• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Behaviors of thermalization for the Fermi–Pasta–Ulam–Tsingou system with small number of particles?

    2021-06-26 03:03:34ZhenjunZhang張振俊JingKang康靜andWenWen文文
    Chinese Physics B 2021年6期
    關(guān)鍵詞:文文

    Zhenjun Zhang(張振俊), Jing Kang(康靜), and Wen Wen(文文)

    College of Science,Hohai University,Nanjing 210098,China

    Keywords: FPUT system,thermalization,small number of particles

    1. Introduction

    To confirm the connection between nonlinearity and ergodicity in a classical Hamiltonian system with many degrees of freedom, Fermi in collaboration with Pasta, Ulam, and Tsingou(FPUT)performed the first numerical experiment via a one-dimensional harmonic chain coupled with cubic or quartic potentials.[1]They expected that the nonlinearity would lead to a thermalized state,i.e., a state in which the influence of the initial modes disappears and all modes are excited equally on average. Instead of the expected irreversible process of thermalization,the system exhibits a quasiperiodic recurrences to the initial state. Their work has stimulated prolific activities for several decades in the study of the temporal evolution of an initially localized energy excitation in various nonlinear systems.[2–38]

    Izraielev and Chirikov predicted there is an energy threshold, above which the FPUT system can reach thermalization.[3]Such concept, also known as the Chirikov overlap criterion, is based on the fact that the nonlinearity changes the linear dispersion relation, and the resonant condition in frequency is then modified. When the nonlinearity becomes large enough, a mechanism of “overlap of frequencies”may happen. Fast thermalization has been subsequently confirmed by different numerical studies.[4,8,9,14,15]However,whether the FPUT system can be thermalized for arbitrary small nonlinearity has not been settled clearly. Recently,resonant wave–wave interaction theory has been applied to discuss this problem.[39–47]According to this theory,the long time dynamics is ruled by exact resonances in weak nonlinear regime.Thermalization is achieved by the nontrivial resonances.In the thermodynamic limit,if the nontrivialn-wave resonances exist and dominate the thermalization,the thermalization time-scale should be the derivation of the correspondingn-wave kinetic equation, which lead to the thermalization timeteqdepending on system’s energy densityεscales asteq∝ε?(n?2).[41,45]For the FPUT system in the thermodynamic limit, the lowest order nontrivial resonances are four-wave resonances, which result inteq∝ε?2. Numerical simulations for large number of particles show that the results are mostly consistent with theoretical predictions.[45,46]Besides, the thermalization behaviors for one-dimensional disordered lattices systems in the thermodynamic limit have been studied recently.[48,49]For the FPUT system with small number of particles using periodic boundary conditions, the lowest order nontrivial resonances were found to be six-wave resonances.[42,43,46]However, then-wave kinetic equation can be rigorously derived only in the thermodynamic limit. For the FPUT system with small number of particles,deriving a discrete version of the kinetic equation poses significant mathematical problems.[46]Therefore,they made the conjecture that the time scale of thermalization corresponding to the six-wave interaction for small number of particles is equivalent to that for the thermodynamic limit,which leads toteq∝ε?4. This scaling law has been verified by their numerical simulations in the range of nonlinearity they studied.[42,43,46]Obviously, the discrete case stands on a less rigorous ground and further work is definitely needed.

    In this paper, we study the behaviors of thermalization for the FPUT system in a wider range of weak nonlinearity compared with previous studies.[42,43]We find the scalingteq∝ε?4observed in Refs. [42,43] is only established within a certain range of nonlinearity. In this range of nonlinearity, energies can transfer from the initial excited modes to other modes continuously. This energy transport process happens via the nontrivial six-wave resonances,[42,43]which hence lead toteq∝ε?4. With a further decreasing nonlinearity, a crossover fromteq∝ε?4to a steeper growth will appear. In the very weakly nonlinear regime, energy transport process becomes obviously different. Energies on low frequency modes are found to be frozen on large time scales. It indicates that these low frequency modes cannot take part in the energy sharing for a long time. Therefore,resonant wave–wave interaction theory no longer works for energy transport in the very weakly nonlinear regime. In this case, redistribution of mode energies happens through the resonances of high frequency modes,which lead to the deviation fromteq∝ε?4.

