• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser?

    2021-06-26 03:04:04XudeWang汪徐德SiminYang楊思敏MengqiuSun孫夢秋XuGeng耿旭JieyuPan潘婕妤ShuguangMiao苗曙光andSuwenLi李素文
    Chinese Physics B 2021年6期
    關(guān)鍵詞:婕妤曙光

    Xude Wang(汪徐德) Simin Yang(楊思敏) Mengqiu Sun(孫夢秋) Xu Geng(耿旭) Jieyu Pan(潘婕妤)Shuguang Miao(苗曙光) and Suwen Li(李素文)

    1School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China

    2Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation,Huaibei Normal University,Huaibei 235000,China

    Keywords: fiber laser,dissipative soliton resonance,square pulse

    1. Introduction

    Yb-doped fiber lasers (YDFLs), as an excellent type of laser source for generating ultra-short pulses, have considerable potential for use in many scientific and industrial applications, such as bio-medicine, metrology, material processing, and telecommunications.[1,2]Due to the wide gain bandwidth and high gain of Yb-doped fiber, YDFLs are expected to be promising candidates for obtaining high-energy ultrashort pulses,which are more favorable for some practical applications. As opposed to conventional solitons formed by anomalous-dispersion fiber lasers, YDFLs operate in the allnormal dispersion regime, which can produce highly chirped dissipative solitons with energies of up to tens of nJ.[3]However, due to the pulse splitting that occurs in the fiber laser,the production of high-energy pulses by a laser oscillator is a challenge that still remains to be solved.

    Depending on the different pulse-shaping mechanisms and dynamics of fiber lasers, various temporally tailored pulses such as Gaussian pulses, step-like pulses, and square pulses have been formed by fiber lasers,[4–9]which can satisfy some demands in various application fields.Among these,square pulses have attracted considerable interest due to their ability to scale the pulse energy.[10]By means of the peak power-clamping effect, square pulses can achieve high pulse energies by broadening their pulse widths with the rising pump power. In particular, dissipative soliton resonance (DSR) is an efficient way to generate high-energy square pulses. As a new kind of soliton, DSR was first theoretically investigated by Changet al.in 2008.[11]In principle, DSR, as a single pulse,can increase the pulse width indefinitely while keeping its amplitude fixed,which consequently results in the generation of a pulse with infinite energy.[12,13]It has been demonstrated that using the appropriate cavity parameters, DSRs can be formed in various types of fiber laser,[14–20]regardless of mode-locking mechanisms and cavity dispersion regimes,even in all-normal dispersion YDFLs. Indeed, Wanget al.investigated unusual DSR pulse evolution in a YDFL mode locked by a nonlinear fiber loop mirror.[21]Yuet al.reported a high-energy DSR pulse in a YDFL using a nonlinear polarization rotation(NPR)technique.[22]The maximum output pulse energy was able to reach 34 nJ. Liet al.demonstrated the generation of an ultra-wide DSR pulse in a YDFL,which was achieved by the NPR technique.[23]The pulse width was able to be tuned from 58.6 ns to 431 ns. Nevertheless, most DSR pulse research has mainly focused on single-wavelength operation. In some applications, fiber lasers that generate multiwavelength pulses would be more advantageous. Therefore,multi-wavelength DSRs delivering at wavelengths of around 1μm need to be further investigated.

    It is well known that a lower repetition rate in a long ring cavity implies a higher pulse energy for a given average output power. In this paper, we report on the generation of multi-wavelength square pulses in the DSR regime in a passively mode-locked YDFL with a long cavity configuration.A 300-m single mode fiber(SMF,HI-1060)is inserted into a resonator to prolong the cavity length, so that the total cavity length reaches 311.3 m,corresponding to the low fundamental frequency of 661.6 kHz. Multi-wavelength operation is realized by an artificial comb filter,and is caused by stress birefringence of the fiber. The wavelength spacing is 1.8 nm. When the multi-wavelength DSR works in the 1038 nm waveband,the pulse width broadens linearly from 2 ns to 37.7 ns without wave breaking. The maximum output single-pulse energy is 15.27 nJ through a 10% fiber coupler. Moreover, by appropriately changing the cavity parameters,the multi-wavelength DSR pulse can also operate in dual wavebands,which are located at 1038 nm and 1080 nm, respectively. By increasing the pump power, the duration of the DSR can be tuned from 2.3 ns to 10.5 ns,and the pulse energy increased from 3 nJ to 9.7 nJ. Our work might help deeper insight to be gained into DSR pulses in all-normal-dispersion YDFLs.

