• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites

    2021-06-04 03:49:56YawenLiGuangrenNaShulinLuoXinHeLijunZhang
    物理化學(xué)學(xué)報 2021年4期

    Yawen Li ,Guangren Na ,Shulin Luo ,Xin He ,2,*,Lijun Zhang ,*

    1 State Key Laboratory of Integrated Optoelectronics,Key Laboratory of Automobile Materials of MOE,College of Materials Science and Engineering,Jilin University,Changchun 130012,China.

    2 College of Physics,Jilin University,Changchun 130012,China.

    Abstract:Organic-inorganic hybrid lead halide perovskites have emerged as the most promising materials in the field of optoelectronics due to their unique electronic and optical properties.However,the poor long-term material and device stabilities of these materials have limited their practical application.Compared to organic-inorganic hybrid perovskites,all-inorganic halide perovskites like CsPbX3 (X = Cl,Br,I)show enhanced thermal stability and the potential to resolve the issue of instability.Nevertheless,the structural and physical properties of allinorganic CsPbX3 halide perovskites with multiple structural polymorphs are still under debate.A recent research article on CsPbI3 reported the wrongly indexed the XRD pattern of γ-CsPbI3 as α-CsPbI3.Consequently,the band gap of γ-CsPbI3 (1.73 eV)was erroneously designated for α-CsPbI3.Therefore,there is a need for systematic research on the relationship between the structural features and electronic properties of CsPbX3.Here,we present a comprehensive theoretical study of the structural,thermodynamical and electronic properties of three polymorphic phases,α-,β-,and γ-CsPbX3.The space group of α-,β-,and γ-CsPbX3 are Pm3ˉm,P4/mbm,and Pnma,respectively.First-principles calculations indicate that the phase transition from the hightemperature α-phase to the low-temperature β-phase and then to the γ phase is accompanied by an increase in the degree of PbX6 octahedral distortion.The zero-temperature energetic calculations reveal that the γ-phase is the most stable.This is consistent with the fact that experimentally,the γ-phase is stabilized at a relatively low temperature.Analysis of the electronic properties indicates that all the CsPbX3 perovskites exhibit a direct-gap nature and the band gap values increase from α to β,and then to the γ phase.From the analysis of the orbital hybridization near the band gap edges,the increase can be explained by the downshift of the valence band edges caused by the gradual weakening of the Pb-X chemical bond.Among all the phases,the strongest Pb-X interaction in the α-phase leads to the most dispersive band-edge states and thus the smallest carrier effective masses,which are beneficial for carrier transport.Additionally,the band gaps decreased by changing the halogen type from Cl to Br and I under the same phase.this is a consequence of the increased X np orbital energies from Cl 3p to Br 4p and then to I 3p that leads to a high valence band edge for CsPbI3 and results in the smallest band gap.Our results provide deep understanding on the relationship between the physical properties and structural features of all-inorganic lead halide perovskites.

    Key Words:Inorganic halide perovskite; Optoelectronic property; First-principles calculation; Electronic structure

    1 Introduction

    Since the organic metal perovskite was first reported in 20091researches on perovskite-based solar cells (PSCs)have exploded due to their excellent characteristics such as tunable band gap,low cost,and outstanding optical absorption properties2–12.The record certainly power conversation efficiency (PCEs)of organic-inorganic based PSCs has reached 25.2%13.Despite the organic-inorganic hybrid halide perovskites have high efficiencies and excellent properties,the poor stability of these materials is still a critical challenge which hinders the commercial pace of PSCs14.Thus researches have been focused on the long-term stability of solar absorber materials15–23.Using more robust inorganic Cs+cations to replace the fragile organic group with forms the all-inorganic perovskites lead halide system (CsPbX3,X is halide)as which are much more thermally stable and often more stable to other factors24,25.Inorganic perovskites CsPbX3have attracted great attention in the fields of photovoltaics26–28.From the first report in 2015 to now,the PCE of CsPbX3-based PSCs has abruptly increased from 2.9%(CsPbI3)29and 5.8% (CsPbBr3)30to 17.1% (CsPbI3)31with much enhanced stability.From this progress,the all-inorganic halide perovskites CsPbX3are emerging as a new research area and will play a significant role in the photovoltaic field32.