    2. Model and method of numerical experiments

    Hereqjis the displacement of the particlejfrom its equilibrium position andpjis the associated momentum.Nis the particle number of the system.αandβare positive constants.α/=0,β=0 andα=0,β/=0 correspond to theα-FPUT model andβ-FPUT model, respectively. The relevant quantities determining the dynamics areα2ε[30]andβε[31]forα-FPUT model andβ-FPUT model, respectively. A more systematic definition of nonlinearity strength for one-dimensional lattices can be found in Ref. [50]. In the linear case (α=0,β=0)with periodic boundaries(qN=q0),the normal modes are given by

    wherePkandQkare the momentum and amplitude of thek-th normal mode,respectively.

    The dispersion relation(frequencyversusmode indexk)i

    We introduce the following quantity as an indicator of thermalization[8]

    where

    in which

    We use an SABA2C symplectic algorithm[51]to integrate the equations of motion derived by the Hamiltonian (1). Energy is initially equidistributed among some of the lowest frequency linear modes. The time step was set to 0.1 in all simulations, and it was checked that from beginning to the end of the simulation the relative energy error keeps smaller than 10?5. Note that the relevant quantities determining the strength of nonlinearity areα2ε[30]andβε[31]forα-FPUT model andβ-FPUT model,respectively.Therefore,it is equivalent to study the scaling ofα(β)by fixingεor that ofεby fixingα(β). Here,without loss of generality,we vary the energy densityεand fixα=0.33[30]andβ=1.0 forα-FPUT model andβ-FPUT model, respectively. Particle number of the system isN=32. In order to suppress fluctuations, the result ofξ(t) is averaged on 50 different random phases for eachε. We use〈ξ(t)〉to denote the averaging results.

    3. Numerical results

    In Fig. 1(a), we show the results of〈ξ(t)〉for different energy densityεforα-FPUT model in semilog scale. Modesk=1,2,30,31 are initially excited for allε. The curves start at the value 4/(N ?1) then settle to intermediate values for a transient interval of time that increases as the energy densityεdecreases. After that, the curves grow gradually and finally tend to 1.0 with the time increasing. In order to obtain the scaling law of thermalization timeteqdepending onε,we introduce a threshold〈ξ〉eqto estimate the time it takes for the system to reach thermalization. Specifically, we have defined the time asteqin which〈ξ(t)〉reaches the value of〈ξ〉eq=0.99. We find the scaling law ofteqdepending onεis quite insensitive to the choice of the value of〈ξ〉eq. This can be seen from the rescaled results of〈ξ(t)〉for differentεshown in Fig. 1(b). We rescale〈ξ(t)〉for differentεas the time is divided by a suitable factor so that they superpose at〈ξ(t)〉=0.9. One can see that all curves nearly collapse to a single one when〈ξ(t)〉is greater than 0.7.

    Fig. 1. (a) The dependence of 〈ξ(t)〉 on time t for different energy density ε for α-FPUT model in semilog scale. The curves from left to right at 〈ξ(t)〉=0.8 are for ε =0.1, 0.08, 0.05, 0.035, 0.025, 0.02, and 0.015,respectively. Modes k=1,2,30,31 are initially excited for each ε. (b)The curve of ε=0.035 is kept fixed. The other curves are rescaled as the time is divided by a suitable factor so that they superpose at〈ξ(t)〉=0.9.

    Fig.2.The results of thermalization time teq depending on ε in log–log scale for α-FPUT model.

    The results ofteqdepending onεforα-FPUT model are shown in Fig.2.One can see that a power law scalingteq∝ε?4is observed within a certain range ofε. This scaling has been found in Ref.[42]. However, a deviation fromteq∝ε?4will appear with a further decreasingε.This deviation has not been observed in Ref.[42]because the strength of nonlinearity they studied is not small enough. One can see from Fig.2 that an obvious deviation fromteq∝ε?4appears atεc≈0.025.Therefore,α2εc≈(0.33)2×0.025≈0.0027. A deviation fromteq∝ε?4can be observed only when the value ofα2εis less than 0.0027. However, one can see from Ref. [42] that the smallest value ofα2ε ≈(0.06)2×1.0=0.0036,above which only the scalingteq∝ε?4can be observed.The deviation fromteq∝ε?4is found to be independent of the number of the initially excited modes.