    2. Experimental setup

    For the proposed YDFL, we implemented a ring cavity, as illustrated in Fig. 1. The gain section was a 62 cm YDF(Nufern, SM-YSF-HI),which was excited by a 976 nm pump source with a maximum launched power of 500 mW.The mode-locking operation was accomplished based on the NPR mechanism, comprising a polarization-dependent isolator (PD-ISO) and two polarization controllers (PCs). Meanwhile, two PCs were used to optimize the mode locking by adjusting the light polarization state, and a PD-ISO was employed to ensure the mono-directional transmission of the laser.In order to prolong the length of the cavity and lower the repetition rate, a piece of SMF 300 m long was spliced into the cavity. The whole cavity length was 311.3 m,corresponding to a fundamental frequency of 661.6 kHz. Approximately 10% of the laser output was extracted via a fiber coupler for analysis. An oscilloscope and an optical spectrum analyzer were utilized to measure the temporal and spectral properties of the output pulses. The operational stability was monitored by a radio-frequency(RF)spectrum analyzer.

    Fig.1. Experimental schematic of a YDFL with a long cavity configuration.

    3. Results and analysis

    Fig. 2. Generation of a square pulse at 1038 nm. (a) Square pulse;(b)pulse train;(c)spectrum;(d)RF spectrum(inset: RF spectrum over a 100 MHz span).

    Mode locking can be achieved at a forward pump power of 110 mW. With fine adjustment of the PCs, a lowrepetition-rate square pulse with a nanosecond width is observed from 150 mW to 500 mW. The characteristics of the typical square pulse at 350 mW are depicted in Fig. 2.Figure 2(a)shows a single mode-locked pulse. A single pulse from the fiber laser exhibits a rectangular shape. The edgeto-edge width of the square pulse is~25.9 ns. Figure 2(b)presents the pulse train. The interval is 1.5μs,corresponding to the cavity roundtrip time. We can see that each pulse appears as a square shape with equal amplitude. The spectrum is shown in Fig.2(c),which is different from the spectra of YDFLs reported before. The spectrum exhibits multi-wavelength lasing with a wavelength spacing of 1.8 nm and the central position of the waveband is 1038 nm. The multi-wavelength lasing in the experiment can be explained as the effect of filtering induced by fiber birefringence. In the experiment, we tried to measure the autocorrelation trace of this square pulse.However, no coherent peak was observed in the autocorrelation trace,indicating that this square pulse is a single DSR but not a bunch of pulses.[24]The fundamental frequency is measured by an RF analyzer, as shown in Fig. 2(d). The peak of the RF spectrum is located at 661.6 kHz with a signal-to-noise ratio(SNR)of~46.6 dB,which matches the 311.3-m cavity length. Moreover,the RF spectrum over a span of 100 MHz is shown in the inset of Fig.2(d).Here,it can clearly be seen that the envelope of the RF spectrum is periodically varied,and that the modulation period is 38.6 MHz, corresponding to a pulse width of~25.9 ns in the temporal domain. Note that routine dissipative solitons without multi-wavelength lasing are also observed in the experiment when the PCs are properly adjusted. However,the dissipative soliton does not operate in the DSR regime.

    To further verify that this square pulse is due to DSR,we fixed the PCs and gradually increased the pump power to characterize the pulse evolution features. The temporal and spectral evolutions are presented in Fig. 3. While the pump power is rising, the pulse keeps its square profile without shape distortion and the pulse amplitude remains constant,as presented in Fig. 3(a). The pulse duration broadens linearly with the pump power. The corresponding spectra at different pump powers are shown in Figs. 3(b) and 3(c). As the pump power increases, the emission spectrum bandwidth is gradually broadened, while the position of the central wavelength remains almost invariant (at~1038 nm). The number of multi-wavelength lasing peaks increases with the pump power,while the spacing is fixed at 1.8 nm for all pump powers. To better clarify the characteristics of the square pulse,the relationships between the pulse width and pulse energy with respect to the input pump powers are shown in Fig.3(c).When the pump power is increased from 150 mW to 500 mW,the pulse width linearly widens from 2 ns to 37.7 ns. Similarly,the single-pulse energy increases from 3 nJ to 15.27 nJ.Therefore,the evolutionary trend of the square pulse is in accordance with DSR theory.[25]The maximum output power is 10.1 mW, corresponding to a pulse energy of 15.27 nJ. Considering that 10%of the pulse energy is taken from the cavity,the intra-cavity pulse energy is around 152.7 nJ. It should be noted that the maximum pulse energy and pulse width in our experiment are primarily limited by the pumped power. Thus,we think that the pulse energy and width might be further increased if a higher-power pump source were to be used.

