• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites

    2021-06-04 03:49:56YawenLiGuangrenNaShulinLuoXinHeLijunZhang
    物理化學(xué)學(xué)報 2021年4期

    Yawen Li ,Guangren Na ,Shulin Luo ,Xin He ,2,*,Lijun Zhang ,*

    1 State Key Laboratory of Integrated Optoelectronics,Key Laboratory of Automobile Materials of MOE,College of Materials Science and Engineering,Jilin University,Changchun 130012,China.

    2 College of Physics,Jilin University,Changchun 130012,China.

    Abstract:Organic-inorganic hybrid lead halide perovskites have emerged as the most promising materials in the field of optoelectronics due to their unique electronic and optical properties.However,the poor long-term material and device stabilities of these materials have limited their practical application.Compared to organic-inorganic hybrid perovskites,all-inorganic halide perovskites like CsPbX3 (X = Cl,Br,I)show enhanced thermal stability and the potential to resolve the issue of instability.Nevertheless,the structural and physical properties of allinorganic CsPbX3 halide perovskites with multiple structural polymorphs are still under debate.A recent research article on CsPbI3 reported the wrongly indexed the XRD pattern of γ-CsPbI3 as α-CsPbI3.Consequently,the band gap of γ-CsPbI3 (1.73 eV)was erroneously designated for α-CsPbI3.Therefore,there is a need for systematic research on the relationship between the structural features and electronic properties of CsPbX3.Here,we present a comprehensive theoretical study of the structural,thermodynamical and electronic properties of three polymorphic phases,α-,β-,and γ-CsPbX3.The space group of α-,β-,and γ-CsPbX3 are Pm3ˉm,P4/mbm,and Pnma,respectively.First-principles calculations indicate that the phase transition from the hightemperature α-phase to the low-temperature β-phase and then to the γ phase is accompanied by an increase in the degree of PbX6 octahedral distortion.The zero-temperature energetic calculations reveal that the γ-phase is the most stable.This is consistent with the fact that experimentally,the γ-phase is stabilized at a relatively low temperature.Analysis of the electronic properties indicates that all the CsPbX3 perovskites exhibit a direct-gap nature and the band gap values increase from α to β,and then to the γ phase.From the analysis of the orbital hybridization near the band gap edges,the increase can be explained by the downshift of the valence band edges caused by the gradual weakening of the Pb-X chemical bond.Among all the phases,the strongest Pb-X interaction in the α-phase leads to the most dispersive band-edge states and thus the smallest carrier effective masses,which are beneficial for carrier transport.Additionally,the band gaps decreased by changing the halogen type from Cl to Br and I under the same phase.this is a consequence of the increased X np orbital energies from Cl 3p to Br 4p and then to I 3p that leads to a high valence band edge for CsPbI3 and results in the smallest band gap.Our results provide deep understanding on the relationship between the physical properties and structural features of all-inorganic lead halide perovskites.

    Key Words:Inorganic halide perovskite; Optoelectronic property; First-principles calculation; Electronic structure

    1 Introduction

    Since the organic metal perovskite was first reported in 20091researches on perovskite-based solar cells (PSCs)have exploded due to their excellent characteristics such as tunable band gap,low cost,and outstanding optical absorption properties2–12.The record certainly power conversation efficiency (PCEs)of organic-inorganic based PSCs has reached 25.2%13.Despite the organic-inorganic hybrid halide perovskites have high efficiencies and excellent properties,the poor stability of these materials is still a critical challenge which hinders the commercial pace of PSCs14.Thus researches have been focused on the long-term stability of solar absorber materials15–23.Using more robust inorganic Cs+cations to replace the fragile organic group with forms the all-inorganic perovskites lead halide system (CsPbX3,X is halide)as which are much more thermally stable and often more stable to other factors24,25.Inorganic perovskites CsPbX3have attracted great attention in the fields of photovoltaics26–28.From the first report in 2015 to now,the PCE of CsPbX3-based PSCs has abruptly increased from 2.9%(CsPbI3)29and 5.8% (CsPbBr3)30to 17.1% (CsPbI3)31with much enhanced stability.From this progress,the all-inorganic halide perovskites CsPbX3are emerging as a new research area and will play a significant role in the photovoltaic field32.