    The results ofteqdepending onεforβ-FPUT model in log–log scale are shown in Fig.3.The scalingteq∝ε?4,which has been found in Ref.[43], is observed only when the value ofεis grater thanεc≈0.014. With a further decreasingε, a deviation fromteq∝ε?4appears.Therefore,this deviation can be observed only when the value ofβεis less than 0.014. In Ref.[43],the smallest value ofβε ≈0.02,above which only the scalingteq∝ε?4can be observed.

    Fig.3.The results of thermalization time teq depending on ε in log–log scale for β-FPUT model.

    According to the resonant wave–wave interaction theory,[41]all modes of the FPUT system with small number of particles for periodic boundary conditions are interconnected via the nontrivial six-wave resonances.[42,43]Therefore, energies can exchange among all modes continuously through the nontrivial wave–wave interaction until reaching the thermalized state. In other words,energy on each mode should varies continuously with time until reaching the thermalized state if energy can spread via the nontrivial wave–wave interaction.Figure 4(a)gives the results ofEk(t)depending ontwith differentkforα-FPUT model atε=0.05. It is seen that the energy on each mode varies continuously with time,and fnially approaches to the expected value 0.05,which means thermalization has reached. Figure 4(b) gives the results ofEk(t)versus kforε=0.05 at different timetforα-FPUT model.One can see that each mode at different time owns different energy. The above results indicate that energies can interchange among all modes continuously. This energy transfer behavior is consistent with the resonant wave–wave interaction theory. Therefore,resonant wave–wave interaction theory works well in this range of nonlinearity. The lowest order nontrivial resonances have been found to be six-wave resonances,[42,43]which hence lead to the power law scalingteq∝ε?4. However,energy transport process becomes obviously different in

    Fig.4. (a)TheresultsofEk(t)dependingont withdifferent k for α-FPUT model at ε=0.05. Thecurves fromtop tobottomatt =104 are fork=1,5,10,and 16,respectively. Modes k=1,2,30,31 are initially excited. (b)Parameters are the same as those in panel(a),but now for the results of Ek(t)versus k at different time t.

    Fig.5. (a)The resultsofEk(t)depending on twithdifferent k for α-FPUT model atε=0.01.The curvesfromtop to bottom att=104 are for k=1,5,10,and 16,respectively. Modes k=1,2,30,31 have been initially excited.(b)Parameters are the same as those in panel(a),but now for the results of Ek(t)versus k at different time t.

    In order to obtain the scaling law in the very weakly nonlinear regime,we study the normalized high frequency energyσ(t)=∑21k=11Fk(t), as has been studied in Ref. [30] for theα-FPUT system with fixed boundary conditions. For theα-FPUT system with fixed boundary conditions, the results ofσ(t) for differentεare found to be fitted by a power lawσ(t)∝Dtγ.[30]Both the exponentγand the coefficientDdepend onε.According to this power law,the values ofteqcan be obtained only via relatively short time scales even in the very weakly nonlinear regime. The thermalization timeteqdepending onεis found to beteq∝10c/εb, with suitable constantscandb, in the very weakly nonlinear regime.[30]However,the dynamical results ofσ(t)for the FPUT system with periodic boundary conditions are different from those with fixed boundary conditions. In Fig. 6, we plot the results ofσ(t)versus tfor two values ofε=0.008, 0.004. Forε=0.008,one can see thatσ(t) does not grow with time with a period of time. It suggests that even the high frequency modes are frozen for a period of time. Afterwards,σ(t)grows continuously with time.Forε=0.004,σ(t)keeps unchanged even up tot=1010.σ(t)no longer displays a power law for the FPUT system with periodic boundary conditions in the very weakly nonlinear regime. Therefore, we cannot obtain the values ofteqthrough relatively short time scales for very weak nonlinearity throughσ(t). The scaling law for the FPUT system with small number of particles for periodic boundary conditions in the very weakly nonlinear regime remains a very difficult problem.

