• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous-variable quantum key distribution based on photon addition operation?

    2021-06-26 03:03:16XiaoTingChen陳小婷LuPingZhang張露萍ShouKangChang常守康
    Chinese Physics B 2021年6期
    關(guān)鍵詞:張歡

    Xiao-Ting Chen(陳小婷), Lu-Ping Zhang(張露萍), Shou-Kang Chang(常守康),

    Huan Zhang(張歡)1, and Li-Yun Hu(胡利云)1,2,?

    1Center for Quantum Science and Technology,Jiangxi Normal University,Nanchang 330022,China

    2Key Laboratory of Optoelectronic and Telecommunication,Jiangxi Normal University,Nanchang 330022,China

    Keywords: non-Gaussian operations, continuous variable, quantum key distribution, photon-addition opera

    1. Introduction

    Quantum key distribution (QKD)[1–5]has been considered to be an unconditional security scheme, which is protected by the quantum mechanics principle, such as the Heisenberg uncertainty principle[6]and the noncloning theorem.[7]Generally, there are two kinds of types for realizing the QKD proposal,i.e.,discrete variable(DV)QKD and continuous variable (CV) QKD.[8–15]In the CVQKD protocol, the information of key bits is usually encoded by Alice(the sender)in two quadrature components of the optical field,while for the DVQKD protocol,the information of key bits is transmitted by the polarization of a single photon. This point is different from each other. On the other hand,for the former,Bob (the receiver) at the recipient port can decode the secret information by using high-speed and high-efficiency coherent detections,instead of a single-photon detection used in the latter. Thus the CVQKD protocol can achieve higher secret key rates especially in short transmission distance. In addition,the CVQKD protocols are more compatible with most classical telecommunication technologies. Based on these two reasons,much attention has been paid to the CVQKD systems. However,the performance of CVQKD for long distances is unsatisfactory.

    In order to eliminate the short-distance problem, many efforts have been devoted to improving the secure transmission distance of CVQKD and lots of remarkable progress have been made both theoretically[16]and experimentally.[17,18]For instance, due to the efficient error correction codes, the CVQKD protocols with the discrete modulation,[19,20]first proposed by Leverrier and Grangier theoretically,[21]can be used to improve the secure distance to a great extent under the condition of the low signal-to-noise ratio (SNR). In addition, when the discrete-modulated scheme is applied to the measurement-device-independent (MDI) CVQKD,[22]it is shown that the maximal transmission distance can be improved compared to that of the MDI CVQKD with the Gaussian modulation.[23]Here we should notice that, in these discrete-modulated CVQKD protocols,the corresponding security proofs have not been rigorously demonstrated both theoretically and experimentally, and a way equivalent to the Gaussian modulation is still employed under the condition of a very small modulation variance. Actually, in the conventional Gaussian modulation CVQKD,the security of CVQKD against collective attack[24]and coherent attack[25]has been proved theoretically, say the Gaussian-modulated coherent states CVQKD (i.e., the well-known “GG02” protocol).[26]Based on the Gaussian-modulation idea,a scheme of CVQKD with a multidimensional harmonic is proposed to improve the secure transmission distance.[27]In experiment,the field tests of CVQKD systems have lengthened the maximal transmission distance to 50 km over commercial fiber.[17]Very recently, a remote experiment CVQKD proposal has been proposed to extend the transmission distance to 202.81 km,which shortens the performance gap with the current point-to-point DVQKD systems.[18]

    Except these methods above for extending the transmission distance of CVQKD, on the other hand, some local non-Gaussian operations are introduced to achieve this same purpose,[28–37]due to the fact non-Gaussian operations can be used to further distill the entanglement, such as photon addition (PA),[38–40]photon subtraction (PS),[38,39,41,42]quantum scissors,[43–45]and photon catalysis operations.[46–48]For example,the noiseless linear amplification(NLA)has been used to improve the maximal transmission distance roughly by the equivalent of 20log10gdB losses(gis the gain of the NLA)because of its compensation of the losses.[49,50]The PS-CVQKD protocol[29,36]has been proposed to improve its performances including secret key rate,maximal tolerable excess noise,and transmission distance. It is worth mentioning that the event of implementing non-Gaussian operations is probabilistic,especially for the success probability of the PS being less than 25%,which inevitably makes Alice and Bob lose more effective information. Recently,the performance of CVQKD is investigated when non-Gaussian operations are acted on both sides of the channels,[34]including PS,PA,and photon catalysis. It is shown that the PA operation performs the worst,although the PA presents higher success probability than the PS.However,the non-Gaussian operations are usually placed in mode B on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD by operating PA operation in mode A on the left-side of the entangled source,under the entanglementbased(EB)version of CVQKD,denoted as the APA-CVQKD.It is shown that the PA operation on the left-side presents better secure key rate and transmission distance than the PS on the right-side,although both of them share the same maximal tolerable noise.Compared to both PS and PA on the right side,the proposed scheme shows the best performance. It is worth noting that the right(left)side of the entangled source means the mode from the entangled source to the quantum channel(from the entanglement source to the heterodyne detection at Alice’s port(see Fig.1)).

