• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles investigations on the mechanical,thermal, electronic,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)?

    2017-08-30 08:26:16HaiMingHuang黃海銘ZhenYiJiang姜振益andShiJunLuo羅時(shí)軍
    Chinese Physics B 2017年9期
    關(guān)鍵詞:黃海

    Hai-Ming Huang(黃海銘),Zhen-Yi Jiang(姜振益),and Shi-Jun Luo(羅時(shí)軍)

    1 Shaanxi Key Laboratory for Theoretical Physics Frontiers,Institute of Model Physics, Northwest University,Xi’an 710069,China

    2 School of Science,Hubei University of Automotive Technology,Shiyan 442002,China

    First-principles investigations on the mechanical,thermal, electronic,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)?

    Hai-Ming Huang(黃海銘)1,2,Zhen-Yi Jiang(姜振益)1,?,and Shi-Jun Luo(羅時(shí)軍)2

    1 Shaanxi Key Laboratory for Theoretical Physics Frontiers,Institute of Model Physics, Northwest University,Xi’an 710069,China

    2 School of Science,Hubei University of Automotive Technology,Shiyan 442002,China

    The mechanical properties,thermal properties,electronic structures,and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)were investigated by first-principles calculation using PBE and HSE06 hybrid functional.The optic band gaps based on HSE06 are 3.83 eV for Cs2SnCl6,2.36 eV for Cs2SnBr6,and 0.92 eV for Cs2SnI6,which agree with the experimental results.The Cs2SnCl6,Cs2SnBr6,and Cs2SnI6are mechanically stable and they are all anisotropic and ductile in nature.Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals,whereas the valence band is composed of the halogen p orbitals.Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region,and the absorption spectra red shift with the increase in the number of halogen atoms.The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells.

    first-principles calculation,perovskites,elastic properties,optical properties

    1.Introduction

    Perovskites compounds,especially pure inorganic and inorganic/organic halides,such as CsSnI3,methyl ammonium lead iodide CH3NH3PbI3,and for mamidinium lead iodide HC(NH2)2PbI3,have been proved to be some of the most promising materials in solar cells.[1–3]The ABX3type halidebased hybrid per-ovskites,where A is a metal atom or molecular cation,B is Sn or Pb,and X is a halide atom(Cl,Br, or I),are attracting an increasing amount of attention for applications due to advantageous optical properties and high power conversion efficiency.[4–10]Since Miyasaka et al.[11]pioneered the incorporation of the hybrid organic–inorganic per-ovskite halides CH3NH3PbI3into solar cells,the power conversion efficiency of this kind of solar cell increased from the begging of 3.8%to the current 20.1%in a few years.[12]However,the presence of toxic elements and instabilities of these per-ovskites halides greatly limit their widespread applications in efficient field-effect transistors light-emitting diodes,and photovoltaic devices.[13–17]Therefore,looking for non-toxic, environmentally friendly,and high conversion efficiency of new per-ovskite-type solar cell materials has become a current research hotspot.

    Recently,Falaras et al.[18]reported three defect perovskites compounds Cs2Sn X6(X=Cl,Br,I).They found Cs2SnCl6,Cs2SnBr6,and Cs2SnI6are all direct band gap semiconductors and can be used in dye-sensitized solar cells. They also found these three compounds are air-stable,and the dye-sensitized solar cells based on Cs2SnI6hole-transporting materials present a power conversion efficiency of 4.23%at 1 sun illumination.Neilson et al.[19]pointed out that the greatest advantage of this kind of defect perovskites is that the Cs2Sn X6compounds contain Sn4+rather than Sn2+in the B-site,which makes it more stable under exposure to air and moisture.However,Xiao[20]and colleagues indicated the real valence state of Sn in Cs2SnI6is+2 rather than+4.Although there are different opinions about the valence state of Sn cations in the defect perovskites compounds,it does not prevent the researchers from doing theoretical and experimental investigations on the new lead-free perovskite solar cell materials.[21–23]

    The mechanical and thermal properties of perovskite are important for practical applications in solar cells.On the one hand,the absorption performances of perovskite solar cell strongly rely on the crystallinity and stress state of the perovskite layer.[24]On the other hand,as very important thermal parameters,the Debye temperature and melting temperature are related to the bond strength,which is important for the preparation of solar cell devices.Therefore,it is essential to study the mechanical and thermal properties of perovskite type solar cell materials.In this paper,we study the structural, mechanical,thermal,electronic and optical properties of the defect perovskites Cs2Sn X6(X=Cl,Br,I)by first-principlescalculations.Our findings shed light on the key properties that are hard to measure experimentally and probing the lead-free solar cells materials.

    2.Computational details

    First-principles calculations were carried out to study various physical properties of the defect perovskites by using the Vienna ab initio simulation package(VASP).[25]Generalized gradient approximation(GGA)of Perdew–Burke–Ernzerh(PBE)was used to describe the exchange-correlation functional.[26]It is well known that PBE usually underestimates the band-gap,which will result in unreasonable optic properties.In order to overcome this predicament,band gap correction was considered by using range separated hybrid functional(HSE06),[27]which can give improved approximate results to match with experimental data.The electronic configurations:6s1for Cs,5s25p2for Sn,3s23p5for Cl,4s24p5for Br,and 5s25p5for I were used in calculations.The plane wave cut-off energy was set to 450 eV.A mesh of 9×9×9 k-points was used for calculating the electronic,mechanical,thermal, and optic properties.The convergence tolerances of the energy and the force are 1.0×10?6eV and 1.0×10?2eV/?A, respectively.

    3.Results and discussion

    3.1.Structural properties

    Cs2Sn X6chemical composition presents the cubic anti-fluorite phase with the space group F m-3m in cubic structure as shown in Fig.1.In this structure,the defect perovskites Cs2Sn X6own the same structure with K2PtCl6,in which the isolated[Sn X6]2?anions octahedra bridged by Cs+cations, the Sn4+cations formed a face centered cubic lattice and are surrounded by an X6octahedral.[17,18,28]Firstly,a volume optimization process was carried out to predict the optimal structure.Calculated equilibrium lattice constants are summarized and compared with available theoretical and experimental data in Table 1.