    Fig. 6. The results of σ(t) depending on t in log–log scale for α-FPUT model. The curves from top to bottom at t =106 are for ε =0.008, and 0.004,respectively.

    4. Conclusion

    In this paper, we studied numerically the behaviors of thermalization in the range of weak nonlinearity forα-FPUT model andβ-FPUT model withN=32. We find the scalingteq∝ε?4,which has been observed in Refs.[42,43],is only established within a certain range of nonlinearity for both models. In this range of nonlinearity, energies can transfer from the initial excited modes to other modes continuously. This energy transport process happens via the nontrivial six-wave resonances,which hence lead toteq∝ε?4. With a further decreasing nonlinearity, a crossover fromteq∝ε?4to a steeper growth will appear. Energies are found to be frozen on low frequency modes for large time scales in the very weakly nonlinear regime, which indicates that the resonant wave–wave interaction theory no longer works in the very weakly nonlinear regime. In this case, redistribution of mode energies happens through the resonances of the high frequency modes,which lead to the deviation from the scaling lawteq∝ε?4.Finally, we stress that the scaling law for the FPUT system with small number of particles for periodic boundary conditions in the very weakly nonlinear regime remains a very difficult problem. We hope our work can be useful in motivating more studies in this direction.

    猜你喜歡
    文文
    CLIMATE IN CRISIS
    TEA LEAVES
    Auto Ad Infringement
    Cash Withheld
    Breaking the Chain
    TEA LEAVES
    茶話(huà)會(huì)
    TEA LEAVES
    Power Down
    China’s Other Vaccine Drive
    亚洲在线观看片| 色尼玛亚洲综合影院| 国产成人a∨麻豆精品| www日本黄色视频网| 精品一区二区免费观看| 99热网站在线观看| 国内揄拍国产精品人妻在线| 神马国产精品三级电影在线观看| avwww免费| 最新中文字幕久久久久| 黑人高潮一二区| 日本a在线网址| 一本一本综合久久| 一级av片app| 亚洲精品乱码久久久v下载方式| 亚洲三级黄色毛片| 国产乱人偷精品视频| 久久精品国产鲁丝片午夜精品| 精品久久久久久成人av| 别揉我奶头 嗯啊视频| 麻豆av噜噜一区二区三区| 午夜福利在线观看吧| 插阴视频在线观看视频| 男女之事视频高清在线观看| 亚洲av免费在线观看| 欧美三级亚洲精品| 不卡视频在线观看欧美| 午夜精品一区二区三区免费看| 国产乱人偷精品视频| 