    The rest of this paper is organized as follows. In Section 2,we first introduce the EB version of the APA-CVQKD and then achieve the relationship between input and output characteristic functions(CF)after general non-Gaussian operations,which is helpful to obtain the covariance matrix before the detections of both Alice and Bob.In Section 3,we give the performance analysis of the APA-CVQKD under the security against the collective attack. Finally,our main conclusions are drawn in Section 4.

    2. The EB version of the APA-CVQKD

    Figure 1(b) is our scheme,i.e., the EB version of the APA-CVQKD. Here the sender, Alice, first prepares an EPR entangled source (also called two-mode squeezed state) on modes A and B,keeping mode A for going through the singlephoton addition and the heterodyne detection on the left side of Fig.1(b),while sending the other mode B through an insecure quantum channel to the receiver,Bob,for performing the homodyne detection. After Alice and Bob share two correlated Gaussian variables,the secret key rate can be extracted by the post-processing including reconciliation and privacy amplification.

    Fig. 1. (a) The schematic diagram of non-Gaussian operation. States |m〉 and |n〉 are, respectively, Fock state in auxiliary mode C |Ψ〉in: any input state;|Ψ〉out: output state after non-Gaussian operations;B(T): beam splitter with a transmittance T. (b)The schematic diagram of the PA-embedded CVQKD;Einstein–Podolsky–Rosen(EPR):two-mode squeezed vacuum state,LS:left-side,RS:right-side,Tc and ε: quantum channel parameters.

    withb1=b2=cosh2r,b3=sinh2r.

    In order to discuss the performance of APA-CVQKD,we need to achieve the covariance matrix before Alice and Bob’s detections. For this purpose, we first introduce the relation of CF between the input and output states after general non-Gaussian operations. As shown in Fig.1(a),non-Gaussian operations, including PS,PA,and photon catalysis, can be realized with an asymmetrical beam splitter and condition measurement of photon number detector. The case form >nmeans the PA, while the cases form <nandm=nare the PS and the quantum catalysis, respectively. In particular, for the case of single-photon as input and zero-photon detection,the single PA is achieved. In the following,we shall consider the single PA on Alice’s left-side,which is different from previous works that the non-Gaussian operations are often placed on Alice’s right-side.

    For an arbitrary input stateρ,using the Weyl representation of density operators,i.e.,

    whereχ(η)denotes the CF ofρa(bǔ)ndD(η)=exp(ηa??η?a)denotes the displacement operator, then the CF of the output state after undergoing the general non-Gaussian operation is shown as

    In general,we assume that Eve is more powerful to control the quantum channel which is characteristic of transmittanceTcand excess noiseε.If Bob received the resulting stateρA1B1after going through the quantum channel,then the final CF of output state is given by

    withRc=1?Tc. When the CF is known,we can derive some average values of operators consisting of two orthogonal components,such as

    whereα=q1+ip1,β=q2+ip2.

    Thus,using Eqs.(9)–(13),the covariance matrixΓof the final CF prior to the homodyne detection can be expressed as

    Equation(14)is just the covariance matrix corresponding to the non-Gaussian states before Alice and Bob’s detections.However, for non-Gaussian states, it should be noticed that equation (14) cannot be directly used to calculate the secret key rate. It is fortunate that one can employ a lower bound on secret key rate to describe the secure performance based on a Gaussian state with the same covariance matrix shown in Eq. (14), whereKnon≥KG(KnonandKGare the secret key rates of the non-Gaussian and Gaussian states with the same covariance matrix,respectively).

    3. Performance analysis of APA-CVQKD

    In this section, we shall pay attention to the calculation of secret key rate for our scheme in the asymptotic limit,and provide the corresponding performance analysis.

