久免费观看| 一级毛片电影观看| 久久精品国产鲁丝片午夜精品| 永久免费av网站大全| 亚洲av电影在线观看一区二区三区| 午夜精品国产一区二区电影| 老鸭窝网址在线观看| 色视频在线一区二区三区| 韩国精品一区二区三区| 2022亚洲国产成人精品| 9191精品国产免费久久| 亚洲精华国产精华液的使用体验| 一级毛片 在线播放| 97人妻天天添夜夜摸| 国产精品二区激情视频| 大码成人一级视频| 晚上一个人看的免费电影| 色网站视频免费| www.精华液| 亚洲国产成人一精品久久久| a级毛片在线看网站| 亚洲 欧美一区二区三区| 一个人免费看片子| 一区在线观看完整版| 美国免费a级毛片| 亚洲人成网站在线观看播放| 国产97色在线日韩免费| 婷婷色av中文字幕| 人体艺术视频欧美日本| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 午夜日本视频在线| 日韩免费高清中文字幕av| 宅男免费午夜| 精品久久蜜臀av无| www.自偷自拍.com| 精品福利永久在线观看| 一级毛片我不卡| 午夜福利一区二区在线看| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 亚洲久久久国产精品| 中国三级夫妇交换| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 久久97久久精品| 久久狼人影院| 菩萨蛮人人尽说江南好唐韦庄| 最近2019中文字幕mv第一页| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 亚洲第一av免费看| 精品久久久久久电影网| 成人二区视频| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久| 少妇的逼水好多| 极品人妻少妇av视频| 秋霞在线观看毛片| 满18在线观看网站| 精品卡一卡二卡四卡免费| 成年女人在线观看亚洲视频| 午夜日本视频在线| 成人影院久久| 一本大道久久a久久精品| 高清在线视频一区二区三区| 午夜福利在线免费观看网站| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美网| 男人舔女人的私密视频| 精品一区二区三卡| 叶爱在线成人免费视频播放| 精品国产一区二区久久| 国产1区2区3区精品| 18禁观看日本| 亚洲中文av在线| 久久这里只有精品19| 亚洲综合精品二区| 午夜福利视频在线观看免费| 精品国产一区二区三区久久久樱花| 久久久久久伊人网av| 97人妻天天添夜夜摸| 成年人免费黄色播放视频| 国产麻豆69| 亚洲国产最新在线播放| 亚洲精华国产精华液的使用体验| 一区二区三区精品91| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 香蕉丝袜av| 熟女少妇亚洲综合色aaa.| 国产无遮挡羞羞视频在线观看| 精品酒店卫生间| 国产一区亚洲一区在线观看| 99热全是精品| 国产一区二区激情短视频 | 一级毛片我不卡| 宅男免费午夜| 99热网站在线观看| 久久人人爽人人片av| 尾随美女入室| 制服诱惑二区| 最近中文字幕高清免费大全6| 三上悠亚av全集在线观看| 在线天堂中文资源库| 最黄视频免费看| 亚洲,一卡二卡三卡| 飞空精品影院首页| 90打野战视频偷拍视频| 午夜激情久久久久久久| 国产精品一二三区在线看| 大陆偷拍与自拍| 久久久精品94久久精品| 亚洲国产欧美日韩在线播放| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 国产av国产精品国产| 晚上一个人看的免费电影| 亚洲国产精品999| 视频在线观看一区二区三区| 国产精品三级大全| 欧美精品亚洲一区二区| 日韩在线高清观看一区二区三区| 国产精品无大码| 高清欧美精品videossex| 国产一区二区三区综合在线观看| 欧美日韩视频高清一区二区三区二| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲图色成人| 国产精品无大码| 狂野欧美激情性bbbbbb| 纵有疾风起免费观看全集完整版| 色婷婷久久久亚洲欧美| 天堂中文最新版在线下载| 美女福利国产在线| 大香蕉久久网| 一区二区三区四区激情视频| 91精品三级在线观看| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av | 亚洲 欧美一区二区三区| 久久毛片免费看一区二区三区| 少妇的丰满在线观看| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 亚洲成人一二三区av| a级毛片在线看网站| 亚洲四区av| 欧美最新免费一区二区三区| 亚洲国产欧美网| www.av在线官网国产| 成人漫画全彩无遮挡| 午夜免费观看性视频| 