    It is generally known that the inorganic lead-halide perovskites CsPbX3(X = Cl,Br,I)undergo phase transitions at different temperatures.The temperature range for the phase transition is different with the change of halogen atom.CsPbX3perovskites exhibit different polymorphs:α-(cubic),β-(tetragonal),and γ-(orthorhombic)phases.For bulk CsPbCl3,the high temperature phase is cubic α perovskite structure (Pmˉm).As bulk CsPbCl3is cooled through 47 °C,it undergoes firstorder phase transition to the tetragonal β perovskite structure(P4/mbm)which accompany by the PbCl6octahedra rotation in the ab plane.Finally,upon cooling through 42 °C,the PbCl6octahedra tilt away from the c axis to generate the orthorhombic γ perovskite (Pnma)structure (second-order transition)33,34.The single crystal CsPbBr3undergoes the cubic to tetragonal structure at 130 °C and tetragonal to orthorhombic at 88 °C35,36.The phase transitions of CsPbI3from high temperature to room temperature at ambient conditions are going through cubic to tetragonal phase at 260 °C,tetragonal to orthorhombic phase at 175 °C and then orthorhombic phase transition to non-perovskite δ-phase after standing a few days later37.Concerning the cubic phase,the phase transitions are accompanied by lead-halide octahedral tilting and distortion38,which affect the stability,electronic and photophysical properties39.In addition,the halogen anions also affect the electronic properties of lead halide perovskite40.

    Recent researches indicated that there are incorrect cognitions about the structure and band gap of CsPbI324,41,42.Most of the previous studies have translated the X-ray diffraction (XRD)pattern of γ-CsPbI3into α-CsPbI3then wrongly attributed the band gap 1.73 eV to α-CsPbI3.Up to now,systematic research of electronic properties on three polymorphic phases inorganic lead halide perovskites:α/β/γ-CsPbX3are rarely reported.For all these reasons,it is necessary to have a comprehensive study on the different phases of inorganic perovskite CsPbX3.In this work,the structural,thermodynamical and electronic properties were calculated by first-principles calculations.From our results,we notice that the phase transition from α to β and then to γ are accompany with PbX6octahedral tilting and distortion,which further influence the thermostability and band gaps.Here,we investigate the in-depth physical mechanisms for band gap evolutions with phase transitions and halogen variations.

    2 Computational methods

    All the first-principles calculations were carried out within density functional theory (DFT)by using plane-wave pseudopotentials method implemented in the Vienna Ab-initio Simulation Package43.The projected augmented wave (PAW)pseudopotentials44with 6s for Cs,6s and 6p for Pb,3s and 3p for Cl,4s and 4p for Br,and 5s and 5p for I valence electrons were employed to describe the electron-ion interactions.The generalized gradient approximation (GGA)formulated by Perdew,Burke,and Ernzerhof (PBE)45was used as the exchange-correlation functional.Structural optimizations were done with the kinetic energy cutoff of 300 eV and the k-point meshes of reciprocal spacing set to 2π × 0.00318·nm?1.Both atoms and cell volume were allowed to relax until the residual forces were smaller than 0.1 eV·nm?1.Standard DFT-GGA methods underestimate the band gaps due to the presence of artificial self-interaction and the absence of the derivative discontinuity in the exchange-correlation potential46.We calculated electronic structures using the Heyd-Scuseria-Ernzerhof (HSE)functional with the standard 25% nonlocal Fock exchange.We also considered the spin-orbit coupling(SOC)in our calculation due to the non-negligible effect on the heavy metals,especially Pb.

    3 Results and discussion

    3.1 Structural properties and thermodynamic stability

    The α,β and γ phases of CsPbI3and CsPbBr3are found to be in the Pmm,P4/mbm and Pnma space groups,respectively.There is experimental research on CsPbCl347revealed that the second and first-order phase transitions from orthorhombic over tetragonal to cubic structure occur at 42 and 47 °C,respectively.The β-CsPbCl3is in space group tetragonal P4/mbm33and γ-CsPbCl3is in space group orthorhombic Pnma49,which are same to the space groups of β/γ-CsPbBr(I)3.Therefore,we constructed the β/γ-CsPbCl3by replacing I atoms to Cl atoms based on β/γ-CsPbI3structures,and then the structures are fully relaxed (Fig.1a–c).The optimized lattice constants and calculated band gaps are shown in Table 1.The corresponding experimental data are also list for reference24,36,40,48–54.The crystal structures,bond lengths and bond angles between Pb and X of α,β and γ-CsPbX3are shown in Fig.1.As seen in Fig.1d,α-phases have the smallest Pb-X bond length and γ-phases have the largest bond length.In addition,the Pb-X bond length changing with halogen in the following order:CsPbCl3> CsPbBr3> CsPbI3.The PbX6octahedral framework is the skeleton of CsPbX3perovskite.The deviation of the band angles in the PbX6octahedrons (X-Pb-X,θ1)from 90° is taken as a measure of octahedral distortion.The deviation of the bond angles between corner-sharing PbX6octahedrons (Pb-X-Pb,θ2)from 180° is taken as a measure of octahedral tilting and twisting.As seen in Fig.1e,for β-phase,zero deviation of θ1and nonzero deviation of θ2indicating octahedron tilting.For γ-phase,the nonzero deviation of both θ1and θ2indicating octahedral distortion and octahedral tilting.Overall,phase transition accompanied with lead-halide octahedral tilting and distortion.γ-phase has the most distortion,followed by β-phase.