    3.1. Secure key rate

    From the viewpoint of attack strategies executed by Eve,there exist three kinds of attacks: individual attack, collective attack,and coherent attack. For simplicity of calculations,here let us focus on the asymptotic secret key rate for reverse reconciliation under the collective attack which is the optimality of Gaussian attacks. According to the extremality theorem of Gaussian quantum states, the secret key rateKnonfor our scheme in the asymptotic limit can be written as

    whereF(0,0)is the success probability for implementing the single-photon addition given in Eq. (7),βis the reconciliation efficiency,I(A:B) is the Shannon mutual information between Alice and Bob. It is noticed that Alice and Bob perform heterodyne and homodyne detections,respectively,thusI(A:B)can be derived using Eq.(14),i.e.,

    andS(B:E)is the Holevo bound which means the maximum information available to Eve on Bob’s key,i.e.,

    Here we have assumed that Eve can purify the whole system so thatS(E)=S(AB) andS(E|B)=S(A|B),in whichS(AB) is a function of the symplectic eigenvaluesλ1,2ofΓandS(A|B) is a function of the symplectic eigenvalueλ3ofΓhom=wI ?zσZ(vI+I)?1(zσZ)T,S(AB)andS(A|B)can be calculated as

    withG(x)=(x+1)log2(x+1)?xlog2xand

    3.2. Performance analysis

    After deriving the secret key rate in the asymptotic limit,in this subsection, we shall first compare the success probabilities for the PS and PA cases,and then mainly focus on the security analyses for our scheme in terms of the secret key rate,the transmission distances and the tolerable excess noises.

    According to Eq.(17),one can see that the success probability is closely related to the secret key rate. Thus, we first compare the success probabilities between the PS and the PA as a function ofλandT,as illustrated in Fig.2. Distinctly,the success probability of implementing the PA is always higher than that of the PS,especially at the ranges of small squeezingλand low transmittanceT. This case makes it possible that the secret key rate with the PA-CVQKD can be higher than that with the PS-CVQKD.

    Fig. 2. The success probability as a function of squeezing parameter λ and transmittance T for single-photon subtraction and single-photon addition operations.

    Actually, there are some non-Gaussian operations employed to improve the performance of EB-based CVQKD,such as the PA in mode A,the PA in mode B(denoted as BPACVQKD) and the PS in mode B (denoted as BPS-CVQKD).The latter two cases correspond to the case where the non-Gaussian operation is on the right side of the entangled source.Here we make a comparison about the performance of the secret key rate under these three schemes above. In Fig. 3, we show the secret key rate as a function of transmission distance and squeezing parameterλat given some parametersε=0.01,β=0.95,andλ=0.45,0.50,0.55,0.60,0.65,0.70,0.75, 0.80, 0.85, 0.90, 0.95, 0.999, when optimized over the transmittanceT. From Fig. 3, it is not difficult to see that the maximal transmission distance and the optimal secret key rate of both APA-CVQKD and BPS-CVQKD show a clear advantage over the BPA-CVQKD. In addition, our proposed APA-CVQKD scheme under the same accessible parameters presents higher secret key rates than the BPS-CVQKD.To further see these points, at fixed parametersε=0.01,β=0.95 andλ=0.95,we further compare the three schemes in terms of secret key rates changing with the transmission distance for optimal choices ofTin Fig.4(a),and the optimal values ofTcorresponding to the maximum secret key rates are shown in Fig.4(b).From Fig.4(a)it is shown that the secret key rate for the original CVQKD(black solid line)shows the best performance within a short distance.The reason is that the secret key rate for several non-Gaussian schemes may be restricted by its implementation probability at short-distance ranges. However,it can be surpassed by both our scheme(APA-CVQKD)and BPS-CVQKD at long-distance ranges, especially for our scheme because of the higher probability of the PA compared to the PS case (see Fig. 2). The corresponding optimalTis about 0.666≤T ≤0.670 for the long distance transmission, see Fig. 4(b). In addition, the PA operation in mode B is the worst one among these schemes including the original CVQKD. The main reason may be that the PA operation on right side introduces more noise.[34]

    Fig.3. The secret key rate of(a)the BPA-CVQKD,(b)the BPS-CVQKD,and(c)the APA-CVQKD as a function of transmission distance and λ for given tolerable excess noise ε =0.01,β =0.95. λ =0.45,0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,0.999.

    Fig. 4. (a) The optimal secret key rates over transmittance T of the APA-CVQKD (red line), the BPA-CVQKD (green line), the BPS-CVQKD (blue line),and the original protocol(black line)as a function of transmission distance when ε =0.01,λ =0.95,β =0.95. (b)The optimal T changing with transmission distance for the maximal secret key rates in panel(a).