极品教师在线视频| 亚洲av一区综合| 丰满人妻一区二区三区视频av| 久久久久久久久大av| 99热只有精品国产| 亚洲欧美日韩无卡精品| 最好的美女福利视频网| 国产高清视频在线播放一区| 国产精品亚洲一级av第二区| 变态另类成人亚洲欧美熟女| 成人欧美大片| 精品人妻一区二区三区麻豆 | 一区二区三区免费毛片| 国产成人福利小说| 亚洲av一区综合| av卡一久久| 久久韩国三级中文字幕| 我要看日韩黄色一级片| 欧美不卡视频在线免费观看| 午夜精品国产一区二区电影 | 亚洲国产精品久久男人天堂| 色尼玛亚洲综合影院| 高清毛片免费看| 校园春色视频在线观看| 国产69精品久久久久777片| 一级毛片我不卡| 99riav亚洲国产免费| 精品无人区乱码1区二区| 黄色欧美视频在线观看| 国产精品乱码一区二三区的特点| 色哟哟哟哟哟哟| 男人舔奶头视频| 免费电影在线观看免费观看| 我要看日韩黄色一级片| 好男人在线观看高清免费视频| 国产精品嫩草影院av在线观看| 午夜免费激情av| 一级毛片我不卡| 桃色一区二区三区在线观看| 日本熟妇午夜| 人妻少妇偷人精品九色| 精品人妻熟女av久视频| 色尼玛亚洲综合影院| 国产成人freesex在线 | 亚洲乱码一区二区免费版| 日日撸夜夜添| 嫩草影院新地址| 久久午夜福利片| 嫩草影院新地址| 免费观看的影片在线观看| 可以在线观看的亚洲视频| 亚洲图色成人| 可以在线观看毛片的网站| 99久久成人亚洲精品观看| 亚洲av美国av| 少妇丰满av| 男女边吃奶边做爰视频| 免费观看的影片在线观看| 成人亚洲精品av一区二区| av黄色大香蕉| 精品久久久久久久人妻蜜臀av| 日日摸夜夜添夜夜添av毛片| 午夜日韩欧美国产| 不卡视频在线观看欧美| 国产精品国产高清国产av| 国产精品亚洲一级av第二区| 欧美日韩在线观看h| 亚洲av美国av| 亚洲国产精品成人综合色| 18禁在线无遮挡免费观看视频 | 国产高潮美女av| 亚洲中文日韩欧美视频| 国产午夜福利久久久久久| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 成年免费大片在线观看| 免费一级毛片在线播放高清视频| 九九在线视频观看精品| 男女做爰动态图高潮gif福利片| 亚洲av熟女| 非洲黑人性xxxx精品又粗又长| 高清毛片免费看| 日本一本二区三区精品| 淫妇啪啪啪对白视频| 人妻丰满熟妇av一区二区三区| 国产av一区在线观看免费| 欧美最黄视频在线播放免费| 久久久久久久久中文| 亚洲欧美成人精品一区二区| 成人精品一区二区免费| 亚洲第一区二区三区不卡| 美女黄网站色视频| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 99热6这里只有精品| 国产大屁股一区二区在线视频| 欧美日本视频| 精品久久久噜噜| 夜夜爽天天搞| 在线观看免费视频日本深夜| av专区在线播放| 在线播放无遮挡| 亚洲欧美成人精品一区二区| 免费人成在线观看视频色| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| videossex国产| 国产成人91sexporn| 2021天堂中文幕一二区在线观| 久久久欧美国产精品| 欧美潮喷喷水| 午夜日韩欧美国产| 欧美激情久久久久久爽电影| 日本色播在线视频| 69人妻影院| 晚上一个人看的免费电影| 国产毛片a区久久久久| 天天躁日日操中文字幕| 久久6这里有精品| 久久精品国产99精品国产亚洲性色| 国产伦在线观看视频一区| 亚洲美女黄片视频| 色哟哟·www| 亚洲七黄色美女视频| 在线免费十八禁| 99热全是精品| 午夜视频国产福利| 丝袜喷水一区| 丰满乱子伦码专区| 国产欧美日韩精品亚洲av| 久久久精品欧美日韩精品| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线观看免费完整高清在 | 国内精品美女久久久久久| 久久久久久久久大av| 亚洲国产精品成人综合色| 99久国产av精品| 少妇的逼水好多| 国产老妇女一区| 日日摸夜夜添夜夜添av毛片| 精品一区二区三区人妻视频| 亚洲精品日韩在线中文字幕 | 亚洲欧美清纯卡通| 国产在视频线在精品| 国产精品不卡视频一区二区| 国产成人精品久久久久久| 亚洲av免费在线观看| 免费大片18禁| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清专用| 亚洲国产精品久久男人天堂| 国产伦精品一区二区三区四那| 寂寞人妻少妇视频99o| 