    Fig.1 (a–c)The geometry structures of α/β/γ-phase CsPbX3 (X = Cl,Br,I),(d)the bond lengths of Pb-X and (e)the bond angles in the PbX6 octahedrons (X-Pb-X,θ1)and between PbX6 octahedrons (Pb-X-Pb,θ2).

    Table 1 The optimized structural parameters and calculated band gaps by difference functional.

    The thermodynamic stabilities of all-inorganic perovskites CsPbX3were analyzed by evaluating the formation energies.The formation energies are shown in Fig.2.Based on our calculations,on the one hand,γ-phase has the lowest formation energy,this is consistent with the experimental observation that γ-CsPbCl3is the phase stabilized at the lowest temperature range.On the other hand,CsPbCl3has the lowest formation energy compared to CsPbBr3and CsPbI3,which make it easier to synthesis in experiment.

    Fig.2 Calculated formation energies of α/β/γ-CsPbX3.

    It should be emphasized that the free energies were calculated at zero temperature.When temperature effect is included,the free energy will include the contributions such as thermal expansion,lattice vibrations,entropy effect,etc.First-principle study55found that the lattice vibration is the major contributing factor for stabilizing the cubic phase at room and high temperatures.We can expect that if the temperature effect is included,the energy order would be changed and the α/β-phase would be stabilized.

    3.2 Electronic structures and band gaps

    Fig.3 shows the calculated electronic structures by using standard HSE functional with considering SOC effects (HSE +SOC).It worth noting that the normal first-principles DFT calculation usually underestimates the band gap because of the self-interaction error.Generally,this issue could be remedied by using the HSE functional.For the Pb-containing perovskites,however,the band gaps calculated by HSE + SOC still do not agree well with the experimental values56.In this work,the band gap evolution of α/β/γ-CsPbI3calculated by HSE + SOC are consistent with the experimental trend (see Table 1).We therefore adopted the HSE + SOC results to analyzed band gap evolutions with phase transitions and halogen variations.All these nine structures are direct band gap semiconductors.The band edges of three α-phase structures are locating at (0.5,0.5,0.5)k-point,and three β- and γ-phase structures are locating at(0,0,0.5)and (0,0,0)k-points.The orbital compositions of the band edge states are shown.From the projected band edges,we can see that the valence-band maximums (VBMs)are mainly composed of the antibonding hybrid states between Pb 6s and X np (X = Cl,Br,and I)orbitals.The conduction band minimums(CBMs)are contributed by the antibonding states between Pb 6p and X np orbitals,with the major contribution from Pb 6p.Cs+has no significant contribution around the band edge.This is further reproduced by the project density of states (PDOS)shown in Fig.S1 (Supporting Information),we can see that the CBM mainly contributed by the Pb 6p,while the ratio of I 5p state is rather limited.It should be noticed that the band gaps of these structures present a monotonic change with phase transitions and halogen variations.Firstly,the band gaps increase monotonically with the phase transition from α- to β- and to γphase.Secondly,the band gaps decreased by changing the halogen type from Cl to Br and to I.

    Fig.3 The HSE + SOC functional calculated band structures of (a–c)α/β/γ-CsPbCl3,(d–f)α/β/γ-CsPbBr3 and (g–i)α/β/γ-CsPbI3.The dominant orbital characters of the bands are shown in color.Red,green and blue lines represent Pb s,Pb p and X p states,respectively.

    In order to have a deeper understanding of the physical mechanisms for band gap evolution with phase transitions,we further investigated the orbital coupling between the Pb cation and halide ion around the band edges in Fig.4a.For the example of CsPbI3,the PbI6octahedral structures and partial charge density at the VBM of α,β and γ-CsPbI3were presented in Fig.4b–d.As we can see,from α-phase (0.319 nm of Pb-I bond length)to β-phase (0.322 nm)and then to γ-phase (0.325 nm).The bond length of Pb-I increases gradually,which lead to weakening of Pb-I interaction.As a result,the antibonding states of Pb 6s–I 5p (VBM)are suppressed54.Because the CBM is mainly contributed by the Pb 6p states,the influence of Pb-I bonding strength on the CBM position is relatively small.The band gap increment can be attributed to weakening of the Pb-I interaction with increasing of the bond length and PbI6octahedral distortion.