    Next,we further consider the effects of different reconciliation efficienciesβand tolerable excess noisesεon the whole system performance. For several different values ofβandε,we plot the secret key rate as the function of the transmission distance in Fig. 5. For a comparison, both the BPS-CVQKD and the BPA-CVQKD cases are also shown here. From Fig.5,it is shown that the transmission distance of all these schemes increases with either the increase ofβor the decrease ofε,as expected. It is interesting that, for different excess noises(Fig.5(b))or reconciliation efficiencies(Fig.5(a)),the performance of our scheme is the best, allowing a longer transmission distance and a better secret key rate. While the performance of the BPA-CVQKD is still the worst.

    On the other hand, the tolerable excess noise is often used as an important factor of evaluating the performance of the CVQKD.Figure 6 shows the tolerable excess noise of all the schemes as the function of the transmission distance at given parametersβ=0.95 andλ=0.95. It is worth mentioning that the two curves for both APA-CVQKD and BPSCVQKD schemes are exactly coincident, which implies that the success probability of non-Gaussian operations has no effect on the maximal tolerable excess noise corresponding to the condition ofKnon=0, but on the special case when the distance is given. In addition,it is interesting that our scheme at long distance range can present better stability in contrast of the original CVQKD and BPA-CVQKD schemes,because the curve for APA-CVQKD has a tiny change with the increase of transmission distance. For instance,for our scheme,the maximal tolerable excess noise can approach about 0.0183 over the transmission distance of 293 km,which implies that when the tolerable excess noise of quantum channel has a low valueε ∈(0,0.0183), the proposed scheme can satisfy the requirement of long-secure transmission distance with higher secret key rates.

    Fig.5.The secret key rate of the APA-CVQKD,the BPA-CVQKD,the BPSCVQKD,and original protocol as a function of transmission distance when the transmittance T is optimized for given different values of (a) β =0.95(solid lines), β =0.90 (dash lines), β =0.85 (short-dot lines), λ =0.95 and ε =0.01; (b) ε =0.01 (solid lines), ε =0.02 (dash lines), ε =0.03(short-dot lines),λ =0.95 and β =0.95.

    Fig.6. The tolerable excess noise of the APA-CVQKD(red line),the BPSCVQKD(blue line),the BPA-CVQKD(green line),and the original protocol(black line)as a function of transmission distance when T is optimized for given β =0.95 and λ =0.95.

    4. Conclusions

    In this paper, we have shown an improved performance of CVQKD with the photon-addition on the left-side of the entangled source under the EB scheme. Using the relation between the CF and the average values, we derived the covariance matrix between the legitimate communication parties prior to the corresponding detections. Then based on the Gaussian optimality theorem, we further discussed the lower bound of secret key rate for our scheme against the collective attack. It is found that the photon-addition operation on left side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on right side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on right side,our scheme shows the best performance and the photon addition on right side is the worst.