    Fig. 3. Evolution of the properties of the square pulse at 1038 nm.(a) Pulse evolution versus pump power. (b) Corresponding spectral evolution. (c)Comparison of the spectra under different pump powers.(d)Pulse width and energy versus pump power.

    Fig.4. Generation of square pulses at 1038 nm and 1080 nm. (a)Spectrum;(b)square pulse;(c)pulse train;(d)RF spectrum(inset: RF spectrum over a span of 150 MHz).

    By rotating the PCs and changing the pump power, another type of square pulse with a different spectral structure is formed in the fiber laser. Compared to the multi-wavelength spectrum in the 1038 nm waveband region,here,the changes in spectrum are evident, as shown in Fig. 4(a). Figure 4(a)shows the typical spectrum of the multi-wavelength lasing operated in the 1038 nm and 1080 nm wavebands at a pump power of 500 mW. The spectral component in the waveband at approximately 1080 nm gradually emerges with an increase in pump power. The spacing between the two wavebands is~40 nm, thus, the generation of the secondary waveband is due to the stimulated Raman scattering (SRS) effect.[26]A quasi-square pulse with a flat-topped shape and a pulse width of 10.5 ns is generated, as shown in Fig. 4(b). It should be noted that the trailing edge of the pulse is not as steep,which might be affected by the SRS. Figure 4(c) presents a stable pulse train with a pulse-to-pulse interval of 1.5μs. The typical RF spectrum shown in Fig.4(d)has a SNR of around 47.9 dB at 661.6 kHz. The RF spectrum over a span of 150 MHz in the inset exhibits a modulation frequency of 95.2 MHz,corresponding to a pulse duration of 10.5 ns.

    Fig. 5. Evolution of the properties of a square pulse operating in dual wavebands. (a)Pulse evolution versus pump power. (b)Corresponding spectral evolution. (c)Comparison of the spectra under different pump powers. (d)Pulse width and energy versus pump power.

    In order to further verify the influence of pump power on this DSR pulse,we record the evolution of the characteristics of the pulses under different pump powers. The temporal evolution is shown in Fig.5(a). Under dual-waveband operation,the DSR pulse can still broaden with the pump power, while the pulse amplitudes remain almost invariable. The spectral evolution is shown in Figs. 5(b) and 5(c). Multi-wavelength lasing emerges simultaneously in the 1038 nm and 1080 nm wavebands. An increase in the pump power causes clear enhancement of the SRS components at 1080 nm. Figure 5(d)clearly shows the relationship between the pulse width and the output single-pulse energy as a function of the pump power.When the pump power is increased from 335 mW to 500 mW,the square pulses are broadened from 2.3 ns to 10.5 ns, and the single-pulse energy increases from 3 nJ to 9.67 nJ.These results are inconsistent with DSR theory. Compared with a DSR in the 1038 nm waveband,the square DSR pulse in dualwaveband operation has a narrower pulse duration and a lower pulse energy for the same pump power. This is partly because the cavity parameters are influenced by the orientation of PCs,and partly because the advent of SRS takes part of the pump energy. Thus, SRS imposes a limitation on the energy scalability of DSR in this experiment. It has been reported that SRS can cause DSR pulse instability.[21]However, the pulse still remains stable at the maximum pump power of 500 mW in our experiment.According to experimental observation,the fiber laser could sustain DSR operation for a long time if there were no environmental perturbations applied to the fiber laser.