    One can observe that the optimized lattice constants of Cs2SnCl6are almost the same as those of the experimental results.However,there is a slight deviation for Cs2SnBr6and for Cs2SnI6,respectively.This slight deviation does not affect further research.On the whole,there is a good agreement between the optimized lattice constants and the experimental findings and available theoretical data.Furthermore, one can see that the lattice constants increase in the order from Cs2SnCl6to Cs2SnBr6to Cs2SnI6.The phenomenon is due mainly to the size differences between the univalent anion Cl?, Br?,and I?.

    Fig.1.(color online)Crystal structure of the defect perovskites Cs2Sn X6(X=Cl,Br,I).Thick blue lines represent the unit cell edges.

    Table 1.Optimized lattice constants(?A)of Cs2Sn X6(X=Cl,Br,I). Experimental and other theoretical values are included.

    3.2.Mechanical properties

    It is known that first-principles methods are often used to calculate reliable elastic properties of solid materials.The criterions for mechanical stability of cubic crystals are given by[33]

    Table 2 summarizes the calculated elastic constants Cijof the defect perovskites Cs2Sn X6.One can see that the elastic constants satisfy these generalized stability criterions,indicating these three compounds are mechanically stable.Meanwhile,the elastic constant C11decreases from chlorine to bromine to iodine in Cs2Sn X6(X=Cl,Br,I),meaning that the trend of resistance one-way compression declines.Cs2SnCl6presents more strong resistance for one-way compression as compared to Cs2SnBr6and Cs2SnI6.At the same time,the value of elastic constant C44is less than that of C11,which indicates that their resistance to pure shear deformation is weaker than that of the one-way compression.

    Using the elastic constants,some mechanical properties including shear anisotropy factor(A),bulk modulus(B),shear modulus(G),Pough’s ratio(B/G),Frantesvich ratio(G/B), Young’s modulus(Y),Poisson’s ratio(υ)and Kleinman parameter(ξ)are also calculated and presented in Table 2.The shear anisotropy factor A is used to decide the anisotropic or isotropic characteristic of a solid.In general,the shear anisotropic factor for isotropic crystals is A=1,while for anisotropic crystals it is A/=1.The shear anisotropic factors reported in Table 2 indicate Cs2Sn X6compounds are all anisotropic.It is clear that the level of anisotropy for Cs2SnBr6is the highest among these three defect perovskites. Pough’s ratio B/G and Frantesvich G/B ratio provide the brittleness or ductility of a compound.If B/G<1.75(G/B>0.571),the material is brittle,otherwise,the ductile behavior is predicted.[34]Present values of Pough’s ratio for Cs2SnCl6, Cs2SnBr6and Cs2SnI6are bigger than 1.75,therefore these defect perovskites are ductile in nature.

    Young’s modulus Y is an important parameter in showing the stiffness of a solid material.The larger the Young’s modulus,the stiffer the solid material will be.From Table 2,it is clear that the Young’s modulus decreases with large anion size, indicting Cs2SnCl6is stiffer than Cs2SnBr6and Cs2SnI6,and the capability of resisting elastic deformation decreases from Cs2SnCl6to Cs2SnBr6to Cs2SnI6.Poisson’s ratio υ gives some informations about the character of force acting on solid materials.The forces among the atoms constituting the material are central if the value of υ lies between 0.25 and 0.50. The obtained Poisson ratio υ for Cs2SnCl6,Cs2SnBr6and Cs2SnI6are just in this range which means that interatomic forces in Cs2Sn X6are central.

    3.3.Thermal properties

    Debye temperature ΘDis a fundamental parameter for materials’thermodynamic properties,and it is closely related to specific heat,bond strength,elastic constants,and melting temperature.[35]ΘDcan be predicted by the average sound velocity Vmaccording to[33,36]

    where h represents Plank’s constant,k is the Boltzman constant,n is the number of atoms per molecule,NAis the Avogadro number,ρ is the density of the solid,and M represents the molecular weight.The average sound velocity Vmwas calculated by[33,36]

    where vtand vlare the transverse and longitudinal sound velocity,respectively,which is calculated by[37]

    The calculated Debye temperatures of Cs2Sn X6(X=Cl, Br,I)are also listed in Table 2.Obviously,the values of Debye temperature ΘDdecrease in the following sequence: Cs2SnCl6>Cs2SnBr6>Cs2SnI6.The Cs2SnCl6presents the highest Debye temperature indicating the higher melting temperature.At present,there are no theoretical calculations as well as experimental measurements reported on the Debye temperature for Cs2SnCl6and Cs2SnBr6.However,there is a large deviation for the Debye temperature of Cs2SnI6between the present work 96.8 K and experimental result 149 K obtained by heat capacity data.[18]The main reason is the difference of lattice constant between theoretical calculations and experimental measurement.In general,the lattice constant has an important influence on the calculation of Debye temperature.As a comparison,we use the experimental lattice constant of 11.6527?A[22]to calculate the Debye temperature of Cs2SnI6;the obtained value of ΘD=141.2 K is very close to the experimental results.

    The Deby temperature corresponds to the highest frequency of the lattice vibration,which is actually a reflection of the strongest bonding of the crystal.Recently,Kumar et al.[38]obtained a linear relation between Deby temperature and melting temperature for II–VI and III–V semiconductors. In general,for the same compound,a larger Debye temperature means a higher melting temperature.[39]The melting temperature Mtof Cs2Sn X6can be calculated by elastic constants C11according to the following expression:[33,40]

    Calculated melting temperatures are also shown in Table 2.It is clear that the melting temperature of Cs2SnCl6is higher than that of Cs2SnCl6and Cs2SnBr6.The results are in agreement with the results of Debye temperature.