    猜你喜歡
    張歡
    張歡:笑得歡干得更歡
    Anderson localization of a spin–orbit coupled Bose–Einstein condensate in disorder potential
    醮草醮粑
    柬語母語者漢語書面語句法復(fù)雜度研究
    菊苑圓夢(mèng)盡清歡
    劇作家(2021年4期)2021-05-23 08:09:39
    張歡:返鄉(xiāng)青年的絲瓜水創(chuàng)富路
    那時(shí)的我們
    Motivation Affecting Second Language Acquisition among Middle school students
    張歡朋攝影作品選登
    他山之石可以攻玉
    很黄的视频免费| 午夜福利高清视频| 国产成人影院久久av| 国产私拍福利视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产伦精品一区二区三区四那| 亚洲国产中文字幕在线视频| 久久久色成人| 淫秽高清视频在线观看| 男人舔女人下体高潮全视频| 91字幕亚洲| 好男人电影高清在线观看| 夜夜看夜夜爽夜夜摸| 日本成人三级电影网站| 日韩国内少妇激情av| 亚洲国产欧美网| 中文字幕人妻熟人妻熟丝袜美 | 色视频www国产| 禁无遮挡网站| 日韩高清综合在线| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 俄罗斯特黄特色一大片| 久久久久久久午夜电影| 亚洲性夜色夜夜综合| 欧美性猛交黑人性爽| 高清日韩中文字幕在线| 黄色女人牲交| 精品国产三级普通话版| 2021天堂中文幕一二区在线观| 国产成+人综合+亚洲专区| 欧美日本视频| 真人做人爱边吃奶动态| 夜夜躁狠狠躁天天躁| 国产精品一区二区免费欧美| 国产成人av激情在线播放| 欧美极品一区二区三区四区| 精品一区二区三区av网在线观看| 国产精品久久电影中文字幕| 久久久久精品国产欧美久久久| 国产精品亚洲av一区麻豆| 老司机午夜十八禁免费视频| 国产淫片久久久久久久久 | 99精品欧美一区二区三区四区| 99在线人妻在线中文字幕| 欧美一区二区国产精品久久精品| 亚洲成人中文字幕在线播放| 2021天堂中文幕一二区在线观| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡欧美一区二区| 不卡一级毛片| 变态另类成人亚洲欧美熟女| 国产熟女xx| 香蕉久久夜色| 小蜜桃在线观看免费完整版高清| 美女被艹到高潮喷水动态| 欧美中文综合在线视频| 欧美日韩福利视频一区二区| 嫩草影院入口| 色播亚洲综合网| 少妇裸体淫交视频免费看高清| 免费看美女性在线毛片视频| 国产精品,欧美在线| 亚洲熟妇中文字幕五十中出| 岛国视频午夜一区免费看| 深夜精品福利| 草草在线视频免费看| 91av网一区二区| 1000部很黄的大片| 亚洲一区二区三区不卡视频| 亚洲国产精品久久男人天堂| 欧美黄色淫秽网站| 天美传媒精品一区二区| 日本五十路高清| 欧美日韩亚洲国产一区二区在线观看| 高清毛片免费观看视频网站| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 最近最新中文字幕大全免费视频| 国产精品久久久久久精品电影| 啦啦啦韩国在线观看视频| 免费大片18禁| 午夜免费观看网址| 动漫黄色视频在线观看| 成人永久免费在线观看视频| 国产精品一区二区免费欧美| 国内精品久久久久久久电影| 黄片大片在线免费观看| 黄色视频,在线免费观看| 国产精品久久久人人做人人爽| 精品不卡国产一区二区三区| 一本综合久久免费| 亚洲人成网站在线播| 狠狠狠狠99中文字幕| 国产高清激情床上av| 日韩国内少妇激情av| 成熟少妇高潮喷水视频| 国产精品日韩av在线免费观看| 久久精品国产亚洲av香蕉五月| 国产精品影院久久| 又黄又爽又免费观看的视频| 国产成人a区在线观看| 在线看三级毛片| 搡老妇女老女人老熟妇| 美女黄网站色视频| 91久久精品电影网| 啦啦啦观看免费观看视频高清| 亚洲精品456在线播放app | 美女大奶头视频| 99久久九九国产精品国产免费| 丁香六月欧美| 亚洲avbb在线观看| 十八禁人妻一区二区| 久久这里只有精品中国| 精品一区二区三区视频在线 | 18美女黄网站色大片免费观看| 国产精品免费一区二区三区在线| 我的老师免费观看完整版| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜夜夜夜久久久久| а√天堂www在线а√下载| 中文在线观看免费www的网站| 99在线视频只有这里精品首页| 一本久久中文字幕| 日韩精品青青久久久久久| 黄色日韩在线| 国产精品电影一区二区三区| 欧美另类亚洲清纯唯美| 精品欧美国产一区二区三| 国产精品 国内视频| 久久精品夜夜夜夜夜久久蜜豆| 在线观看av片永久免费下载| 久久国产精品影院| 日日夜夜操网爽| 首页视频小说图片口味搜索| 午夜福利视频1000在线观看| 香蕉丝袜av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲激情在线av| 午夜影院日韩av| 亚洲专区中文字幕在线| 日本成人三级电影网站| 日日摸夜夜添夜夜添小说| 国产日本99.