    Fig.4 (a)The schematic of orbital hybridization between Pb cation and halide ion near the band edge states in CsPbI3.(b–d)The bond length diagram and charge density at valence band maximum (VBM)of Pb-I in cubic,tetragonal and orthorhombic CsPbI3,the isosurface value is set at 1 e·nm?3.

    In addition,the band gap changing with halogen in the following order:CsPbCl3> CsPbBr3> CsPbI3.CsPbI3has the smallest band gap value in the CsPbX3with the same phase structure.On the one hand,this can be attributed to the relativity smallest electronegativity difference between Pb (2.33)and I(2.66)makes Pb-I bond more covalent in comparison with Pb-Br (Br:2.96)and Pb-Cl (Cl:3.16).The strong interaction pushes up the antibonding states of Pb 6s and I 5p (VBM).On the other hand,The X np orbital energies are decreased from I 5p to Br 4p and then to Cl 3p,which leads to a high VBM for CsPbI3and results in the smallest band gap value of CsPbI3.

    It is worth mentioning that recent research for the CsPbI324reported the wrongly indexed the XRD pattern of γ-CsPbI3into α-CsPbI3.As a result,the band gap of γ-CsPbI3(1.73 eV)is erroneously referred to α-CsPbI3.As for the CsPbCl3and CsPbBr3,the experimental band gap values of cubic phases are larger than that of the orthorhombic phases.However,our calculated results and the bonding analysis demonstrate that the band gaps of orthorhombic phases should be larger than that of cubic phases.Therefore,the electronic properties of CsPbBr3and CsPbCl3should be further studied and established through experimentation.

    3.3 Carrier effective masses

    Carrier mobility is crucial for perovskite solar cell applications.As is well known,the effective masses of electron and hole are closely related to carrier mobility57,58.The calculated transport effective masses for electron me*and mh*are shown in Fig.5.As seen,all these materials have low electron and hole effective mass in the range of 0.05m0–0.15m0,which are consistent with other theoretical studies (eg.mh*= 0.073m0and me*= 0.064 m0for α-CsPbI3)59.These values are even lower than those of inorganic-organic halide perovskite CH3NH3PbX3(mh*= 0.23m0and me*= 0.29m0)60.It is beneficial for carrier transport.Moreover,α-CsPbX3have the smallest effective mass than other phases.Take CsPbI3as an example,α-CsPbI3has the smallest Pb-I bond length.The strong Pb-I orbital interaction leads to a more dispersive band-edge state and results in smaller effective masses for α-phase.The effective masses along three directions of electron and hole also calculated and shown in Table S1 (Supporting Information).

    Fig.5 The HSE + SOC functional effective masses of electron (a)and holes (b)of three phases inorganic perovskites.