    It is generally known that the inorganic lead-halide perovskites CsPbX3(X = Cl,Br,I)undergo phase transitions at different temperatures.The temperature range for the phase transition is different with the change of halogen atom.CsPbX3perovskites exhibit different polymorphs:α-(cubic),β-(tetragonal),and γ-(orthorhombic)phases.For bulk CsPbCl3,the high temperature phase is cubic α perovskite structure (Pmˉm).As bulk CsPbCl3is cooled through 47 °C,it undergoes firstorder phase transition to the tetragonal β perovskite structure(P4/mbm)which accompany by the PbCl6octahedra rotation in the ab plane.Finally,upon cooling through 42 °C,the PbCl6octahedra tilt away from the c axis to generate the orthorhombic γ perovskite (Pnma)structure (second-order transition)33,34.The single crystal CsPbBr3undergoes the cubic to tetragonal structure at 130 °C and tetragonal to orthorhombic at 88 °C35,36.The phase transitions of CsPbI3from high temperature to room temperature at ambient conditions are going through cubic to tetragonal phase at 260 °C,tetragonal to orthorhombic phase at 175 °C and then orthorhombic phase transition to non-perovskite δ-phase after standing a few days later37.Concerning the cubic phase,the phase transitions are accompanied by lead-halide octahedral tilting and distortion38,which affect the stability,electronic and photophysical properties39.In addition,the halogen anions also affect the electronic properties of lead halide perovskite40.

    Recent researches indicated that there are incorrect cognitions about the structure and band gap of CsPbI324,41,42.Most of the previous studies have translated the X-ray diffraction (XRD)pattern of γ-CsPbI3into α-CsPbI3then wrongly attributed the band gap 1.73 eV to α-CsPbI3.Up to now,systematic research of electronic properties on three polymorphic phases inorganic lead halide perovskites:α/β/γ-CsPbX3are rarely reported.For all these reasons,it is necessary to have a comprehensive study on the different phases of inorganic perovskite CsPbX3.In this work,the structural,thermodynamical and electronic properties were calculated by first-principles calculations.From our results,we notice that the phase transition from α to β and then to γ are accompany with PbX6octahedral tilting and distortion,which further influence the thermostability and band gaps.Here,we investigate the in-depth physical mechanisms for band gap evolutions with phase transitions and halogen variations.

    2 Computational methods

    All the first-principles calculations were carried out within density functional theory (DFT)by using plane-wave pseudopotentials method implemented in the Vienna Ab-initio Simulation Package43.The projected augmented wave (PAW)pseudopotentials44with 6s for Cs,6s and 6p for Pb,3s and 3p for Cl,4s and 4p for Br,and 5s and 5p for I valence electrons were employed to describe the electron-ion interactions.The generalized gradient approximation (GGA)formulated by Perdew,Burke,and Ernzerhof (PBE)45was used as the exchange-correlation functional.Structural optimizations were done with the kinetic energy cutoff of 300 eV and the k-point meshes of reciprocal spacing set to 2π × 0.00318·nm?1.Both atoms and cell volume were allowed to relax until the residual forces were smaller than 0.1 eV·nm?1.Standard DFT-GGA methods underestimate the band gaps due to the presence of artificial self-interaction and the absence of the derivative discontinuity in the exchange-correlation potential46.We calculated electronic structures using the Heyd-Scuseria-Ernzerhof (HSE)functional with the standard 25% nonlocal Fock exchange.We also considered the spin-orbit coupling(SOC)in our calculation due to the non-negligible effect on the heavy metals,especially Pb.