免费观看| 男插女下体视频免费在线播放| 国产精品久久久久久人妻精品电影| 久久亚洲精品不卡| 国产精品99久久99久久久不卡| 日日摸夜夜添夜夜添小说| 久久国产精品人妻蜜桃| 日本黄色片子视频| 亚洲国产欧美人成| 亚洲精品成人久久久久久| 99国产极品粉嫩在线观看| 夜夜看夜夜爽夜夜摸| 久久精品亚洲精品国产色婷小说| 国产精品一区二区免费欧美| 99久久综合精品五月天人人| 麻豆成人午夜福利视频| www.www免费av| 国内毛片毛片毛片毛片毛片| 久久久久久久久久黄片| 欧美又色又爽又黄视频| 在线观看免费视频日本深夜| 国产精品乱码一区二三区的特点| 国产激情偷乱视频一区二区| 亚洲国产中文字幕在线视频| 51国产日韩欧美| 午夜福利在线观看吧| 欧美日韩乱码在线| 国产精品久久久人人做人人爽| 亚洲精品在线观看二区| 欧美一区二区精品小视频在线| 亚洲专区国产一区二区| 亚洲第一欧美日韩一区二区三区| 少妇人妻精品综合一区二区 | 乱人视频在线观看| 精品乱码久久久久久99久播| 亚洲自拍偷在线| 日韩人妻高清精品专区| 国产精品98久久久久久宅男小说| 成人国产综合亚洲| 搡老熟女国产l中国老女人| 看免费av毛片| 99热这里只有是精品50| 国产色爽女视频免费观看| 丰满人妻熟妇乱又伦精品不卡| 欧美极品一区二区三区四区| 成年免费大片在线观看| 18禁黄网站禁片午夜丰满| 国产亚洲av嫩草精品影院| 国产精品 国内视频| 欧美日韩乱码在线| av在线天堂中文字幕| 亚洲狠狠婷婷综合久久图片| 变态另类丝袜制服| 色吧在线观看| 少妇丰满av| 亚洲国产日韩欧美精品在线观看 | 天堂影院成人在线观看| 久9热在线精品视频| 亚洲精华国产精华精| 欧美zozozo另类| 男女床上黄色一级片免费看| 欧美午夜高清在线| 一区福利在线观看| 亚洲精品亚洲一区二区| 欧美不卡视频在线免费观看| 在线播放无遮挡| 亚洲av中文字字幕乱码综合| 国产成人欧美在线观看| 欧美性猛交╳xxx乱大交人| 成人特级av手机在线观看| 亚洲18禁久久av| 午夜福利欧美成人| 免费看光身美女| 亚洲一区二区三区不卡视频| 高潮久久久久久久久久久不卡| 老司机午夜福利在线观看视频| 69av精品久久久久久| 叶爱在线成人免费视频播放| or卡值多少钱| 琪琪午夜伦伦电影理论片6080| 嫩草影视91久久| 99视频精品全部免费 在线| 欧美乱码精品一区二区三区| 成人欧美大片| 级片在线观看| 人妻久久中文字幕网| 日韩欧美在线二视频| 亚洲第一电影网av| 久久久国产成人精品二区| 日日夜夜操网爽| 精品不卡国产一区二区三区| 午夜福利欧美成人| 亚洲,欧美精品.| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 国产成人a区在线观看| 757午夜福利合集在线观看| 又粗又爽又猛毛片免费看| 国产伦精品一区二区三区视频9 | 亚洲aⅴ乱码一区二区在线播放| 国产精品嫩草影院av在线观看 | 看免费av毛片| 三级男女做爰猛烈吃奶摸视频| 无遮挡黄片免费观看| 国产亚洲欧美在线一区二区| 午夜老司机福利剧场| 色av中文字幕| 一级毛片高清免费大全| 成年女人看的毛片在线观看| 99久久精品热视频| 制服丝袜大香蕉在线| 成人性生交大片免费视频hd| 1024手机看黄色片| 99精品久久久久人妻精品| 少妇人妻精品综合一区二区 | 乱人视频在线观看| 男女床上黄色一级片免费看| 免费高清视频大片| 久久中文看片网| 欧美黄色片欧美黄色片| 国产私拍福利视频在线观看| 宅男免费午夜| 亚洲激情在线av| 色噜噜av男人的天堂激情| 高清日韩中文字幕在线| 少妇丰满av| 国产91精品成人一区二区三区| 久久精品影院6| 岛国视频午夜一区免费看| 天堂动漫精品| 午夜福利免费观看在线| 亚洲熟妇熟女久久| 深爱激情五月婷婷| 日日干狠狠操夜夜爽| 亚洲欧美日韩卡通动漫| 中国美女看黄片| 男女视频在线观看网站免费| 69人妻影院| 日韩欧美精品免费久久 | 真实男女啪啪啪动态图| 成人一区二区视频在线观看| 成人欧美大片| 黑人欧美特级aaaaaa片| 午夜精品一区二区三区免费看| a级一级毛片免费在线观看| 99久久精品一区二区三区| 国产久久久一区二区三区| 色尼玛亚洲综合影院| 国产欧美日韩精品一区二区| 中文资源天堂在线| 麻豆一二三区av精品| 好看av亚洲va欧美ⅴa在| 国产午夜精品论理片| 免费无遮挡裸体视频| 成人特级黄色片久久久久久久| 