    3.4.Electronic properties

    Density of states and band structures calculations predict the direct band gaps at the Γ point for Cs2SnCl6,Cs2SnBr6and Cs2SnI6.The results are consistent with the ones of other investigators.[18,22]Band gap values,as obtained by PBE and HSE06 using the optimized lattice constants,are listed in Table 3.Obviously,the HSE06 results are a lot closer to the experimental measurements as compared to the PBE ones.The band structure of Cs2SnCl6indicates a band gap of 3.83 eV, which consists with the experimentally measured optical gap of 3.9 eV and is better than other theoretical calculations.For the Cs2SnBr6and Cs2SnI6,the direct band gaps are 2.36 and 0.92 eV,respectively,which is lower than the experimentally measured optical gap.There are two main reasons for this discrepancy:one is the difference of lattice constants between theoretical calculations and experimentally measured ones,the other arises from the fact that first-principles calculations often underestimate the band gap.

    Table 3.Calculated band gap(eV)of Cs2 Sn X6(X=Cl,Br,I)using the PBE and HSE06 functional.Experimental and other theoretical values are also included.

    Fig.2.(color online)(a)Band structures,(b)total and orbital-projected densities of states for Cs2SnCl6 based on the HSE06.

    Fig.3.(color online)(a)Band structures,(b)total and orbital-projected densities of states for Cs2SnBr6 based on the HSE06.

    Figures 2–4 present the band structures,total and orbital projected densities of states(DOSs)for title compounds based on the HSE06.We have not plotted the projected DOS of Cesium since its negligible contribution to the total DOS.It is clear that these three compounds have very similar electronic structures as well as a delicate difference.The orbital-projected DOSs indicate that the conduction band near the Fermi level is mainly composed of halogen p orbitals hybridized with Sn 5s orbitals,and the upper conduction bands, starting from 7.66,6.12 and 4.38 eV for Cs2SnCl6,Cs2SnBr6and Cs2SnI6,respectively.There is a forbidden gap of 2.86 eV for Cs2SnCl6,2.85 eV for Cs2SnBr6and 2.36 eV for Cs2SnI6between the two conduction bands.On the other hand,the valence band is constituted of the halogen p orbitals,and their band widths are 1.99 eV for Cs2SnCl6,2.08 eV for Cs2SnBr6and 2.22 eV for Cs2SnI6,respectively.Another halogen p orbital presents hybridization with Sn 5p orbital between?3.40 to?2.75 eV.In a deeper band,from?5.91 eV to?5.59 eV for Cs2SnCl6,from?6.73 eV to?6.39 eV for Cs2SnBr6and from?6.95 eV to?6.67 eV for Cs2SnI6,the valence band is mainly made of the Sn 5s orbital.

    Fig.4.(color online)(a)Band structures,(b)total and orbital-projected densities of states for Cs2SnI6 based on the HSE06.

    3.5.Optic properties

    The optical properties of a semiconductor material are closely related to their electronic band structures;it is usually obtained from the dielectric function by the formula that is given by[41,42]

    where ω is the angular frequency,and ε1(ω)and ε2(ω)are the real and the imaginary parts of the complex dielectric function, respectively.

    Fig.5.(color online)Real part of the dielectric function for the defect perovskites Cs2Sn X6(X=Cl,Br,I).

    The dielectric functions of Cs2SnCl6,Cs2SnBr6,and Cs2SnI6with changes in photon energy were calculated up to 20.0 eV and shown in Figs.5 and 6.The static dielectric constants ε0(ω)are 2.17 for Cs2SnCl6,2.53 for Cs2SnBr6, and 3.26 for Cs2SnI6and the values increase with increasing halogen atomic number.The real part ε1(ω)is positive up to 10.1 eV,8.70 eV,and 7.23 eV for Cs2SnCl6,Cs2SnBr6, and Cs2SnI6,respectively.In this area,for Cs2SnI6,the real part has three peaks located at 4.39,7.15,and 8.45 eV.For Cs2SnBr6,it presents several peaks at 2.92,5.93,and 7.03 eV. Also for Cs2SnI6,its three peaks are located at 1.48,4.46,and 5.58 eV.

    Fig.6.(color online)Imaginary part of the dielectric function for the defect perovskites Cs2 Sn X6(X=Cl,Br,I).

    The imaginary dielectric function ε2(ω)gives some important information on the multifarious interband transitions between the valence and conduction bands.The imaginary part for Cs2SnCl6exhibits five major absorption peaks at 3.80, 5.19,7.50,9.49,and 15.23 eV.The five major absorption peaks of Cs2SnBr6are located at 2.32,3.74,6.54,8.65,and 15.05 eV.The five major absorption peaks of Cs2SnI6are located at 0.90,2.30,4.98,7.26,and 14.63 eV.These peaks are associated with the transition from valence bands to conduction ones.The lower energy peaks are relative to the electronic transition between the Cl-3p,Br-4p,and I-5p states in the upper valence bands and the Sn-5s states in conduction bands.

    In addition to the real and imaginary components of the dielectric functions,the refractive index n(ω),extinction coefficient k(ω),absorption coefficient α(ω),reflectivity coefficient R(ω),optical conductivity κ(ω)and energy loss function L(ω)are calculated and plotted in Fig.7.Refractive index is an indispensable parameter to describe the optical properties of materials and has an important impact on optic devices such as solar cell and detectors.[43]From Fig.7(a),the curves of the refractivity index of Cs2SnCl6,Cs2SnBr6and Cs2SnI6coincide with the real part of the dielectric functions.The static refractive index n(0)for low frequency at 0 eV and their peak values are presented in Table 4.It is clear that the n(0)and peak values increase with the increasing of the size of halogen anions.Extinction coefficient k(ω)describes the attenuation of an electromagnetic wave in a material.In the low energy infrared region in Fig.7(b),the value of the extinction coefficient is close to zero,which indicates these three defect perovskites are transmitted to the infrared spectrum.