    4 Conclusions

    In this work,we present a comprehensive study for the structural,thermodynamical and electronic properties of all inorganic lead halide perovskites (α-,β- and γ-CsPbX3(X = Cl,Br,I))by performing first-principles calculations.Phase transitions are accompanied by PbX6octahedral tilting and distortion,which influence the thermal stability and electronic properties.γ-phase with the lowest formation energy is the most stable structure,consistent with the fact that it is stabilized at relatively low temperature in experiment.All the CsPbX3perovskites are direct-gap semiconductors and the band gap increasing with the phase transitions from α- to β- and then to γphase.This is driven by the weaker Pb-X interaction due to the octahedral tilting and distortion,thus reducing the valence band maximum (VBM,consist of antibonding states of Pb 6s and X np orbitals).In addition,the band gap decreases from Cl to I in CsPbX3under the same structure.This is mainly due to the relative positions of the halogen np orbital energies being gradually increased from Cl to I and thus increased the VBM.All these compounds have favorable transport effective mass values in the range of 0.05m0–0.15m0.Our work provides understanding on the relationship between physical properties and structural features for all inorganic lead halide perovskites.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    丝袜脚勾引网站| 视频在线观看一区二区三区| 99香蕉大伊视频| 亚洲av电影在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 热re99久久精品国产66热6| 两个人免费观看高清视频| 狠狠婷婷综合久久久久久88av| 欧美日韩精品成人综合77777| 亚洲av电影在线观看一区二区三区| 久久久久精品性色| 赤兔流量卡办理| 你懂的网址亚洲精品在线观看| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性xxxx在线观看| 最近手机中文字幕大全| 亚洲伊人色综图| av有码第一页| 国产一区二区在线观看av| 看免费av毛片| 黑人巨大精品欧美一区二区蜜桃 | 欧美人与性动交α欧美精品济南到 | 免费人妻精品一区二区三区视频| 精品午夜福利在线看| 搡老乐熟女国产| 国产精品一区www在线观看| 国产xxxxx性猛交| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品色激情综合| 国产成人免费无遮挡视频| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 大香蕉久久成人网| 久久人人爽av亚洲精品天堂| 香蕉精品网在线| 91精品三级在线观看| 在线观看免费日韩欧美大片| 国产综合精华液| 国产乱来视频区| 午夜福利乱码中文字幕| freevideosex欧美| 久久久久久久精品精品| 高清毛片免费看| 国产在线视频一区二区| 日韩不卡一区二区三区视频在线| 亚洲成人手机| 免费黄网站久久成人精品| 精品人妻熟女毛片av久久网站| 欧美日韩成人在线一区二区| 中国国产av一级| 亚洲欧美日韩另类电影网站| 国产毛片在线视频| 国产国语露脸激情在线看| 啦啦啦视频在线资源免费观看| 超碰97精品在线观看| 国产成人一区二区在线| 26uuu在线亚洲综合色| 亚洲,一卡二卡三卡| 晚上一个人看的免费电影| 精品人妻熟女毛片av久久网站| 亚洲天堂av无毛| 色视频在线一区二区三区| 亚洲精品中文字幕在线视频| 黄色配什么色好看| av片东京热男人的天堂| 人妻人人澡人人爽人人| 人妻 亚洲 视频| av网站免费在线观看视频| 国产精品免费大片| 