99久久久亚洲精品蜜臀av| 亚洲成人中文字幕在线播放| av福利片在线观看| 国产高潮美女av| 久久精品人妻少妇| 亚洲人成网站高清观看| 99久久综合精品五月天人人| 最新美女视频免费是黄的| 亚洲av成人精品一区久久| 在线播放国产精品三级| 黄色丝袜av网址大全| 国产av一区在线观看免费| 国产探花在线观看一区二区| 午夜视频国产福利| 国产伦一二天堂av在线观看| av黄色大香蕉| 亚洲在线观看片| 丁香六月欧美| 国产又黄又爽又无遮挡在线| 中文字幕久久专区| 欧美绝顶高潮抽搐喷水| 精品一区二区三区av网在线观看| 亚洲欧美日韩高清在线视频| 国产精品电影一区二区三区| 一级毛片高清免费大全| 两性午夜刺激爽爽歪歪视频在线观看| 激情在线观看视频在线高清| 999久久久精品免费观看国产| 久久久久免费精品人妻一区二区| 亚洲va日本ⅴa欧美va伊人久久| 手机成人av网站| 国产乱人视频| 国产成人系列免费观看| 国产主播在线观看一区二区| 亚洲国产欧洲综合997久久,| 国产成人福利小说| 在线观看美女被高潮喷水网站 | 99久久九九国产精品国产免费| 日韩欧美在线乱码| 一本精品99久久精品77| 免费在线观看日本一区| 亚洲一区二区三区不卡视频| 成年版毛片免费区| 大型黄色视频在线免费观看| 色噜噜av男人的天堂激情| 亚洲av成人av| 天天添夜夜摸| 性色avwww在线观看| bbb黄色大片| 首页视频小说图片口味搜索| 亚洲不卡免费看| 久久人妻av系列| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播| 制服人妻中文乱码| 亚洲国产欧美网| 欧美区成人在线视频| 日本免费一区二区三区高清不卡| 国产成人系列免费观看| 长腿黑丝高跟| 国产一区二区激情短视频| 亚洲av熟女| 久久久久国内视频| 可以在线观看的亚洲视频| 性欧美人与动物交配| 国产 一区 欧美 日韩| 欧美绝顶高潮抽搐喷水| 国产免费一级a男人的天堂| 少妇人妻一区二区三区视频| 老汉色av国产亚洲站长工具| 天美传媒精品一区二区| 99精品久久久久人妻精品| 午夜福利成人在线免费观看| 精品久久久久久久久久免费视频| 免费av观看视频| 看免费av毛片| 国产毛片a区久久久久| 国产精品影院久久| 国产成年人精品一区二区| 一个人免费在线观看电影| 99精品久久久久人妻精品| 欧美国产日韩亚洲一区| 在线播放无遮挡| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人成人乱码亚洲影| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美在线乱码| 精品久久久久久久久久久久久| 91九色精品人成在线观看| 国产成人a区在线观看| 精品久久久久久久人妻蜜臀av| 婷婷亚洲欧美| 日本免费一区二区三区高清不卡| 国产91精品成人一区二区三区| 我要搜黄色片| 欧美日韩一级在线毛片| 国产精品亚洲av一区麻豆| 黑人欧美特级aaaaaa片| 亚洲一区二区三区不卡视频| 国内精品美女久久久久久| 久久亚洲精品不卡| 黄色视频,在线免费观看| 久久久国产成人免费| 老司机福利观看| 国产av麻豆久久久久久久| 国产精品1区2区在线观看.| 国产精品影院久久| 亚洲内射少妇av| 亚洲精品影视一区二区三区av| e午夜精品久久久久久久| xxxwww97欧美| 精品国内亚洲2022精品成人| 日韩欧美国产一区二区入口| 搡女人真爽免费视频火全软件 | 97超视频在线观看视频| 欧美zozozo另类| 亚洲成a人片在线一区二区| 九色国产91popny在线| 一本综合久久免费| 身体一侧抽搐| 国产精品一及| 欧美成人a在线观看| 国产中年淑女户外野战色| 脱女人内裤的视频| 麻豆久久精品国产亚洲av| 国产欧美日韩精品亚洲av| 别揉我奶头~嗯~啊~动态视频| 欧美丝袜亚洲另类 | 免费在线观看亚洲国产| 久久国产精品人妻蜜桃| 九九在线视频观看精品| 九九热线精品视视频播放| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 丝袜美腿在线中文| 日日夜夜操网爽| 国产欧美日韩一区二区三| 亚洲五月婷婷丁香| 成人精品一区二区免费| 精品久久久久久,| 国产精华一区二区三区| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| www国产在线视频色| 欧美日韩黄片免| 99热只有精品国产| 国产一区二区亚洲精品在线观看| 青草久久国产| 成人亚洲精品av一区二区| 欧美最黄视频在线播放免费| 亚洲电影在线观看av| 桃红色精品国产亚洲av| 波多野结衣高清无吗| 99久国产av精品| 国产一区二区亚洲精品在线观看| 国产三级黄色录像| 国产成人影院久久av| 美女高潮的动态| 欧美高清成人免费视频www| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 