    3 Results and discussion

    3.1 Structural properties and thermodynamic stability

    The α,β and γ phases of CsPbI3and CsPbBr3are found to be in the Pmm,P4/mbm and Pnma space groups,respectively.There is experimental research on CsPbCl347revealed that the second and first-order phase transitions from orthorhombic over tetragonal to cubic structure occur at 42 and 47 °C,respectively.The β-CsPbCl3is in space group tetragonal P4/mbm33and γ-CsPbCl3is in space group orthorhombic Pnma49,which are same to the space groups of β/γ-CsPbBr(I)3.Therefore,we constructed the β/γ-CsPbCl3by replacing I atoms to Cl atoms based on β/γ-CsPbI3structures,and then the structures are fully relaxed (Fig.1a–c).The optimized lattice constants and calculated band gaps are shown in Table 1.The corresponding experimental data are also list for reference24,36,40,48–54.The crystal structures,bond lengths and bond angles between Pb and X of α,β and γ-CsPbX3are shown in Fig.1.As seen in Fig.1d,α-phases have the smallest Pb-X bond length and γ-phases have the largest bond length.In addition,the Pb-X bond length changing with halogen in the following order:CsPbCl3> CsPbBr3> CsPbI3.The PbX6octahedral framework is the skeleton of CsPbX3perovskite.The deviation of the band angles in the PbX6octahedrons (X-Pb-X,θ1)from 90° is taken as a measure of octahedral distortion.The deviation of the bond angles between corner-sharing PbX6octahedrons (Pb-X-Pb,θ2)from 180° is taken as a measure of octahedral tilting and twisting.As seen in Fig.1e,for β-phase,zero deviation of θ1and nonzero deviation of θ2indicating octahedron tilting.For γ-phase,the nonzero deviation of both θ1and θ2indicating octahedral distortion and octahedral tilting.Overall,phase transition accompanied with lead-halide octahedral tilting and distortion.γ-phase has the most distortion,followed by β-phase.

    Fig.1 (a–c)The geometry structures of α/β/γ-phase CsPbX3 (X = Cl,Br,I),(d)the bond lengths of Pb-X and (e)the bond angles in the PbX6 octahedrons (X-Pb-X,θ1)and between PbX6 octahedrons (Pb-X-Pb,θ2).

    Table 1 The optimized structural parameters and calculated band gaps by difference functional.

    The thermodynamic stabilities of all-inorganic perovskites CsPbX3were analyzed by evaluating the formation energies.The formation energies are shown in Fig.2.Based on our calculations,on the one hand,γ-phase has the lowest formation energy,this is consistent with the experimental observation that γ-CsPbCl3is the phase stabilized at the lowest temperature range.On the other hand,CsPbCl3has the lowest formation energy compared to CsPbBr3and CsPbI3,which make it easier to synthesis in experiment.

    Fig.2 Calculated formation energies of α/β/γ-CsPbX3.

    It should be emphasized that the free energies were calculated at zero temperature.When temperature effect is included,the free energy will include the contributions such as thermal expansion,lattice vibrations,entropy effect,etc.First-principle study55found that the lattice vibration is the major contributing factor for stabilizing the cubic phase at room and high temperatures.We can expect that if the temperature effect is included,the energy order would be changed and the α/β-phase would be stabilized.

    3.2 Electronic structures and band gaps

    Fig.3 shows the calculated electronic structures by using standard HSE functional with considering SOC effects (HSE +SOC).It worth noting that the normal first-principles DFT calculation usually underestimates the band gap because of the self-interaction error.Generally,this issue could be remedied by using the HSE functional.For the Pb-containing perovskites,however,the band gaps calculated by HSE + SOC still do not agree well with the experimental values56.In this work,the band gap evolution of α/β/γ-CsPbI3calculated by HSE + SOC are consistent with the experimental trend (see Table 1).We therefore adopted the HSE + SOC results to analyzed band gap evolutions with phase transitions and halogen variations.All these nine structures are direct band gap semiconductors.The band edges of three α-phase structures are locating at (0.5,0.5,0.5)k-point,and three β- and γ-phase structures are locating at(0,0,0.5)and (0,0,0)k-points.The orbital compositions of the band edge states are shown.From the projected band edges,we can see that the valence-band maximums (VBMs)are mainly composed of the antibonding hybrid states between Pb 6s and X np (X = Cl,Br,and I)orbitals.The conduction band minimums(CBMs)are contributed by the antibonding states between Pb 6p and X np orbitals,with the major contribution from Pb 6p.Cs+has no significant contribution around the band edge.This is further reproduced by the project density of states (PDOS)shown in Fig.S1 (Supporting Information),we can see that the CBM mainly contributed by the Pb 6p,while the ratio of I 5p state is rather limited.It should be noticed that the band gaps of these structures present a monotonic change with phase transitions and halogen variations.Firstly,the band gaps increase monotonically with the phase transition from α- to β- and to γphase.Secondly,the band gaps decreased by changing the halogen type from Cl to Br and to I.

    Fig.3 The HSE + SOC functional calculated band structures of (a–c)α/β/γ-CsPbCl3,(d–f)α/β/γ-CsPbBr3 and (g–i)α/β/γ-CsPbI3.The dominant orbital characters of the bands are shown in color.Red,green and blue lines represent Pb s,Pb p and X p states,respectively.