1000部很黄的大片| 黑人高潮一二区| 免费人成视频x8x8入口观看| 99久国产av精品国产电影| 久久久精品大字幕| 身体一侧抽搐| avwww免费| 亚洲国产欧洲综合997久久,| 日韩精品有码人妻一区| 波野结衣二区三区在线| 最新中文字幕久久久久| 免费搜索国产男女视频| 久久久久久久久久久丰满| 天天一区二区日本电影三级| 亚洲第一区二区三区不卡| 国产午夜精品论理片| 99热精品在线国产| 婷婷精品国产亚洲av| 日韩人妻高清精品专区| 亚洲激情五月婷婷啪啪| 亚洲av第一区精品v没综合| 中文字幕免费在线视频6| 国语自产精品视频在线第100页| 99久久中文字幕三级久久日本| 亚洲四区av| 国产精品电影一区二区三区| 国产成人精品久久久久久| 久久久久久大精品| 国产精品伦人一区二区| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 久久久成人免费电影| 日韩欧美免费精品| 99久久无色码亚洲精品果冻| 黄色视频,在线免费观看| 99久久无色码亚洲精品果冻| 午夜激情欧美在线| 中文字幕精品亚洲无线码一区| 亚洲成人中文字幕在线播放| 国产免费一级a男人的天堂| 国产午夜精品久久久久久一区二区三区 | 亚洲乱码一区二区免费版| 日日摸夜夜添夜夜爱| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩综合久久久久久| 午夜福利18| 国产男靠女视频免费网站| 天堂√8在线中文| 日本爱情动作片www.在线观看 | 美女 人体艺术 gogo| 亚洲欧美中文字幕日韩二区| 人妻久久中文字幕网| 黄色日韩在线| 97超视频在线观看视频| 能在线免费观看的黄片| 国产精品不卡视频一区二区| 无遮挡黄片免费观看| 中国国产av一级| 99热6这里只有精品| 在线观看午夜福利视频| 亚洲乱码一区二区免费版| 亚洲一区二区三区色噜噜| 国产三级中文精品| 久久精品综合一区二区三区| 非洲黑人性xxxx精品又粗又长| 国产黄色视频一区二区在线观看 | 国产男靠女视频免费网站| 三级男女做爰猛烈吃奶摸视频| 国产精品电影一区二区三区| 麻豆国产97在线/欧美| 日韩精品有码人妻一区| 搡老妇女老女人老熟妇| 日韩 亚洲 欧美在线| 性欧美人与动物交配| 尾随美女入室| 无遮挡黄片免费观看| 卡戴珊不雅视频在线播放| 91精品国产九色| 亚洲国产精品久久男人天堂| 99九九线精品视频在线观看视频| 国产亚洲av嫩草精品影院| 久久人妻av系列| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 久久亚洲国产成人精品v| 日产精品乱码卡一卡2卡三| 一夜夜www| 国产视频内射| 国产色爽女视频免费观看| 久久久久国产网址| 久久精品国产清高在天天线| 亚洲精品国产av成人精品 | 午夜久久久久精精品| 国产精品一区二区三区四区免费观看 | 亚洲av第一区精品v没综合| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 联通29元200g的流量卡| 国产精品福利在线免费观看| а√天堂www在线а√下载| 真实男女啪啪啪动态图| 九九在线视频观看精品| 国产高清激情床上av| АⅤ资源中文在线天堂| 男插女下体视频免费在线播放| 久久久精品大字幕| av在线观看视频网站免费| av视频在线观看入口| 一本精品99久久精品77| 国内精品美女久久久久久| 综合色丁香网| 午夜精品一区二区三区免费看| 国产精品综合久久久久久久免费| 国产精品三级大全| 成人亚洲精品av一区二区| 亚洲成人久久性| 91久久精品国产一区二区三区| 国产成人aa在线观看| 亚洲欧美精品综合久久99| 精品久久国产蜜桃| 免费大片18禁| 最新在线观看一区二区三区| 成年版毛片免费区| 在线免费观看的www视频| 麻豆成人午夜福利视频| 亚洲无线观看免费| 精品国产三级普通话版| 插阴视频在线观看视频| 99热这里只有是精品在线观看| 国产精品乱码一区二三区的特点| 丰满人妻一区二区三区视频av| 午夜爱爱视频在线播放| 色5月婷婷丁香| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 久久久久国产网址| 在线播放无遮挡| 午夜福利在线在线| 国产精品一及| 欧美3d第一页| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 亚洲精华国产精华液的使用体验 | 国产视频一区二区在线看| 亚洲第一区二区三区不卡| 亚洲欧美成人综合另类久久久 | 