    In previous literature, DSR operation under multiwavelength mode locking has rarely been reported. In our experiment,multi-wavelength square pulses are frequently observed in the fiber laser without the insertion of any external filter devices such as comb filters and polarization-maintaining fibers (PMFs). We attribute this to the birefringence-induced filtering effect. As we know, the NPR structure is composed of two PCs and a PD-ISO. By rotating the PCs, an artificial birefringence-induced spectral filter effect may be formed,originating from the weak intra-cavity birefringence of the passive fiber.[27]Therefore,NPR has a double role: it plays a role in mode-locking and a role in achieving multi-wavelength lasing. In order to confirm that multi-wavelength operation is caused by stress birefringence, we also measured the output spectra of multi-wavelength continuous-wave(CW)lasing by adjusting the pump powers.As can be seen in Fig.6,the wavelength spacing between adjacent CW lasing peaks is~1.8 nm,which is consistent with that in mode-locked lasing. The lasing peaks are located in the 1038 nm waveband,and the number of multi-wavelength peaks increases with the pump power.In addition, we use a self-consistent calculation to verify that the wavelength spacing is introduced by the stress birefringence due to the passive fiber. The wavelength spacing can be described by the formulaλ=λ2/(BL), whereλdenotes the central wavelength,Lis the cavity length andBis the strength of the SMF.[28]Accord to the experimental results,we are able to determine thatλ=1.8 nm,L=311.3 m, andλ=1038 nm. Thus, the birefringence should be 0.2×10?5,which is very close to the birefringence of the SMF. Therefore,the experimental and computational results show that the passive fiber with low stress birefringence is responsible for multi-wavelength lasing in this experiment.

    Fig.6. Multiwavelength lasing at different pump powers.

    4. Conclusions

    In summary,multi-wavelength DSR pulses have been experimentally achieved in an all-normal-dispersion YDFL with a long cavity. Benefiting from the spectral filter effect induced by the low stress birefringence of the passive fiber in the NPR-based fiber laser,mode-locked and multi-wavelength lasing were achieved simultaneously. By adjusting the pump power and PCs,the multi-wavelength DSR can operate in different wavebands. When the DSR works in the region of the 1038 nm waveband,the pulse duration can broaden from 2 ns to 37.7 ns. The maximum output pulse energy is 15.27 nJ at 500 mW. When the multi-wavelength DSR works in the 1038 nm and 1080 nm wavebands, the pulse duration can be tuned from 2.3 ns to 10.5 ns and the pulse energy can be increased from 3 nJ to 9.7 nJ. The emergence of the 1080 nm waveband is attributed to the SRS effect. Our work might help a deeper insight to be gained into the nonlinear dynamics of square-wave pulses in all-normal-dispersion YDFLs.