日韩大片免费观看网站| 丝袜喷水一区| 亚洲成国产人片在线观看| 99久久人妻综合| 欧美日韩一级在线毛片| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 午夜日本视频在线| 欧美成人午夜精品| 大香蕉久久成人网| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品| 一二三四在线观看免费中文在| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 肉色欧美久久久久久久蜜桃| 高清欧美精品videossex| 色网站视频免费| 热re99久久国产66热| 国产一区二区三区综合在线观看| 黑人欧美特级aaaaaa片| 亚洲,欧美,日韩| 精品一区在线观看国产| kizo精华| 黄片播放在线免费| 不卡视频在线观看欧美| 久久精品久久精品一区二区三区| 久久久久精品人妻al黑| 啦啦啦视频在线资源免费观看| 十八禁网站网址无遮挡| 国精品久久久久久国模美| 伦精品一区二区三区| 中国国产av一级| 国产午夜精品一二区理论片| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 又粗又硬又长又爽又黄的视频| 波多野结衣av一区二区av| 国产97色在线日韩免费| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品麻豆人妻色哟哟久久| 亚洲av.av天堂| 精品亚洲乱码少妇综合久久| 一本—道久久a久久精品蜜桃钙片| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情久久久久久久| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 亚洲视频免费观看视频| 青青草视频在线视频观看| 国产毛片在线视频| 啦啦啦中文免费视频观看日本| 不卡视频在线观看欧美| 少妇猛男粗大的猛烈进出视频| 黄色配什么色好看| 王馨瑶露胸无遮挡在线观看| 欧美激情高清一区二区三区 | 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 亚洲国产看品久久| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 两个人看的免费小视频| 久久鲁丝午夜福利片| 亚洲色图综合在线观看| 成人免费观看视频高清| 午夜老司机福利剧场| 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看| 国产成人精品久久二区二区91 | 美女视频免费永久观看网站| 又大又黄又爽视频免费| 丁香六月天网| 国产男女内射视频| 国产不卡av网站在线观看| 久久影院123| 尾随美女入室| 国产有黄有色有爽视频| 精品国产国语对白av| 免费高清在线观看日韩| 亚洲av免费高清在线观看| 在线看a的网站| 丝袜脚勾引网站| 亚洲精品自拍成人| 一区二区三区激情视频| 美女主播在线视频| 亚洲少妇的诱惑av| av网站在线播放免费| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 久久毛片免费看一区二区三区| 搡老乐熟女国产| 亚洲国产精品999| xxxhd国产人妻xxx| 国产高清不卡午夜福利| 女性被躁到高潮视频| 国产精品 国内视频| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 亚洲国产精品国产精品| 成年女人毛片免费观看观看9 | 亚洲欧美中文字幕日韩二区| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 久久精品国产自在天天线| 亚洲精品一区蜜桃| 可以免费在线观看a视频的电影网站 | 80岁老熟妇乱子伦牲交| 国产成人av激情在线播放| 成年人免费黄色播放视频| 大片免费播放器 马上看| 国产精品av久久久久免费| 在现免费观看毛片| 2022亚洲国产成人精品| 纯流量卡能插随身wifi吗| 日本wwww免费看| 少妇精品久久久久久久| 欧美国产精品一级二级三级| 亚洲精品美女久久久久99蜜臀 | 久久综合国产亚洲精品| 国产在线免费精品| 国产精品久久久久成人av| 天天操日日干夜夜撸| 精品少妇一区二区三区视频日本电影 | 在线看a的网站| 最近的中文字幕免费完整| av在线观看视频网站免费| 18禁动态无遮挡网站| 国产成人91sexporn| 欧美97在线视频| 成人影院久久| 性高湖久久久久久久久免费观看| 国产精品女同一区二区软件| 18禁国产床啪视频网站| 国精品久久久久久国模美| 黑丝袜美女国产一区| 亚洲av免费高清在线观看| 1024视频免费在线观看| 在线亚洲精品国产二区图片欧美| 免费不卡的大黄色大毛片视频在线观看| 国产免费又黄又爽又色| av天堂久久9| 