    In order to have a deeper understanding of the physical mechanisms for band gap evolution with phase transitions,we further investigated the orbital coupling between the Pb cation and halide ion around the band edges in Fig.4a.For the example of CsPbI3,the PbI6octahedral structures and partial charge density at the VBM of α,β and γ-CsPbI3were presented in Fig.4b–d.As we can see,from α-phase (0.319 nm of Pb-I bond length)to β-phase (0.322 nm)and then to γ-phase (0.325 nm).The bond length of Pb-I increases gradually,which lead to weakening of Pb-I interaction.As a result,the antibonding states of Pb 6s–I 5p (VBM)are suppressed54.Because the CBM is mainly contributed by the Pb 6p states,the influence of Pb-I bonding strength on the CBM position is relatively small.The band gap increment can be attributed to weakening of the Pb-I interaction with increasing of the bond length and PbI6octahedral distortion.

    Fig.4 (a)The schematic of orbital hybridization between Pb cation and halide ion near the band edge states in CsPbI3.(b–d)The bond length diagram and charge density at valence band maximum (VBM)of Pb-I in cubic,tetragonal and orthorhombic CsPbI3,the isosurface value is set at 1 e·nm?3.

    In addition,the band gap changing with halogen in the following order:CsPbCl3> CsPbBr3> CsPbI3.CsPbI3has the smallest band gap value in the CsPbX3with the same phase structure.On the one hand,this can be attributed to the relativity smallest electronegativity difference between Pb (2.33)and I(2.66)makes Pb-I bond more covalent in comparison with Pb-Br (Br:2.96)and Pb-Cl (Cl:3.16).The strong interaction pushes up the antibonding states of Pb 6s and I 5p (VBM).On the other hand,The X np orbital energies are decreased from I 5p to Br 4p and then to Cl 3p,which leads to a high VBM for CsPbI3and results in the smallest band gap value of CsPbI3.

    It is worth mentioning that recent research for the CsPbI324reported the wrongly indexed the XRD pattern of γ-CsPbI3into α-CsPbI3.As a result,the band gap of γ-CsPbI3(1.73 eV)is erroneously referred to α-CsPbI3.As for the CsPbCl3and CsPbBr3,the experimental band gap values of cubic phases are larger than that of the orthorhombic phases.However,our calculated results and the bonding analysis demonstrate that the band gaps of orthorhombic phases should be larger than that of cubic phases.Therefore,the electronic properties of CsPbBr3and CsPbCl3should be further studied and established through experimentation.

    3.3 Carrier effective masses

    Carrier mobility is crucial for perovskite solar cell applications.As is well known,the effective masses of electron and hole are closely related to carrier mobility57,58.The calculated transport effective masses for electron me*and mh*are shown in Fig.5.As seen,all these materials have low electron and hole effective mass in the range of 0.05m0–0.15m0,which are consistent with other theoretical studies (eg.mh*= 0.073m0and me*= 0.064 m0for α-CsPbI3)59.These values are even lower than those of inorganic-organic halide perovskite CH3NH3PbX3(mh*= 0.23m0and me*= 0.29m0)60.It is beneficial for carrier transport.Moreover,α-CsPbX3have the smallest effective mass than other phases.Take CsPbI3as an example,α-CsPbI3has the smallest Pb-I bond length.The strong Pb-I orbital interaction leads to a more dispersive band-edge state and results in smaller effective masses for α-phase.The effective masses along three directions of electron and hole also calculated and shown in Table S1 (Supporting Information).

    Fig.5 The HSE + SOC functional effective masses of electron (a)and holes (b)of three phases inorganic perovskites.