国产私拍福利视频在线观看| 波多野结衣高清无吗| 哪里可以看免费的av片| 亚洲五月天丁香| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 亚洲av中文av极速乱| 亚洲av成人av| 美女cb高潮喷水在线观看| 蜜桃亚洲精品一区二区三区| 久久久午夜欧美精品| 一级黄色大片毛片| 国产黄片美女视频| 久久精品夜夜夜夜夜久久蜜豆| 免费看美女性在线毛片视频| 在线免费观看不下载黄p国产| 天天一区二区日本电影三级| 国产乱人视频| 一级毛片电影观看 | 99热这里只有是精品50| 午夜福利在线观看免费完整高清在 | 黄色一级大片看看| 精品人妻偷拍中文字幕| 日韩欧美三级三区| 美女cb高潮喷水在线观看| 精品一区二区三区av网在线观看| 一级黄色大片毛片| 九色成人免费人妻av| 少妇熟女欧美另类| 亚洲熟妇中文字幕五十中出| 国产亚洲91精品色在线| 又爽又黄无遮挡网站| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 国产精品久久久久久亚洲av鲁大| 99九九线精品视频在线观看视频| 真实男女啪啪啪动态图| av天堂在线播放| 成人无遮挡网站| 色5月婷婷丁香| 国产精品人妻久久久影院| 最新在线观看一区二区三区| 国产极品精品免费视频能看的| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 我的女老师完整版在线观看| 国产高清三级在线| 国产欧美日韩精品亚洲av| 大又大粗又爽又黄少妇毛片口| 免费高清视频大片| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 联通29元200g的流量卡| 露出奶头的视频| 国产亚洲精品综合一区在线观看| 国产精品日韩av在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 国产精品精品国产色婷婷| 尤物成人国产欧美一区二区三区| 日韩精品青青久久久久久| 激情 狠狠 欧美| 国产精品永久免费网站| 亚洲精品在线观看二区| 一区二区三区四区激情视频 | 欧美精品国产亚洲| 国产私拍福利视频在线观看| 国产黄色视频一区二区在线观看 | 久久久久久大精品| 天堂网av新在线| 精品一区二区免费观看| 精品无人区乱码1区二区| 国产精品一区二区性色av| 免费搜索国产男女视频| 看黄色毛片网站| 久久精品国产自在天天线| 久久久久性生活片| 一进一出抽搐gif免费好疼| 成年女人永久免费观看视频| 中文字幕精品亚洲无线码一区| 免费av观看视频| 成人国产麻豆网| 好男人在线观看高清免费视频| 在线天堂最新版资源| 91在线精品国自产拍蜜月| 成人一区二区视频在线观看| 午夜福利高清视频| 午夜老司机福利剧场| 直男gayav资源| 欧美成人精品欧美一级黄| 免费看日本二区| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站| 国产成人a区在线观看| 久久久午夜欧美精品| 禁无遮挡网站| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 成年女人毛片免费观看观看9| 老熟妇仑乱视频hdxx| 性色avwww在线观看| 婷婷亚洲欧美| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 中文字幕av成人在线电影| av女优亚洲男人天堂| 国产成人a区在线观看| 日日摸夜夜添夜夜爱| 亚洲无线观看免费| 亚洲av一区综合| 久久久久久久久中文| 国产黄a三级三级三级人| 人妻丰满熟妇av一区二区三区| 久久久久久伊人网av| 国产久久久一区二区三区| 男女下面进入的视频免费午夜| 特大巨黑吊av在线直播| 国产精品无大码| 麻豆av噜噜一区二区三区| 天天躁夜夜躁狠狠久久av| 精品一区二区三区视频在线| 国产精品亚洲一级av第二区| 亚洲精品影视一区二区三区av| 欧美激情久久久久久爽电影| 国产一区二区三区在线臀色熟女| 亚洲三级黄色毛片| 亚州av有码| 亚洲av电影不卡..