    Fig.7.(color online)Refractive index n(ω),extinction coefficient k(ω),absorption coefficient α(ω),reflectivity coefficient R(ω), optical conductivity κ(ω)and energy loss function L(ω)of the defect perovskites Cs2Sn X6(X=Cl,Br,I).

    Table 4.Static refractive index,static reflectivity,maximum refractive index and maximum reflectivity for Cs2Sn X6(X=Cl,Br,I).

    The absorption coefficient can be further calculated according to the refractive index and extinction coefficient.From Fig.7(c),one can see that the absorption edges are located at 3.96,2.52,and 1.07 eV for Cs2SnCl6,Cs2SnBr6,and Cs2SnI6, respectively.These absorption edge values are near the corresponding band gaps as predicted by the HSE06 method. The absorption spectrum of the intrinsic defect perovskites Cs2Sn X2is mainly concentrated in the ultraviolet region.With the increase of the number of halogen atoms,the absorption spectra have an obvious red shift,which means the Cs2SnI2is a promising material for photoelectric conversion.Moreover, there are five obvious characteristic peaks in the absorption spectrum.The positions of the peaks and the absorption edges are all presented in Table 5.Obviously,the position moves towards a low energy area with the increasing size of the halogen ions,and the strongest peak is located at15.9 eV for Cs2SnCl6, 9.73 eV for Cs2SnBr6,and 8.29 eV for Cs2SnI6,respectively. In the low energy range,the absorption coefficient is close to zero,indicating that its absorption of light waves in the low energy range is not obvious.

    The static reflectivity R(0)and the maximum reflectivity of the title compounds are listed in Table 4.Figure 7(d) depicts the curves of reflectivity as a functional of photon energy.It is clear that the zero frequency reflectivity increases in the following sequence:Cs2SnCl6<Cs2SnBr6<Cs2SnI6.The reflectivity for these three compounds in the infrared region is lower than 8.0%reflecting the case that the effect of surface reflection and internal grain boundary reflection on the low energy infrared wave band is small.The wavelength of the maximum reflectivity is obtained around 74.95 nm for Cs2SnCl6, 77.69 nm for Cs2SnBr6,and 138.9 nm for Cs2SnI6,respectively.

    Table 5.The positions(eV)of the characteristic peaks and the absorption edges in the absorption spectrum for Cs2Sn X6(X=Cl,Br,I).

    The optical conductivity,which is decided by refractive index and absorption coefficient,is usually used to investigate the optical response of material.From Fig.7(e),one can see that the optical conductivity follows the same trend as that of the absorption coefficient with increasing phonon energy.The optical conductivity of Cs2SnCl6is zero when the phonon energy is smaller than 3.96 eV and bigger than 17.59 eV.For Cs2SnBr6,the optical conductivity is zero when the phonon energy is smaller than 2.52 eV and bigger than 18.10 eV.Also for Cs2SnI6,the optical conductivity is zero when the phonon energy is smaller than 1.07 eV and bigger than 19.87 eV.The maximum optical conductivity appears when the energy is 9.51,8.71,and 7.24 eV for Cs2SnCl6,Cs2SnBr6,and Cs2SnI6, respectively.

    The energy loss function is an important parameter in describing the energy loss when electrons pass through a dielectric.The function is directly relative to the real and imaginary components of dielectric functions,and the peak of the loss function is associated with plasma oscillation.Figure 7(f)depicts the energy loss function as a function of photon energy. One can see that the energy loss in two regions is very large, and the maximum energy loss points are located at 16.85, 16.23,and 10.85 eV for Cs2SnCl6,Cs2SnBr6,and Cs2SnI6u, respectively.The electronic energy loss for these three compounds is close to zero when the energy is bigger than 20.0 eV.

    4.Conclusion

    Employing the first-principles method within the PBE and HSE06 functional,we carried out a comprehensive study on the structural,mechanical,thermal,electronic,and optical properties of the defect per-ovskites Cs2SnCl6,Cs2SnBr6,and Cs2SnI6.The results indicate that the optimized lattice parameters are in good agreement with the available theoretical and experimental data.These three compounds are mechanically stable and they are all anisotropic and ductile in nature.Calculated Debye temperature and melting temperature decrease from Cs2SnCl6to Cs2SnBr6to Cs2SnI6.Density of states and band structures indicate direct band gaps for all the defect per-ovskites Cs2Sn X6,which accords with other theoretical investigations.Orbital-projected DOSs indicate that the contribution to the conduction band mainly originates from the halogen p orbitals hybridized with Sn 5s orbitals,whereas the contribution to the valence band is consisted of the halogen p orbitals. Some parameters,which are closely related to optical properties such as dielectric functions,refractive index,extinction coefficient,absorption coefficient,reflectivity coefficient,optical conductivity,and energy loss function,are studied theoretically for the first time.The results indicate that these three materials exhibit good optical absorption in the ultraviolet region,and the absorption spectra red shift with the increase of the number of halogen atoms.In conclusion,these three defect per-ovskites are good candidates for probing the lead-free and high-power conversion efficiency of solar cells materials owing to their stable mechanical properties and excellent optical absorption in the ultraviolet region.