    猜你喜歡
    婕妤曙光
    Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
    曙光
    Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
    興業(yè)路的曙光
    瑞安市馬嶼鎮(zhèn)清祥小學“融適三原色”課程方案
    童心童繪
    楊曙光作品
    曙光
    赤水源(2018年6期)2018-12-06 08:38:12
    曙光照耀
    當代音樂(2018年6期)2018-10-21 21:28:01
    充電樁行業(yè)扭虧曙光初現(xiàn)?
    能源(2018年7期)2018-09-21 07:56:22
    精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产精品麻豆| 日日啪夜夜爽| 午夜老司机福利剧场| av免费在线看不卡| a级毛片在线看网站| 久久久精品免费免费高清| 国产亚洲一区二区精品| 黄色怎么调成土黄色| 少妇人妻久久综合中文| 99视频精品全部免费 在线| 国产精品麻豆人妻色哟哟久久| 秋霞在线观看毛片| 亚洲情色 制服丝袜| 青春草亚洲视频在线观看| 高清av免费在线| 亚洲欧洲日产国产| 国产一区亚洲一区在线观看| 最黄视频免费看| 亚洲天堂av无毛| 香蕉国产在线看| 汤姆久久久久久久影院中文字幕| 亚洲精品日韩在线中文字幕| 亚洲av欧美aⅴ国产| 纵有疾风起免费观看全集完整版| 蜜桃在线观看..| 久久久精品区二区三区| 插逼视频在线观看| h视频一区二区三区| 夜夜爽夜夜爽视频| 亚洲精品456在线播放app| 又黄又粗又硬又大视频| 2021少妇久久久久久久久久久| 午夜老司机福利剧场| 综合色丁香网| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区黑人 | 久久国内精品自在自线图片| √禁漫天堂资源中文www| 一区在线观看完整版| 中文字幕另类日韩欧美亚洲嫩草| 赤兔流量卡办理| 久久久久久久国产电影| 国内精品宾馆在线| 精品第一国产精品| 国产男女内射视频| 亚洲欧美成人综合另类久久久| 婷婷色麻豆天堂久久| 亚洲av电影在线进入| 日韩视频在线欧美| 国产亚洲av片在线观看秒播厂| av黄色大香蕉| 午夜影院在线不卡| 成年动漫av网址| 美女中出高潮动态图| 激情视频va一区二区三区| 好男人视频免费观看在线| 看免费av毛片| 一二三四中文在线观看免费高清| 婷婷色综合www| 午夜老司机福利剧场| 视频中文字幕在线观看| 精品久久国产蜜桃| 激情五月婷婷亚洲| 亚洲精品久久午夜乱码| 黑人猛操日本美女一级片| 少妇被粗大猛烈的视频| 欧美精品一区二区大全| 国产精品 国内视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品一区二区免费开放| 精品国产露脸久久av麻豆| 18+在线观看网站| 涩涩av久久男人的天堂| 国产69精品久久久久777片| 婷婷色综合www| 久久99热这里只频精品6学生| 中文精品一卡2卡3卡4更新| av免费观看日本| 男女下面插进去视频免费观看 | 亚洲欧洲精品一区二区精品久久久 | 波野结衣二区三区在线| 日韩精品免费视频一区二区三区 | 色网站视频免费| 日韩成人伦理影院| 美女中出高潮动态图| 热99久久久久精品小说推荐| 国产伦理片在线播放av一区| 国产探花极品一区二区| 夫妻性生交免费视频一级片| 精品福利永久在线观看| 国产毛片在线视频| 日韩视频在线欧美| 热99久久久久精品小说推荐| 黄色配什么色好看| 最近中文字幕2019免费版| av有码第一页| 熟女av电影| 91精品三级在线观看| 国产高清不卡午夜福利| 伊人亚洲综合成人网| 免费观看在线日韩| 日本黄色日本黄色录像| 日韩欧美一区视频在线观看| 极品少妇高潮喷水抽搐| 婷婷成人精品国产| 水蜜桃什么品种好| 国产亚洲精品久久久com| 中文字幕av电影在线播放| 成人漫画全彩无遮挡| 啦啦啦在线观看免费高清www| 观看av在线不卡| 欧美亚洲 丝袜 人妻 在线| videosex国产| 欧美精品高潮呻吟av久久| 性色av一级| 亚洲人与动物交配视频| 欧美国产精品va在线观看不卡| 少妇猛男粗大的猛烈进出视频| 国产综合精华液| 国产片内射在线| 五月玫瑰六月丁香| 伊人亚洲综合成人网| 亚洲在久久综合| 欧美成人午夜精品| 国产老妇伦熟女老妇高清| 久久精品国产综合久久久 | 精品人妻一区二区三区麻豆| 精品一区二区三卡| 亚洲精品久久成人aⅴ小说| 国产精品人妻久久久久久| 91精品三级在线观看| 欧美日韩综合久久久久久| 母亲3免费完整高清在线观看 | 建设人人有责人人尽责人人享有的| 水蜜桃什么品种好| 亚洲精品成人av观看孕妇| 亚洲精品456在线播放app| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 