中亚洲国语对白在线视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 人人妻,人人澡人人爽秒播| 欧美一区二区亚洲| 久久草成人影院| 国产精品一区二区三区四区免费观看 | 丁香六月欧美| 熟女电影av网| av中文乱码字幕在线| 亚洲av电影在线进入| x7x7x7水蜜桃| 韩国av一区二区三区四区| 亚洲精品在线观看二区| 亚洲熟妇熟女久久| 免费观看的影片在线观看| 真实男女啪啪啪动态图| 又紧又爽又黄一区二区| 黄片小视频在线播放| 日韩欧美精品免费久久 | 亚洲成人免费电影在线观看| 国产精品av视频在线免费观看| 一区二区三区免费毛片| 蜜桃久久精品国产亚洲av| 手机成人av网站| 欧美日本亚洲视频在线播放| 欧美性感艳星| 国产成人欧美在线观看| 99国产精品一区二区三区| 2021天堂中文幕一二区在线观| 免费观看人在逋| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 亚洲精品影视一区二区三区av| 亚洲国产中文字幕在线视频| 757午夜福利合集在线观看| 亚洲片人在线观看| 亚洲精华国产精华精| 国产精品永久免费网站| 99视频精品全部免费 在线| 国产不卡一卡二| 最近最新免费中文字幕在线| 久久伊人香网站| 小说图片视频综合网站| 香蕉av资源在线| 日韩高清综合在线| 两个人看的免费小视频| 亚洲专区国产一区二区| 黄片小视频在线播放| a级一级毛片免费在线观看| av福利片在线观看| 亚洲激情在线av| 午夜精品在线福利| 中文字幕久久专区| 国产一区二区三区视频了| 色吧在线观看| 真人一进一出gif抽搐免费| 亚洲在线观看片| 九九在线视频观看精品| 99热只有精品国产| 久久久久九九精品影院| 国产色婷婷99| 99久久久亚洲精品蜜臀av| 90打野战视频偷拍视频| 亚洲欧美日韩卡通动漫| 法律面前人人平等表现在哪些方面| 99热精品在线国产| 亚洲 欧美 日韩 在线 免费| 九九久久精品国产亚洲av麻豆| av视频在线观看入口| 亚洲欧美精品综合久久99| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 18禁裸乳无遮挡免费网站照片| 国产成人av激情在线播放| 日韩免费av在线播放| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品综合一区在线观看| 亚洲精品一区av在线观看| 日韩欧美免费精品| 97超级碰碰碰精品色视频在线观看| 在线国产一区二区在线| 欧美av亚洲av综合av国产av| 天美传媒精品一区二区| 成年人黄色毛片网站| 国产色婷婷99| 欧美绝顶高潮抽搐喷水| 久久婷婷人人爽人人干人人爱| 九九热线精品视视频播放| av片东京热男人的天堂| 又黄又爽又免费观看的视频| 亚洲专区中文字幕在线| 床上黄色一级片| x7x7x7水蜜桃| 香蕉久久夜色| 国产老妇女一区| 他把我摸到了高潮在线观看| 精品熟女少妇八av免费久了| 韩国av一区二区三区四区| 3wmmmm亚洲av在线观看| 老鸭窝网址在线观看| 免费人成在线观看视频色| 午夜福利18| 老司机午夜十八禁免费视频| 丁香欧美五月| 亚洲国产欧美网| 中文字幕熟女人妻在线| 真人做人爱边吃奶动态| 九九热线精品视视频播放| 色综合婷婷激情| 亚洲av电影在线进入| 久久精品亚洲精品国产色婷小说| 亚洲国产精品合色在线| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 欧美成人a在线观看| 在线a可以看的网站| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 精品欧美国产一区二区三| 亚洲一区二区三区色噜噜| av女优亚洲男人天堂| 每晚都被弄得嗷嗷叫到高潮| 操出白浆在线播放| 人人妻,人人澡人人爽秒播| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 成人亚洲精品av一区二区| 男人舔女人下体高潮全视频| 中文字幕人妻熟人妻熟丝袜美 | 99久久无色码亚洲精品果冻| h日本视频在线播放| 最近最新免费中文字幕在线| 99视频精品全部免费 在线| 一本一本综合久久| 久久欧美精品欧美久久欧美| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 一本精品99久久精品77| 床上黄色一级片| 欧美日本视频| 欧美日韩乱码在线| 波野结衣二区三区在线 | 免费在线观看日本一区| 午夜福利免费观看在线| 国产成+人综合+亚洲专区| 欧美zozozo另类| 全区人妻精品视频| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 99热这里只有精品一区| 欧美黑人欧美精品刺激|