久久久精品区二区三区| 久久久久国产网址| 99热网站在线观看| 又黄又粗又硬又大视频| 国产日韩欧美在线精品| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 中文字幕免费在线视频6| www.av在线官网国产| 国产一区二区在线观看日韩| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲 | 秋霞在线观看毛片| 国产探花极品一区二区| 少妇人妻久久综合中文| 国产精品久久久久久精品电影小说| 一区二区日韩欧美中文字幕 | 男女国产视频网站| 51国产日韩欧美| 免费黄频网站在线观看国产| 国产一区二区激情短视频 | 久久99热这里只频精品6学生| 亚洲国产欧美日韩在线播放| 全区人妻精品视频| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 成人国语在线视频| 亚洲精品第二区| 中国美白少妇内射xxxbb| 美女大奶头黄色视频| 1024视频免费在线观看| 国产乱人偷精品视频| 新久久久久国产一级毛片| 新久久久久国产一级毛片| 亚洲久久久国产精品| 人体艺术视频欧美日本| 成人手机av| 十分钟在线观看高清视频www| 在线观看国产h片| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 人妻少妇偷人精品九色| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 一级片免费观看大全| 成人国产麻豆网| 久久久国产一区二区| 久久精品国产综合久久久 | 国产av精品麻豆| 街头女战士在线观看网站| 午夜激情久久久久久久| 18禁在线无遮挡免费观看视频| 日日撸夜夜添| 亚洲精品国产色婷婷电影| 丝袜美足系列| 麻豆精品久久久久久蜜桃| 亚洲图色成人| 国产伦理片在线播放av一区| 色网站视频免费| av播播在线观看一区| 久久久久久伊人网av| 久久久精品94久久精品| 欧美日韩国产mv在线观看视频| 建设人人有责人人尽责人人享有的| 久久狼人影院| 国产又色又爽无遮挡免| 五月天丁香电影| 中文字幕亚洲精品专区| 午夜视频国产福利| 精品熟女少妇av免费看| 日韩三级伦理在线观看| 99九九在线精品视频| 日日啪夜夜爽| 国产高清不卡午夜福利| 两个人免费观看高清视频| 插逼视频在线观看| 美女国产视频在线观看| 高清欧美精品videossex| 午夜福利视频在线观看免费| 国产一区二区三区综合在线观看 | 一二三四中文在线观看免费高清| 秋霞在线观看毛片| 国产av一区二区精品久久| 亚洲一码二码三码区别大吗| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| 在线亚洲精品国产二区图片欧美| 伦理电影大哥的女人| 一区二区av电影网| 国产1区2区3区精品| 飞空精品影院首页| 免费大片黄手机在线观看| 男人操女人黄网站| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 亚洲av国产av综合av卡| 亚洲一级一片aⅴ在线观看| 国产精品久久久久成人av| 日本91视频免费播放| 免费av不卡在线播放| 99久久中文字幕三级久久日本| 嫩草影院入口| 久久精品国产亚洲av天美| 国产精品.久久久| 日本午夜av视频| 视频中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 亚洲,欧美,日韩| 91aial.com中文字幕在线观看| 男女国产视频网站| 欧美成人午夜精品| kizo精华| 久久99蜜桃精品久久| av一本久久久久| 少妇猛男粗大的猛烈进出视频| 久久国内精品自在自线图片| 国产深夜福利视频在线观看| 久久狼人影院| 插逼视频在线观看| 777米奇影视久久| 欧美日韩av久久| 成年动漫av网址| 香蕉丝袜av| 色吧在线观看| 99久久综合免费| 国产日韩欧美亚洲二区| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到 | 国产成人av激情在线播放| 久久精品夜色国产| 亚洲第一av免费看| 亚洲经典国产精华液单| 久久精品久久久久久噜噜老黄| 黑人欧美特级aaaaaa片| 少妇 在线观看| 一区二区日韩欧美中文字幕 | 一级a做视频免费观看| 大香蕉97超碰在线| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 日本av免费视频播放| 国产激情久久老熟女| 五月天丁香电影| 亚洲丝袜综合中文字幕| 一级片免费观看大全| 亚洲精品国产色婷婷电影| 国产深夜福利视频在线观看| 91国产中文字幕| 一区二区三区乱码不卡18| 宅男免费午夜| 国产国拍精品亚洲av在线观看| 国产一级毛片在线| 亚洲国产精品一区二区三区在线| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 国产成人91sexporn| 久久久久精品性色| 欧美变态另类bdsm刘玥| av.