久久精品人人爽人人爽视色| 中文字幕另类日韩欧美亚洲嫩草| 国产免费现黄频在线看| 你懂的网址亚洲精品在线观看| 一级,二级,三级黄色视频| 久久久久精品久久久久真实原创| xxx大片免费视频| 成人黄色视频免费在线看| 亚洲av国产av综合av卡| 纵有疾风起免费观看全集完整版| 亚洲第一区二区三区不卡| 永久网站在线| 久久人妻熟女aⅴ| a级毛片在线看网站| 最新中文字幕久久久久| 中文精品一卡2卡3卡4更新| 国产精品一区二区在线不卡| 精品卡一卡二卡四卡免费| 亚洲国产最新在线播放| 午夜91福利影院| 美国免费a级毛片| 99热6这里只有精品| 亚洲伊人色综图| kizo精华| 肉色欧美久久久久久久蜜桃| 夫妻性生交免费视频一级片| 夫妻性生交免费视频一级片| 天堂中文最新版在线下载| 国产精品国产三级专区第一集| 精品一区二区免费观看| 极品人妻少妇av视频| 国产成人免费观看mmmm| 亚洲av男天堂| 黑人高潮一二区| 啦啦啦在线观看免费高清www| 777米奇影视久久| 九色成人免费人妻av| 多毛熟女@视频| 久久ye,这里只有精品| 丰满迷人的少妇在线观看| 两个人看的免费小视频| 日本av手机在线免费观看| 黄片播放在线免费| 啦啦啦中文免费视频观看日本| 国产综合精华液| 高清不卡的av网站| 99久久综合免费| 一级毛片我不卡| av不卡在线播放| www日本在线高清视频| 九色亚洲精品在线播放| 少妇熟女欧美另类| 内地一区二区视频在线| 高清在线视频一区二区三区| 国产淫语在线视频| 久久精品国产亚洲av涩爱| 永久免费av网站大全| 亚洲欧洲国产日韩| 久久热在线av| www日本在线高清视频| 亚洲国产成人一精品久久久| 日韩电影二区| 午夜免费观看性视频| 国产一区二区三区综合在线观看 | 国产欧美另类精品又又久久亚洲欧美| 91在线精品国自产拍蜜月| 中文字幕精品免费在线观看视频 | 国产永久视频网站| 日韩av免费高清视频| 老司机影院成人| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 涩涩av久久男人的天堂| 国产精品不卡视频一区二区| 人成视频在线观看免费观看| 国产高清三级在线| 男女无遮挡免费网站观看| 80岁老熟妇乱子伦牲交| 99re6热这里在线精品视频| 成人亚洲精品一区在线观看| 免费女性裸体啪啪无遮挡网站| 久久免费观看电影| av播播在线观看一区| 亚洲欧美成人综合另类久久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品免费大片| 丰满迷人的少妇在线观看| 少妇猛男粗大的猛烈进出视频| 一本大道久久a久久精品| 97精品久久久久久久久久精品| 美女视频免费永久观看网站| 国产日韩欧美亚洲二区| 久热这里只有精品99| 欧美+日韩+精品| 欧美日韩综合久久久久久| 国产永久视频网站| av免费观看日本| 国产精品国产三级国产av玫瑰| √禁漫天堂资源中文www| 99久久精品国产国产毛片| 国产爽快片一区二区三区| 久久国产精品男人的天堂亚洲 | 亚洲欧洲国产日韩| 亚洲情色 制服丝袜| 亚洲av免费高清在线观看| 中文字幕制服av| 欧美+日韩+精品| 如日韩欧美国产精品一区二区三区| 国产亚洲最大av| 国产精品熟女久久久久浪| 亚洲少妇的诱惑av| 五月开心婷婷网| 69精品国产乱码久久久| 成人影院久久| 午夜91福利影院| 韩国av在线不卡| 国产深夜福利视频在线观看| 91精品三级在线观看| 只有这里有精品99| 中国国产av一级| 老司机亚洲免费影院| 99久久人妻综合| www.av在线官网国产| 如日韩欧美国产精品一区二区三区| 欧美国产精品一级二级三级| 日本欧美国产在线视频| 亚洲av综合色区一区| 国产一区有黄有色的免费视频| 国产毛片在线视频| 久久人妻熟女aⅴ| 欧美人与性动交α欧美精品济南到 | 99久国产av精品国产电影| 国产无遮挡羞羞视频在线观看| tube8黄色片| 亚洲精品美女久久久久99蜜臀 | 插逼视频在线观看| 大香蕉久久成人网| 一本—道久久a久久精品蜜桃钙片| 国产精品女同一区二区软件| 国语对白做爰xxxⅹ性视频网站| 麻豆乱淫一区二区| av在线老鸭窝| 日本黄色日本黄色录像| 精品福利永久在线观看| 亚洲欧洲国产日韩| 久久久久人妻精品一区果冻| 欧美人与性动交α欧美软件 | 久久久亚洲精品成人影院| 极品人妻少妇av视频| 久久午夜综合久久蜜桃| 成年人午夜在线观看视频| 免费少妇av软件| 亚洲av日韩在线播放| 2018国产大陆天天弄谢| 熟女人妻精品中文字幕| 午夜视频国产福利| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久 | 午夜久久久在线观看| 欧美日韩国产mv在线观看视频| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 