    [1]Chung I,Lee B,He J,Chang R P H and Kanatzidis M G 2012 Nature 485 486

    [2]Baikie T,Fang Y,Kadro J M,Schreyer M,Wei F,Mhaisalkar S G, Graetzeld M and Whitec T J 2013 J.Mater.Chem.A 1 5628

    [3]Zhou H,Chen Q,Li G,Luo S,Song T B,Duan H S,Hong Z,You J, Liu Y and Yang Y 2014 Science 345 542

    [4]Brivio F,Walker A B and Walsh A 2013 APL Mater.1 042111

    [5]Eperon G E,Patern`o G M,Sutton R J,Zampetti A,Haghighirad A A, Cacialli F and Snaith H J 2015 J.Mater.Chem.A 3 19688

    [6]Weller M T,Weber O J,Henry P F,Di Pumpo A M and Hansen T C 2015 Chem.Commun.51 4180

    [7]Lee C,Hong J,Stroppa A,Whangbo M H and Shim J H 2015 RSC Adv. 5 78701

    [8]Feng J and Xiao B 2014 J.Phys.Chem.C 118 19655

    [9]Yuan Y,Xu R,Xu H T,Hong F,Xu F and Wang L J 2015 Chin.Phys. B 24 116302

    [10]Du H J,Wang W C and Zhu J Z 2016 Chin.Phys.B 25 108803

    [11]Kojima A,Teshima K,Shirai Y and Miyasaka T 2009 J.Am.Chem. Soc.131 6050

    [12]Boix P P,Agarwala S,Koh T M,Mathews N and Mhaisalkar S G 2015 J.Phys.Chem.Lett.6 898

    [13]Lora da Silva E,Skelton J M,Parker S C and Walsh A 2015 Phys.Rev. B 91 144107

    [14]Szafranski M and Katrusiak A 2016 J.Phys.Chem.Lett.7 3458

    [15]Yi H T,Wu X X,Zhu X Y and Podzorov V 2016 Adv.Mater.28 6509

    [16]Chen Z,Wang J J,Ren Y,Yu C and Shum K 2012 Appl.Phys.Lett.101 093901

    [17]Qiu X F,Cao B Q,Yuan S,Chen X F,Qiu Z W,Jiang Y N,Ye Q,Wang H Q,Zeng H B,Liu J and Kanatzidis M G 2017 Sol.Energy Mater.Sol. Cells 159 227

    [18]Kaltzoglou A,Antoniadou M,Kontos A G,Stoumpos C C,Perganti D, Siranidi E,Raptis V,Trohidou K N,Psycharis V,Kanatzidis M G and Falaras P 2016 J.Phys.Chem.C 120 11777

    [19]Maughan A E,Ganose A M,Bordelon M M,Miller E M,Scanlon D O and Neilson J R 2016 J.Am.Chem.Soc.138 8453

    [20]Xiao Z W,Lei H C,Zhang X,Zhou Y Y,Hosono H and Kamiya T 2015 Bull.Chem.Soc.Jpn.88 1250

    [21]Lee B,Stoumpos C C,Zhou N J,Hao F,Malliakas C,Yeh C Y,Marks T J,Kanatzidis M G and Chang R P H 2014 J.Am.Chem.Soc.136 15379

    [22]Xiao Z W,Zhou Y Y,Hosono H and Kamiya T 2015 Phys.Chem. Chem.Phys.17 18900

    [23]Saparov B,Sun J P,Meng W W,Xiao Z W,Duan H S,Gunawan O, Shin D,Hill I G,Yan Y F and Mitzi D B 2016 Chem.Mater.28 2315

    [24]Feng J 2014 APL Mater.2 081801

    [25]Kresse G and Furthmuller J 1996 Comput.Mater.Sci.6 15

    [26]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [27]Heyd J,Scuseria G E and Ernzerhof M 2006 J.Chem.Phys.124 219906

    [28]Torres D T,Freire J D and Katiyar R S 1997 Phys.Rev.B 56 7763

    [29]Brill T B,Gerhart R C and Welsh W A 1974 J.Magn.Reson.13 27

    [30]Ketelaar J A A,Rietdijk A A and van Staveren C H 2010 Recl.Trav. Chim.Pays-Bas 56 907

    [31]Stoumpos C C,Malliakas C D and Kanatzidis M G 2013 Inorg.Chem. 52 9019

    [32]Wang G T,Wang D Y and Shi X B 2015 AIP Advances 5 127224

    [33]Gu J B,Wang C J,Zhang W X,Sun Bin,Liu G Q,Liu D D and Yang X D 2016 Chin.Phys.B 25 126103

    [34]Pugh S F 1954 Philos.Mag.45 823

    [35]Duan Y H,Sun Y,Peng M J and Zhou S G 2014 J.Alloy.Compd.585 587

    [36]Anderson O L 1963 J.Phys.Chem.Solids 24 909

    [37]Mujica A and Needs R J 1996 J.Phys.:Conden.Matter 8 L237

    [38]Kumar V,Jha V and Shrivastava A K 2010 Cryst.Res.Technol.45 920

    [39]Lu W F,Li C J,Sarac B,S?opu D,Yi J H,Tan J,Stoica M and Eckert J 2017 J.Alloy.Compd.705 445

    [40]Fine M E,Brown M D and Marcus H L 1984 Scr.Metall.18 951

    [41]Parvin R,Parvin F,Ali M S and Islam A K M A 2016 Chin.Phys.B 25 083101

    [42]Fahad S,Murtaza G,Ouahrani T,Khenata R,Yousaf M,Omran S B and Mohammad S 2015 J.Alloy.Compd.646 211

    [43]Zhao S,Lan C,Ma J,Pandey S S,Hayase S and Ma T 2015 Solid State Commun.213-214 19

    29 March 2017;revised manuscript

    22 May 2017;published online 31 July 2017)

    10.1088/1674-1056/26/9/096301

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.51572219 and 11447030),the Natural Science Foundation of Shaanxi Province of China(Grant No.2015JM1018),and Graduate’s Innovation Fund of Northwest University of China(Grant No.YJG15007).