在线天堂| 日韩大片免费观看网站| 亚洲成人手机| 99久久人妻综合| 久久鲁丝午夜福利片| 日韩伦理黄色片| 9色porny在线观看| 建设人人有责人人尽责人人享有的| 国产伦理片在线播放av一区| 国产精品成人在线| 黄片播放在线免费| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看| freevideosex欧美| av天堂久久9| a级毛色黄片| 欧美+日韩+精品| 久久精品国产自在天天线| 精品久久久精品久久久| 久久久久精品人妻al黑| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 成人手机av| 欧美国产精品va在线观看不卡| 日韩,欧美,国产一区二区三区| 国产亚洲欧美精品永久| 国产乱人偷精品视频| 国产黄频视频在线观看| 一二三四在线观看免费中文在 | 亚洲情色 制服丝袜| 国产高清三级在线| 精品国产一区二区久久| 在线亚洲精品国产二区图片欧美| 免费高清在线观看视频在线观看| 九色亚洲精品在线播放| 99视频精品全部免费 在线| 成人18禁高潮啪啪吃奶动态图| 国产成人精品一,二区| 最新中文字幕久久久久| 天堂俺去俺来也www色官网| 日本黄大片高清| 国产免费视频播放在线视频| 捣出白浆h1v1| 欧美性感艳星| 赤兔流量卡办理| 各种免费的搞黄视频| 女的被弄到高潮叫床怎么办| 亚洲精品,欧美精品| 久久久久久久久久成人| 欧美精品一区二区免费开放| av有码第一页| 日本av免费视频播放| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 免费高清在线观看日韩| 精品久久国产蜜桃| 熟妇人妻不卡中文字幕| 伊人亚洲综合成人网| 亚洲色图综合在线观看| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 国产综合精华液| 中文字幕亚洲精品专区| 熟女av电影| 欧美亚洲 丝袜 人妻 在线| 欧美另类一区| 国产精品99久久99久久久不卡 | 亚洲国产av新网站| 91精品伊人久久大香线蕉| 男人舔女人的私密视频| 不卡视频在线观看欧美| 日韩中文字幕视频在线看片| 欧美xxxx性猛交bbbb| 看免费成人av毛片| 久久这里只有精品19| 在线 av 中文字幕| 久久久久久久久久成人| 日韩伦理黄色片| 欧美日韩国产mv在线观看视频| 91成人精品电影| 亚洲av欧美aⅴ国产| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 成人国产av品久久久| 免费黄频网站在线观看国产| 国产福利在线免费观看视频| 国产亚洲午夜精品一区二区久久| 丝袜喷水一区| 色吧在线观看| 久久久a久久爽久久v久久| 精品一区二区三区四区五区乱码 | 最新的欧美精品一区二区| 女性被躁到高潮视频| 欧美最新免费一区二区三区| 美女内射精品一级片tv| 久久精品人人爽人人爽视色| 日日摸夜夜添夜夜爱| 亚洲性久久影院| 激情五月婷婷亚洲| 亚洲人成网站在线观看播放| 久久ye,这里只有精品| h视频一区二区三区| 五月玫瑰六月丁香| 日韩视频在线欧美| 精品久久蜜臀av无| 久久国产精品男人的天堂亚洲 | 日韩在线高清观看一区二区三区| 搡老乐熟女国产| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 国产日韩欧美在线精品| 欧美精品国产亚洲| h视频一区二区三区| 国产国拍精品亚洲av在线观看| 国产一区有黄有色的免费视频| 亚洲欧美成人综合另类久久久| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩综合在线一区二区| 国产精品蜜桃在线观看| 99香蕉大伊视频| 国产一级毛片在线| 日韩伦理黄色片| 久久久久久久大尺度免费视频| 国产黄频视频在线观看| 999精品在线视频| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的| 亚洲精品日韩在线中文字幕| 久久久精品区二区三区| 哪个播放器可以免费观看大片| 成人二区视频| 26uuu在线亚洲综合色| 晚上一个人看的免费电影| 欧美日韩精品成人综合77777| 国产无遮挡羞羞视频在线观看| 在线观看免费日韩欧美大片| 婷婷成人精品国产| 制服诱惑二区| 久久久久久人妻| 视频区图区小说| 久久久久久久大尺度免费视频| 日韩中字成人| 亚洲av在线观看美女高潮| 少妇人妻久久综合中文| 伊人久久国产一区二区| 亚洲精品色激情综合| 午夜影院在线不卡| 中文精品一卡2卡3卡4更新| tube8黄色片| 精品午夜福利在线看| 夜夜爽夜夜爽视频| 97在线视频观看| 另类亚洲欧美激情| 免费大片18禁| 性高湖久久久久久久久免费观看| 欧美日韩国产mv在线观看视频| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| av.在线天堂| 亚洲四区av| 最近最新中文字幕大全免费视频 | 91aial.com中文字幕在线观看| 超碰97精品在线观看| 哪个播放器可以免费观看大片| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| av在线老鸭窝| 国产精品欧美亚洲77777| 另类亚洲欧美激情| 青青草视频在线视频观看| 捣出白浆h1v1| 18禁在线无遮挡免费观看视频| 亚洲成人av在线免费| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 制服诱惑二区| 亚洲精品一区蜜桃| 国产一区亚洲一区在线观看| 国产av一区二区精品久久| 久久影院123| 亚洲在久久综合| 免费观看无遮挡的男女| 插逼视频在线观看| 美女国产高潮福利片在线看| 亚洲激情五月婷婷啪啪| 另类精品久久| 国产一区二区在线观看av| 久久久国产欧美日韩av| 欧美国产精品一级二级三级| 