在线观看| 丰满人妻一区二区三区视频av| 三级国产精品欧美在线观看| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 听说在线观看完整版免费高清| 内地一区二区视频在线| 国产一区二区在线观看日韩| 成熟少妇高潮喷水视频| 久久精品久久久久久噜噜老黄 | 欧美日韩综合久久久久久| 两个人视频免费观看高清| 亚洲精华国产精华液的使用体验 | 久久久久久久久久成人| 床上黄色一级片| 国内精品久久久久精免费| 久久久久久久久大av| 午夜久久久久精精品| 国产精品,欧美在线| 免费黄网站久久成人精品| 男人舔女人下体高潮全视频| 亚洲精品乱码久久久v下载方式| 亚洲成人精品中文字幕电影| 午夜精品在线福利| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看 | 偷拍熟女少妇极品色| 97超碰精品成人国产| 最近视频中文字幕2019在线8| 欧美高清成人免费视频www| a级毛片a级免费在线| 亚洲在线观看片| 日韩欧美三级三区| 亚洲人成网站高清观看| 精品久久久久久久末码| 在线a可以看的网站| 国产成人影院久久av| 你懂的网址亚洲精品在线观看 | 波多野结衣巨乳人妻| 噜噜噜噜噜久久久久久91| 亚洲精华国产精华液的使用体验 | 99久国产av精品国产电影| 永久网站在线| 亚洲欧美中文字幕日韩二区| 不卡一级毛片| 亚洲欧美清纯卡通| 精品一区二区三区视频在线观看免费| 午夜老司机福利剧场| 欧美区成人在线视频| 禁无遮挡网站| 成人av一区二区三区在线看| 麻豆国产av国片精品| 国产乱人视频| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩高清专用| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 日本免费一区二区三区高清不卡| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 91久久精品国产一区二区三区| 国产午夜精品论理片| 日韩成人av中文字幕在线观看 | 日韩av在线大香蕉| 黄色一级大片看看| 久久综合国产亚洲精品| 搡老熟女国产l中国老女人| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 成人三级黄色视频| 国产69精品久久久久777片| 亚洲美女黄片视频| 最新在线观看一区二区三区| 成人三级黄色视频| 女人被狂操c到高潮| 欧美日韩精品成人综合77777| 国产黄色视频一区二区在线观看 | 精品一区二区三区视频在线| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 日韩亚洲欧美综合| 久久热精品热| 热99re8久久精品国产| 国产乱人视频| 久久久色成人| 国产高清视频在线播放一区| 美女cb高潮喷水在线观看| 亚洲一区二区三区色噜噜| 日本a在线网址| 少妇高潮的动态图| 亚洲国产精品成人综合色| 国产精品国产高清国产av| av在线播放精品| 大香蕉久久网| 俄罗斯特黄特色一大片| 国产激情偷乱视频一区二区| 露出奶头的视频| 欧美人与善性xxx| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 亚洲天堂国产精品一区在线| 免费看a级黄色片| 国产亚洲精品久久久com| 尾随美女入室| 国产精品一及| 老女人水多毛片| 长腿黑丝高跟| 免费观看精品视频网站| 国产黄a三级三级三级人| 国产欧美日韩精品一区二区| 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 亚洲性夜色夜夜综合| 内射极品少妇av片p| 女人十人毛片免费观看3o分钟| 色5月婷婷丁香| 综合色丁香网| 亚洲色图av天堂| 俺也久久电影网| 1000部很黄的大片| 午夜爱爱视频在线播放| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 亚洲美女黄片视频| 晚上一个人看的免费电影| 国产私拍福利视频在线观看| 啦啦啦韩国在线观看视频| 九九热线精品视视频播放| 国产毛片a区久久久久| 春色校园在线视频观看| 国产免费一级a男人的天堂| 国产精品一二三区在线看| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆 | 毛片女人毛片| 亚洲成人av在线免费| 午夜精品在线福利| 亚洲精品日韩在线中文字幕 | 又黄又爽又刺激的免费视频.| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 久久草成人影院| 日韩欧美一区二区三区在线观看| 青春草视频在线免费观看| 国产一区二区亚洲精品在线观看| 人妻制服诱惑在线中文字幕| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 中国美女看黄片| 天天躁夜夜躁狠狠久久av|