    ?Corresponding author.E-mail:jiangzy@nwu.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    黃海
    你不會(huì)是……強(qiáng)迫癥吧
    大眾健康(2022年4期)2022-04-27 21:48:15
    刻舟求劍
    幼兒畫刊(2022年4期)2022-04-21 02:50:54
    東方濕地 黃海明珠
    黃海綠洲的燈
    黃海簡介
    黃海 用海報(bào)為電影打開一扇窗
    海峽姐妹(2019年8期)2019-09-03 01:00:54
    黃海生教授
    三角恒等變換去哪兒了
    南黃海綠潮藻的分子鑒定及營養(yǎng)價(jià)值初探
    Solurion ro Beacon Conflicr Based on IEEE 802.15.4
    老师上课跳d突然被开到最大视频| 欧美潮喷喷水| 久久久久久久久中文| 国产黄片美女视频| 日本与韩国留学比较| 久久久国产一区二区| 欧美成人a在线观看| 蜜桃亚洲精品一区二区三区| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 精品久久久精品久久久| 男女那种视频在线观看| 国产黄片美女视频| 国产 亚洲一区二区三区 | 九色成人免费人妻av| 久久99热这里只频精品6学生| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 色网站视频免费| 国产女主播在线喷水免费视频网站 | 热99在线观看视频| 欧美zozozo另类| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 日韩av不卡免费在线播放| 亚洲av福利一区| 男插女下体视频免费在线播放| 亚洲av在线观看美女高潮| 欧美激情久久久久久爽电影| av在线观看视频网站免费| 精品一区在线观看国产| 最近的中文字幕免费完整| 亚洲最大成人av| 毛片女人毛片| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆 | 亚洲欧美一区二区三区国产| 赤兔流量卡办理| 日本黄大片高清| 爱豆传媒免费全集在线观看| 亚洲国产色片| 国产午夜精品一二区理论片| 国产三级在线视频| 久久综合国产亚洲精品| 亚洲av不卡在线观看| 国产成人一区二区在线| 看非洲黑人一级黄片| 啦啦啦中文免费视频观看日本| 非洲黑人性xxxx精品又粗又长| 免费人成在线观看视频色| 肉色欧美久久久久久久蜜桃 | 亚洲精品国产av成人精品| 乱码一卡2卡4卡精品| 成人亚洲欧美一区二区av| 少妇丰满av| 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| 日本熟妇午夜| 草草在线视频免费看| 成人午夜高清在线视频| 丝袜喷水一区| 纵有疾风起免费观看全集完整版 | 国产在视频线在精品| 成年版毛片免费区| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 大香蕉97超碰在线| av专区在线播放| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| .国产精品久久| 久久久久久伊人网av| 超碰97精品在线观看| 欧美人与善性xxx| 97人妻精品一区二区三区麻豆| 日本av手机在线免费观看| 亚洲精品456在线播放app| 熟妇人妻久久中文字幕3abv| 菩萨蛮人人尽说江南好唐韦庄| 亚洲综合精品二区| 国产色婷婷99| 汤姆久久久久久久影院中文字幕 | 国产欧美日韩精品一区二区| 亚洲自拍偷在线| 欧美性猛交╳xxx乱大交人| 韩国av在线不卡| 搞女人的毛片| 国产成人91sexporn| 午夜福利视频1000在线观看| 欧美变态另类bdsm刘玥| 国产 一区精品| 久久精品久久精品一区二区三区| 极品少妇高潮喷水抽搐| av.在线天堂| 国产成年人精品一区二区| 久久久久网色| 91狼人影院| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产鲁丝片午夜精品| 高清午夜精品一区二区三区| 99久久人妻综合| 日韩国内少妇激情av| av播播在线观看一区| 一个人免费在线观看电影| 久久草成人影院| 一个人看的www免费观看视频| 色吧在线观看| 亚洲人与动物交配视频| 久久久久久久久久成人| 七月丁香在线播放| 国产精品一区www在线观看| 亚洲精华国产精华液的使用体验| 草草在线视频免费看| 亚洲综合精品二区| 国产亚洲精品av在线| 日韩欧美精品v在线| 69人妻影院| 亚洲图色成人| 国产免费一级a男人的天堂| 久久精品综合一区二区三区| 久久草成人影院| .国产精品久久| 亚洲自偷自拍三级| 欧美丝袜亚洲另类| 精品酒店卫生间| 最近最新中文字幕免费大全7| 在线 av 中文字幕| 国产探花极品一区二区| 久久久久久久久久黄片| 亚洲欧美中文字幕日韩二区| 免费看光身美女| 最新中文字幕久久久久| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品 | 一本一本综合久久| 欧美+日韩+精品| 亚洲av成人精品一二三区| 亚洲最大成人手机在线| 免费看光身美女| 99热网站在线观看| 人妻少妇偷人精品九色| 伦理电影大哥的女人| 99热网站在线观看| 久久精品久久久久久久性| 国内精品一区二区在线观看| 有码 亚洲区| 国产精品久久久久久精品电影小说 | 亚洲av男天堂| 六月丁香七月| 亚洲国产日韩欧美精品在线观看| 日韩伦理黄色片| 美女cb高潮喷水在线观看| 亚洲av中文字字幕乱码综合| 少妇丰满av| 国产精品熟女久久久久浪| 80岁老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 国产精品嫩草影院av在线观看| 久久久久久久久中文| 在线观看一区二区三区| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 欧美精品国产亚洲| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 女人十人毛片免费观看3o分钟| 亚洲av成人精品一区久久| 日韩av在线免费看完整版不卡| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 久久精品久久久久久噜噜老黄| 亚洲欧美清纯卡通| 日韩国内少妇激情av| 在线免费观看的www视频| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 欧美另类一区| 日韩欧美国产在线观看| 男女啪啪激烈高潮av片| 