十分钟在线观看高清视频www| 国产免费一区二区三区四区乱码| 婷婷色av中文字幕| 久久精品aⅴ一区二区三区四区 | 国产亚洲av片在线观看秒播厂| 成人亚洲欧美一区二区av| 成人黄色视频免费在线看| 亚洲内射少妇av| 丰满少妇做爰视频| 婷婷色av中文字幕| 国产午夜精品一二区理论片| 免费观看在线日韩| 亚洲欧洲国产日韩| 午夜免费鲁丝| 国产日韩欧美视频二区| 日韩视频在线欧美| 国产成人精品在线电影| 街头女战士在线观看网站| 多毛熟女@视频| 黄色视频在线播放观看不卡| 亚洲精品中文字幕在线视频| 午夜福利视频精品| 日韩一区二区三区影片| 久久亚洲国产成人精品v| 男女边摸边吃奶| 欧美性感艳星| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 成人国产av品久久久| √禁漫天堂资源中文www| 国产精品99久久99久久久不卡 | 亚洲国产欧美在线一区| 精品久久久精品久久久| 国产精品久久久av美女十八| 成人毛片a级毛片在线播放| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| 精品一品国产午夜福利视频| 国产有黄有色有爽视频| 久久久久精品久久久久真实原创| 在线观看美女被高潮喷水网站| 狂野欧美激情性bbbbbb| 男人添女人高潮全过程视频| 香蕉丝袜av| 七月丁香在线播放| 午夜老司机福利剧场| av视频免费观看在线观看| 国产精品成人在线| 日韩av免费高清视频| 在现免费观看毛片| 久久久国产欧美日韩av| 90打野战视频偷拍视频| 最黄视频免费看| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| av网站免费在线观看视频| 亚洲综合色网址| 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久| 欧美日韩综合久久久久久| 国产国拍精品亚洲av在线观看| 午夜激情av网站| 青春草视频在线免费观看| 久久99精品国语久久久| 日日爽夜夜爽网站| tube8黄色片| 一级,二级,三级黄色视频| 免费观看性生交大片5| 国产深夜福利视频在线观看| 永久网站在线| 亚洲欧洲精品一区二区精品久久久 | 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 纵有疾风起免费观看全集完整版| 制服人妻中文乱码| 久久久久久人妻| 男女免费视频国产| 国产精品人妻久久久影院| 少妇 在线观看| 18+在线观看网站| 又大又黄又爽视频免费| 老司机影院成人| 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 亚洲av免费高清在线观看| av在线老鸭窝| 天堂中文最新版在线下载| 亚洲av福利一区| 欧美日韩av久久| 国产精品国产av在线观看| 视频在线观看一区二区三区| 久久ye,这里只有精品| 国产精品久久久久久精品电影小说| 国产色婷婷99| 22中文网久久字幕| av天堂久久9| 999精品在线视频| 国产欧美亚洲国产| 26uuu在线亚洲综合色| 好男人视频免费观看在线| av黄色大香蕉| 日本黄大片高清| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 国产成人精品无人区| 男女边吃奶边做爰视频| a 毛片基地| 80岁老熟妇乱子伦牲交| 亚洲一区二区三区欧美精品| 美女xxoo啪啪120秒动态图| 中文字幕亚洲精品专区| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 内地一区二区视频在线| 大话2 男鬼变身卡| 色视频在线一区二区三区| 在线观看人妻少妇| 黄片无遮挡物在线观看| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 欧美bdsm另类| av国产久精品久网站免费入址| 日本欧美视频一区| 国产一区二区三区av在线| 日本欧美国产在线视频| 精品人妻熟女毛片av久久网站| 国产欧美另类精品又又久久亚洲欧美| a级毛色黄片| 日韩在线高清观看一区二区三区| 成人毛片60女人毛片免费| 搡老乐熟女国产| 伊人久久国产一区二区| 天天躁夜夜躁狠狠久久av| 美女福利国产在线| 午夜视频国产福利| 制服诱惑二区| 精品卡一卡二卡四卡免费| 青春草视频在线免费观看| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 999精品在线视频| 精品国产一区二区三区久久久樱花| 大片电影免费在线观看免费| 天堂俺去俺来也www色官网| 国产精品一区www在线观看| 欧美日韩视频高清一区二区三区二| av黄色大香蕉| 美女脱内裤让男人舔精品视频| 久久影院123| 国产一区有黄有色的免费视频| 男人操女人黄网站| 老司机影院成人| 欧美激情 高清一区二区三区| 