国产探花极品一区二区| 久久精品国产综合久久久| 永久免费av网站大全| 丰满饥渴人妻一区二区三| 视频区图区小说| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 不卡视频在线观看欧美| 国产在视频线精品| 91午夜精品亚洲一区二区三区| 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 久热这里只有精品99| 日韩成人av中文字幕在线观看| 老司机影院毛片| 亚洲精品日本国产第一区| 国产极品天堂在线| av线在线观看网站| 午夜久久久在线观看| 99re6热这里在线精品视频| videossex国产| 交换朋友夫妻互换小说| 国产精品久久久久久精品古装| 精品一区二区三区四区五区乱码 | 国产 精品1| 亚洲熟女精品中文字幕| av在线老鸭窝| 两个人看的免费小视频| 人体艺术视频欧美日本| 亚洲五月色婷婷综合| 国产极品粉嫩免费观看在线| 日韩视频在线欧美| 久久久久久久精品精品| 欧美激情高清一区二区三区 | 尾随美女入室| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪| 亚洲美女搞黄在线观看| 免费久久久久久久精品成人欧美视频| 老汉色av国产亚洲站长工具| 99久国产av精品国产电影| 一区二区三区精品91| 国产在线一区二区三区精| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲av涩爱| 美国免费a级毛片| 18在线观看网站| av线在线观看网站| av一本久久久久| 看十八女毛片水多多多| a级毛片黄视频| 成人黄色视频免费在线看| av在线老鸭窝| 在线观看美女被高潮喷水网站| 人体艺术视频欧美日本| 青春草国产在线视频| 国产成人91sexporn| 国产精品国产av在线观看| 91精品伊人久久大香线蕉| 国产成人精品无人区| 美女视频免费永久观看网站| 亚洲国产欧美在线一区| 捣出白浆h1v1| 亚洲一区中文字幕在线| 最黄视频免费看| 男人添女人高潮全过程视频| 亚洲 欧美一区二区三区| 亚洲av日韩在线播放| 老汉色∧v一级毛片| 久久久久国产一级毛片高清牌| 欧美人与善性xxx| 美国免费a级毛片| 欧美亚洲 丝袜 人妻 在线| 久久精品国产鲁丝片午夜精品| 丰满乱子伦码专区| 老司机影院毛片| 少妇熟女欧美另类| 久久久久久伊人网av| 亚洲精品一二三| 一区二区三区乱码不卡18| 大香蕉久久成人网| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 亚洲第一区二区三区不卡| 国产精品一二三区在线看| 国产精品亚洲av一区麻豆 | 欧美人与性动交α欧美精品济南到 | 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 2018国产大陆天天弄谢| 大香蕉久久网| 狂野欧美激情性bbbbbb| 国产成人91sexporn| 熟女av电影| 午夜福利影视在线免费观看| 欧美精品一区二区免费开放| 巨乳人妻的诱惑在线观看| 亚洲 欧美一区二区三区| 边亲边吃奶的免费视频| 久久人人97超碰香蕉20202| 激情五月婷婷亚洲| 叶爱在线成人免费视频播放| 亚洲av综合色区一区| 午夜激情久久久久久久| 成人免费观看视频高清| 秋霞在线观看毛片| 成人国产av品久久久| 满18在线观看网站| 三上悠亚av全集在线观看| 丰满乱子伦码专区| 丝袜美腿诱惑在线| 丝袜在线中文字幕| 国产亚洲午夜精品一区二区久久| 免费高清在线观看日韩| 丰满饥渴人妻一区二区三| 在线观看三级黄色| 日韩熟女老妇一区二区性免费视频| 少妇 在线观看| 国产成人91sexporn| 深夜精品福利| 亚洲国产精品成人久久小说| 视频区图区小说| 1024香蕉在线观看| 中文字幕精品免费在线观看视频| 午夜av观看不卡| 成年女人在线观看亚洲视频| 王馨瑶露胸无遮挡在线观看| 久久99蜜桃精品久久| 国产精品久久久av美女十八| av在线播放精品| 日韩av在线免费看完整版不卡| 国产野战对白在线观看| 观看美女的网站| 交换朋友夫妻互换小说| 伊人久久国产一区二区| 日韩成人av中文字幕在线观看| 亚洲av欧美aⅴ国产| 亚洲精品一区蜜桃| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看| www.自偷自拍.com| 黄片播放在线免费| 亚洲av欧美aⅴ国产| 女人高潮潮喷娇喘18禁视频| 校园人妻丝袜中文字幕| 日本-黄色视频高清免费观看| 18禁动态无遮挡网站| 国产视频首页在线观看| 国产成人精品久久久久久| 国产欧美日韩一区二区三区在线| 久久ye,这里只有精品| 寂寞人妻少妇视频99o| 国产深夜福利视频在线观看| 青青草视频在线视频观看| 老鸭窝网址在线观看| 免费黄频网站在线观看国产| 啦啦啦视频在线资源免费观看|