欧美+日韩+精品| 国产成人免费无遮挡视频| 99精国产麻豆久久婷婷| 亚洲国产精品成人久久小说| 大香蕉久久成人网| 狠狠精品人妻久久久久久综合| 亚洲国产av新网站| 男人添女人高潮全过程视频| 搡老乐熟女国产| 国产在线视频一区二区| 亚洲国产最新在线播放| 亚洲精品aⅴ在线观看| 免费黄色在线免费观看| 69精品国产乱码久久久| videos熟女内射| 欧美精品国产亚洲| 中国美白少妇内射xxxbb| 亚洲 欧美一区二区三区| 波野结衣二区三区在线| 热99国产精品久久久久久7| 精品人妻偷拍中文字幕| 美女视频免费永久观看网站| 美女国产视频在线观看| 午夜免费观看性视频| 久久热在线av| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 在线观看免费日韩欧美大片| 欧美成人精品欧美一级黄| 少妇人妻久久综合中文| 日韩一区二区视频免费看| 丰满迷人的少妇在线观看| 在线天堂中文资源库| 久久精品国产综合久久久 | 欧美3d第一页| 国产一区二区在线观看av| 国产xxxxx性猛交| 欧美精品av麻豆av| 九草在线视频观看| 春色校园在线视频观看| 亚洲av中文av极速乱| 国产精品蜜桃在线观看| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 成人漫画全彩无遮挡| av有码第一页| 五月天丁香电影| 汤姆久久久久久久影院中文字幕| 男人舔女人的私密视频| 亚洲av福利一区| 欧美成人午夜精品| 黑丝袜美女国产一区| 久久久久网色| 制服诱惑二区| 91成人精品电影| 一级毛片电影观看| 少妇高潮的动态图| 国内精品宾馆在线| 日产精品乱码卡一卡2卡三| 如何舔出高潮| 久久久久视频综合| 尾随美女入室| 一级毛片我不卡| 久久免费观看电影| 在线亚洲精品国产二区图片欧美| 国产一区亚洲一区在线观看| 日韩成人伦理影院| 丰满少妇做爰视频| 亚洲激情五月婷婷啪啪| 自线自在国产av| 久久久国产一区二区| 久久久久久久久久成人| 亚洲精品国产av成人精品| 亚洲精品乱码久久久久久按摩| 在线亚洲精品国产二区图片欧美| 亚洲av福利一区| 欧美激情国产日韩精品一区| 午夜福利影视在线免费观看| 最新的欧美精品一区二区| 九九爱精品视频在线观看| 国产亚洲欧美精品永久| 日韩,欧美,国产一区二区三区| 又黄又粗又硬又大视频| 久久99蜜桃精品久久| av在线app专区| av一本久久久久| 伦理电影大哥的女人| 成年人午夜在线观看视频| 国产精品无大码| 国产亚洲精品第一综合不卡 | 日韩熟女老妇一区二区性免费视频| 欧美国产精品va在线观看不卡| av播播在线观看一区| 新久久久久国产一级毛片| av一本久久久久| 国产免费现黄频在线看| 51国产日韩欧美| 又大又黄又爽视频免费| 久久狼人影院| 久久97久久精品| 亚洲av日韩在线播放| 亚洲精品中文字幕在线视频| 日韩中文字幕视频在线看片| 久久精品国产亚洲av涩爱| 久久国内精品自在自线图片| 欧美日韩视频精品一区| 一个人免费看片子| 久久综合国产亚洲精品| 最近中文字幕2019免费版| 久久人人爽人人片av| www.色视频.com| 久热这里只有精品99| 毛片一级片免费看久久久久| a级毛片在线看网站| 亚洲美女搞黄在线观看| 黑人猛操日本美女一级片| 久久久久久久久久久免费av| 久久精品夜色国产| 亚洲伊人久久精品综合| 欧美激情 高清一区二区三区| 丰满少妇做爰视频| 久久99蜜桃精品久久| tube8黄色片| 日韩成人av中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线| 另类精品久久| 在线观看三级黄色| www.av在线官网国产| 人妻少妇偷人精品九色| 亚洲av成人精品一二三区| 欧美变态另类bdsm刘玥| 精品国产国语对白av| 最新的欧美精品一区二区| av在线app专区| 人人澡人人妻人| 国产免费福利视频在线观看| 中文字幕亚洲精品专区| 多毛熟女@视频| 老司机影院毛片| 青春草国产在线视频| 色吧在线观看| 亚洲精品美女久久久久99蜜臀 | 制服诱惑二区| 精品国产一区二区三区四区第35| 一区二区三区四区激情视频| a级毛片在线看网站| 久久精品国产鲁丝片午夜精品| 成人漫画全彩无遮挡| 久久人妻熟女aⅴ| 亚洲国产欧美日韩在线播放| 亚洲内射少妇av| 国产成人精品在线电影| 三级国产精品片| 色吧在线观看| 欧美日本中文国产一区发布| 精品一区二区三区视频在线| 成人国产麻豆网| 蜜桃在线观看..| 春色校园在线视频观看| 欧美日韩精品成人综合77777| 日韩一区二区视频免费看| 大片免费播放器 马上看| 免费人妻精品一区二区三区视频| 欧美精品高潮呻吟av久久| 亚洲精品av麻豆狂野| 亚洲精品乱码久久久久久按摩| 日本91视频免费播放| 综合色丁香网| 国产精品 国内视频| 精品人妻一区二区三区麻豆| 久久综合国产亚洲精品| 交换朋友夫妻互换小说| 亚洲美女搞黄在线观看| 精品第一国产精品| 国产免费一级a男人的天堂| 老熟女久久久| 久久人人爽av亚洲精品天堂| 人成视频在线观看免费观看| 久久精品国产鲁丝片午夜精品| 视频中文字幕在线观看| 男女下面插进去视频免费观看 | 97在线视频观看| 熟女电影av网| 美女视频免费永久观看网站| 久久久精品94久久精品| av.在线天堂| 九九爱精品视频在线观看| 精品第一国产精品| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| 国产av国产精品国产|