中文欧美无线码| 丰满少妇做爰视频| 一区二区日韩欧美中文字幕 | 国产欧美日韩综合在线一区二区| 日韩免费高清中文字幕av| 在线观看一区二区三区激情| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 亚洲国产精品999| 在线观看三级黄色| 99久久人妻综合| 美女主播在线视频| 三级国产精品片| 免费观看av网站的网址| 免费观看性生交大片5| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 免费观看av网站的网址| 伦理电影免费视频| 老女人水多毛片| 国产极品粉嫩免费观看在线| 少妇 在线观看| 精品国产露脸久久av麻豆| av又黄又爽大尺度在线免费看| 女人被躁到高潮嗷嗷叫费观| 国产免费一级a男人的天堂| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕 | 国产视频首页在线观看| 久久久国产欧美日韩av| 69精品国产乱码久久久| 免费黄色在线免费观看| 人人妻人人爽人人添夜夜欢视频| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| freevideosex欧美| 欧美日韩国产mv在线观看视频| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 黄网站色视频无遮挡免费观看| 熟女电影av网| 日韩成人av中文字幕在线观看| 免费少妇av软件| 看非洲黑人一级黄片| 最近2019中文字幕mv第一页| 免费高清在线观看日韩| 9色porny在线观看| 国产又爽黄色视频| 最新中文字幕久久久久| 少妇人妻精品综合一区二区| 国产av码专区亚洲av| 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 国产一区二区在线观看av| 麻豆精品久久久久久蜜桃| 久久久国产精品麻豆| 制服人妻中文乱码| 国产成人精品一,二区| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | 亚洲国产精品一区三区| 少妇精品久久久久久久| 99香蕉大伊视频| 在线 av 中文字幕| 91精品三级在线观看| 国产精品三级大全| 97在线人人人人妻| 精品国产乱码久久久久久小说| 99热全是精品| 欧美日韩综合久久久久久| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 丝袜人妻中文字幕| 久久国产亚洲av麻豆专区| 亚洲精品一二三| 中文精品一卡2卡3卡4更新| 亚洲精品中文字幕在线视频| 午夜福利网站1000一区二区三区| 欧美性感艳星| 成年动漫av网址| 日日撸夜夜添| 午夜精品国产一区二区电影| 久久久亚洲精品成人影院| 国产精品女同一区二区软件| 欧美3d第一页| 中文字幕人妻丝袜制服| 亚洲欧美日韩卡通动漫| 一区二区日韩欧美中文字幕 | 国产一区二区在线观看av| 99热6这里只有精品| 九草在线视频观看| 国产免费现黄频在线看| 午夜激情久久久久久久| 韩国av在线不卡| 人体艺术视频欧美日本| 久久久久久久精品精品| 国产色婷婷99| 观看av在线不卡| 国产精品99久久99久久久不卡 | 天天操日日干夜夜撸| 18禁在线无遮挡免费观看视频| 亚洲国产看品久久| 国产国语露脸激情在线看| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 在线观看免费高清a一片| 国产av一区二区精品久久| 久久久久久伊人网av| 亚洲成人一二三区av| 狠狠婷婷综合久久久久久88av| 久久99热这里只频精品6学生| 两个人免费观看高清视频| 少妇人妻久久综合中文| 蜜桃国产av成人99| 欧美日韩一区二区视频在线观看视频在线| 亚洲情色 制服丝袜| 国产午夜精品一二区理论片| av片东京热男人的天堂| 韩国高清视频一区二区三区| 伊人亚洲综合成人网| 一级毛片我不卡| 亚洲在久久综合| 中文字幕最新亚洲高清| 青春草视频在线免费观看| 亚洲av.av天堂| 中文字幕制服av| 成人黄色视频免费在线看| 亚洲精品中文字幕在线视频| 久久女婷五月综合色啪小说| 91精品国产国语对白视频| 捣出白浆h1v1| 天堂8中文在线网| 日本黄色日本黄色录像| 在线观看免费高清a一片| 成人亚洲精品一区在线观看| 精品卡一卡二卡四卡免费| 国产高清不卡午夜福利| av电影中文网址| 大话2 男鬼变身卡| 丝袜脚勾引网站| 视频在线观看一区二区三区| 99热这里只有是精品在线观看| 亚洲色图 男人天堂 中文字幕 | 18禁国产床啪视频网站| 综合色丁香网| 亚洲中文av在线| 国内精品宾馆在线| 国产熟女欧美一区二区| 亚洲 欧美一区二区三区| 亚洲成av片中文字幕在线观看 | 丝袜人妻中文字幕| 夜夜骑夜夜射夜夜干| 在线天堂中文资源库| 免费观看无遮挡的男女|