亚洲精品国产av成人精品| 97超碰精品成人国产| 在线观看一区二区三区| 免费黄色在线免费观看| 白带黄色成豆腐渣| 欧美性感艳星| 国产日韩欧美在线精品| 亚洲成人中文字幕在线播放| av女优亚洲男人天堂| 高清视频免费观看一区二区 | 免费看不卡的av| 亚洲怡红院男人天堂| 狂野欧美白嫩少妇大欣赏| www.av在线官网国产| 国产国拍精品亚洲av在线观看| 麻豆av噜噜一区二区三区| av天堂中文字幕网| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| eeuss影院久久| 男人爽女人下面视频在线观看| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看 | 亚洲电影在线观看av| 亚洲最大成人av| 极品少妇高潮喷水抽搐| 日韩中字成人| 人妻系列 视频| 国产男女超爽视频在线观看| 久久精品久久精品一区二区三区| 国产精品人妻久久久久久| 99久久精品热视频| 午夜激情欧美在线| 国产成人精品久久久久久| 国产男人的电影天堂91| 日本三级黄在线观看| 国产永久视频网站| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜 | 国产亚洲av片在线观看秒播厂 | 久久久久精品性色| .国产精品久久| 久久久精品欧美日韩精品| 中文在线观看免费www的网站| 亚洲乱码一区二区免费版| 一本久久精品| 免费大片黄手机在线观看| 床上黄色一级片| 一级av片app| 国产免费一级a男人的天堂| 69av精品久久久久久| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 久久久久久久国产电影| 精品人妻视频免费看| 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 色综合亚洲欧美另类图片| 韩国高清视频一区二区三区| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 看免费成人av毛片| 99九九线精品视频在线观看视频| 可以在线观看毛片的网站| 又大又黄又爽视频免费| 亚洲精品456在线播放app| 国产精品综合久久久久久久免费| 欧美日韩国产mv在线观看视频 | 久久这里有精品视频免费| 精品久久久久久电影网| 亚洲成人一二三区av| 欧美精品一区二区大全| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| av在线老鸭窝| 日日撸夜夜添| 久久精品久久久久久久性| 人妻夜夜爽99麻豆av| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 国产男人的电影天堂91| 十八禁国产超污无遮挡网站| 日韩制服骚丝袜av| 免费看日本二区| av网站免费在线观看视频 | 免费看光身美女| 夫妻午夜视频| 欧美97在线视频| 精品久久久久久电影网| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 少妇熟女欧美另类| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| 亚洲欧美成人精品一区二区| av免费在线看不卡| 成人亚洲精品av一区二区| 男的添女的下面高潮视频| 天天躁日日操中文字幕| 九草在线视频观看| 国产黄色小视频在线观看| 少妇的逼水好多| 亚洲精品色激情综合| 别揉我奶头 嗯啊视频| av播播在线观看一区| 熟女人妻精品中文字幕| 男的添女的下面高潮视频| 国产在视频线精品| 熟女电影av网| 最近手机中文字幕大全| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 国产在线男女| a级毛片免费高清观看在线播放| 亚洲人成网站高清观看| 菩萨蛮人人尽说江南好唐韦庄| 国产v大片淫在线免费观看| 汤姆久久久久久久影院中文字幕 | 在线天堂最新版资源| 国产免费视频播放在线视频 | 禁无遮挡网站| 肉色欧美久久久久久久蜜桃 | 乱码一卡2卡4卡精品| 久久精品夜夜夜夜夜久久蜜豆| 国产精品伦人一区二区| 国产精品国产三级专区第一集| 午夜精品在线福利| av福利片在线观看| 大片免费播放器 马上看| 亚洲欧美日韩东京热| 欧美性感艳星| 高清视频免费观看一区二区 | 黄色日韩在线| 亚洲国产精品成人综合色| 91狼人影院| 国产高清国产精品国产三级 | 日本一二三区视频观看| 欧美区成人在线视频| 一二三四中文在线观看免费高清| 免费看不卡的av| 久久久久久伊人网av| 国产精品熟女久久久久浪| 国产白丝娇喘喷水9色精品| 日韩制服骚丝袜av| 三级毛片av免费| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| .国产精品久久| 国产免费视频播放在线视频 | 久久国内精品自在自线图片| 天堂中文最新版在线下载 | 男人爽女人下面视频在线观看| 久久久久国产网址| 91在线精品国自产拍蜜月| 欧美+日韩+精品| 一级二级三级毛片免费看| 99久久精品一区二区三区| 欧美精品国产亚洲| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久 | 永久免费av网站大全| 2021少妇久久久久久久久久久| .国产精品久久| 卡戴珊不雅视频在线播放| 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 精品酒店卫生间| 啦啦啦中文免费视频观看日本| 久久久久免费精品人妻一区二区| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添av毛片| av一本久久久久| 成人一区二区视频在线观看| 国产成人福利小说| 久久久久久久久中文| 激情五月婷婷亚洲| kizo精华| 欧美一区二区亚洲| 亚洲,欧美,日韩| 一级毛片久久久久久久久女| 日本熟妇午夜| 男女视频在线观看网站免费| 三级经典国产精品| 亚洲国产最新在线播放| 三级经典国产精品| 最后的刺客免费高清国语| 老司机影院毛片| 免费大片18禁| 可以在线观看毛片的网站| 亚洲av国产av综合av卡| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 少妇熟女欧美另类| 色网站视频免费| 国产精品日韩av在线免费观看| 国产精品蜜桃在线观看| 一级毛片黄色毛片免费观看视频| 成人特级av手机在线观看| 欧美高清成人免费视频www| 伊人久久国产一区二区| 亚洲av日韩在线播放| av又黄又爽大尺度在线免费看| 成人国产麻豆网| 亚洲欧美中文字幕日韩二区| 日本熟妇午夜| 一级a做视频免费观看| 伊人久久国产一区二区| 国产黄色免费在线视频| 国产免费视频播放在线视频 | 男女啪啪激烈高潮av片| 亚洲精品影视一区二区三区av| 日本一本二区三区精品| av国产免费在线观看| 久久久色成人| 亚洲性久久影院| 精品久久国产蜜桃| 18禁动态无遮挡网站| av网站免费在线观看视频 | 亚洲一区高清亚洲精品| 免费观看在线日韩| 亚洲av成人av| 国产精品精品国产色婷婷| 18禁动态无遮挡网站| 99久国产av精品国产电影| 夜夜爽夜夜爽视频| 日韩伦理黄色片| 在现免费观看毛片| 天天一区二区日本电影三级| 免费不卡的大黄色大毛片视频在线观看 | 亚洲一区高清亚洲精品| 亚洲国产高清在线一区二区三| 亚洲欧洲日产国产| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 午夜激情欧美在线| 欧美高清成人免费视频www| 久久精品综合一区二区三区| 欧美潮喷喷水| 老司机影院毛片| 91久久精品国产一区二区三区| 国产v大片淫在线免费观看| av在线蜜桃| 插阴视频在线观看视频| 在线播放无遮挡| 国产精品日韩av在线免费观看| 精品久久久久久久人妻蜜臀av| 人妻夜夜爽99麻豆av| 久久午夜福利片| 欧美不卡视频在线免费观看| 天堂中文最新版在线下载 | 我的女老师完整版在线观看| 超碰97精品在线观看| 国产精品综合久久久久久久免费| 午夜精品在线福利| 国产毛片a区久久久久| 婷婷六月久久综合丁香| 国产精品蜜桃在线观看| 成人亚洲欧美一区二区av| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱| 97在线视频观看| 亚洲av在线观看美女高潮| 亚洲欧美日韩无卡精品| 婷婷色av中文字幕| 精品欧美国产一区二区三| 搡老乐熟女国产| 成人午夜精彩视频在线观看| 国产精品久久久久久精品电影| 国产精品久久久久久久久免| 亚洲精品自拍成人| 久久久久网色| 麻豆久久精品国产亚洲av| 亚洲四区av| 欧美日韩综合久久久久久| 一个人免费在线观看电影| 国产伦在线观看视频一区| 成人特级av手机在线观看| 国产激情偷乱视频一区二区| 国产男人的电影天堂91| 国产成人a区在线观看| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 久久久成人免费电影| 成年av动漫网址| 男女下面进入的视频免费午夜| 婷婷色av中文字幕| 日韩欧美精品v在线| 欧美3d第一页| 只有这里有精品99| 久久精品久久久久久久性| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 婷婷色麻豆天堂久久| 人妻少妇偷人精品九色| 国产精品综合久久久久久久免费| 久久久色成人| 成人毛片60女人毛片免费| 春色校园在线视频观看| 日韩欧美精品免费久久| 91精品一卡2卡3卡4卡| 夫妻午夜视频| 老师上课跳d突然被开到最大视频| 午夜福利在线观看免费完整高清在| 亚洲欧美成人综合另类久久久| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 欧美高清性xxxxhd video| 看非洲黑人一级黄片| 内地一区二区视频在线| 欧美bdsm另类| 亚洲美女搞黄在线观看| 亚洲国产精品专区欧美| 日韩欧美国产在线观看| 亚洲精品色激情综合| 日韩视频在线欧美| 一级a做视频免费观看| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 成人漫画全彩无遮挡| 看黄色毛片网站| 色综合站精品国产| 18禁在线无遮挡免费观看视频| 国产一级毛片在线| 久久热精品热| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av涩爱| 久久6这里有精品| 欧美最新免费一区二区三区| 一区二区三区免费毛片| 亚洲av中文字字幕乱码综合| 丰满人妻一区二区三区视频av| 欧美成人午夜免费资源| 男女啪啪激烈高潮av片| 中文乱码字字幕精品一区二区三区 | 永久免费av网站大全| 丰满少妇做爰视频| 国产精品.久久久| 国产精品国产三级国产av玫瑰| 午夜爱爱视频在线播放| 男的添女的下面高潮视频| 亚洲精品日本国产第一区| 色网站视频免费| 男插女下体视频免费在线播放| 三级国产精品欧美在线观看| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版 | 精品久久久精品久久久| 精品久久久久久久久久久久久| 爱豆传媒免费全集在线观看| av在线老鸭窝| 国国产精品蜜臀av免费| 国产精品国产三级国产专区5o| 亚洲成人精品中文字幕电影| 婷婷色av中文字幕| 日韩不卡一区二区三区视频在线| 亚洲精品456在线播放app| 国内揄拍国产精品人妻在线| 国产在视频线在精品| 国产黄a三级三级三级人| 在线播放无遮挡| 啦啦啦中文免费视频观看日本| 久久久久久久久久久免费av| 好男人视频免费观看在线| 九九在线视频观看精品| 国产精品熟女久久久久浪| 日韩人妻高清精品专区| 韩国高清视频一区二区三区| 在线观看一区二区三区| 99久久人妻综合| 国产亚洲91精品色在线| 久久久久久久久中文| av在线播放精品| 在线a可以看的网站| 一区二区三区乱码不卡18| 国产免费福利视频在线观看| 男人和女人高潮做爰伦理| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 2022亚洲国产成人精品| 亚洲成人久久爱视频| 午夜福利在线在线| 如何舔出高潮| 亚洲怡红院男人天堂| 一级爰片在线观看| 亚洲一级一片aⅴ在线观看| 精品久久久噜噜| 亚洲内射少妇av| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 免费av观看视频| 噜噜噜噜噜久久久久久91| 天堂av国产一区二区熟女人妻| 天堂√8在线中文| 国产 一区 欧美 日韩| 亚洲欧美成人综合另类久久久| 精品人妻一区二区三区麻豆| 美女黄网站色视频| av专区在线播放| 免费大片18禁| 精品酒店卫生间| 2021少妇久久久久久久久久久| 国内精品美女久久久久久| 好男人在线观看高清免费视频| 精品一区二区三区人妻视频| 午夜爱爱视频在线播放| 日产精品乱码卡一卡2卡三| 成人av在线播放网站| 国产乱人视频| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 亚洲精品中文字幕在线视频 | 中文字幕久久专区| 爱豆传媒免费全集在线观看| 成人午夜精彩视频在线观看| 麻豆国产97在线/欧美| 青春草国产在线视频| 日本与韩国留学比较| 亚洲综合精品二区| 永久网站在线| 男人爽女人下面视频在线观看| 亚洲欧美精品自产自拍| 亚洲精品第二区| 亚洲乱码一区二区免费版| 高清毛片免费看| 热99在线观看视频| 欧美3d第一页| 亚洲综合色惰| 日韩欧美一区视频在线观看 |