    4 Conclusions

    In this work,we present a comprehensive study for the structural,thermodynamical and electronic properties of all inorganic lead halide perovskites (α-,β- and γ-CsPbX3(X = Cl,Br,I))by performing first-principles calculations.Phase transitions are accompanied by PbX6octahedral tilting and distortion,which influence the thermal stability and electronic properties.γ-phase with the lowest formation energy is the most stable structure,consistent with the fact that it is stabilized at relatively low temperature in experiment.All the CsPbX3perovskites are direct-gap semiconductors and the band gap increasing with the phase transitions from α- to β- and then to γphase.This is driven by the weaker Pb-X interaction due to the octahedral tilting and distortion,thus reducing the valence band maximum (VBM,consist of antibonding states of Pb 6s and X np orbitals).In addition,the band gap decreases from Cl to I in CsPbX3under the same structure.This is mainly due to the relative positions of the halogen np orbital energies being gradually increased from Cl to I and thus increased the VBM.All these compounds have favorable transport effective mass values in the range of 0.05m0–0.15m0.Our work provides understanding on the relationship between physical properties and structural features for all inorganic lead halide perovskites.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    观看免费一级毛片| 亚洲,一卡二卡三卡| 少妇人妻 视频| 中文欧美无线码| 三级国产精品欧美在线观看| 欧美人与善性xxx| 免费人成在线观看视频色| 最近2019中文字幕mv第一页| 国产成人a∨麻豆精品| 亚洲精品国产成人久久av| 美女国产视频在线观看| 亚洲欧美日韩东京热| 国产探花在线观看一区二区| 国产色婷婷99| 国产色婷婷99| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产色片| 国内揄拍国产精品人妻在线| 国产免费一级a男人的天堂| 中文字幕av成人在线电影| 欧美bdsm另类| 搡女人真爽免费视频火全软件| 国产成年人精品一区二区| 久久久久久久精品精品| 五月天丁香电影| 国产v大片淫在线免费观看| 熟妇人妻不卡中文字幕| 美女被艹到高潮喷水动态| 十八禁网站网址无遮挡 | 久久精品国产自在天天线| 一本色道久久久久久精品综合| 国产亚洲最大av| 偷拍熟女少妇极品色| 日韩免费高清中文字幕av| 少妇人妻精品综合一区二区| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av涩爱| 成人亚洲欧美一区二区av| 亚洲精品视频女| 国产精品av视频在线免费观看| 国产亚洲午夜精品一区二区久久 | 亚洲欧美成人精品一区二区| 国产欧美亚洲国产| 国产亚洲5aaaaa淫片| 精品一区二区免费观看| av在线天堂中文字幕| 精品久久久精品久久久| 干丝袜人妻中文字幕| 观看免费一级毛片| 亚洲av二区三区四区| 亚洲精品乱码久久久久久按摩| eeuss影院久久| 国产成人福利小说| 男人爽女人下面视频在线观看| 在线亚洲精品国产二区图片欧美 | 日产精品乱码卡一卡2卡三| 日韩制服骚丝袜av| 国精品久久久久久国模美| 亚洲人与动物交配视频| 午夜精品一区二区三区免费看| 精品少妇黑人巨大在线播放| 亚洲精品久久久久久婷婷小说| 一本色道久久久久久精品综合| 日本av手机在线免费观看| 久久久久网色| av黄色大香蕉| 少妇高潮的动态图| 国产真实伦视频高清在线观看| 免费av毛片视频| 一级毛片久久久久久久久女| 熟女人妻精品中文字幕| 特大巨黑吊av在线直播| 午夜免费男女啪啪视频观看| 欧美精品人与动牲交sv欧美| 精品一区在线观看国产| 日韩 亚洲 欧美在线| 又爽又黄a免费视频| 99re6热这里在线精品视频| 身体一侧抽搐| 丰满人妻一区二区三区视频av| 嫩草影院新地址| 国产精品久久久久久精品电影小说 | 少妇的逼好多水| 国产成人免费无遮挡视频| 少妇 在线观看| 又黄又爽又刺激的免费视频.| 麻豆成人av视频| 欧美日韩在线观看h| 精品国产乱码久久久久久小说| 精品一区在线观看国产| 国产 精品1| 久久精品国产a三级三级三级| 久久久久久久亚洲中文字幕| 最近中文字幕2019免费版| 一区二区三区精品91| 亚洲欧美日韩无卡精品| 青春草亚洲视频在线观看| 国内精品宾馆在线| 九九爱精品视频在线观看| 国产免费又黄又爽又色| 三级男女做爰猛烈吃奶摸视频| av在线观看视频网站免费| 欧美日韩精品成人综合77777| 欧美少妇被猛烈插入视频| 亚洲综合精品二区| 日本三级黄在线观看| 亚洲在线观看片| 国产精品99久久久久久久久| 午夜日本视频在线| 少妇丰满av| 91久久精品国产一区二区三区| 最近手机中文字幕大全| 亚洲人成网站高清观看| 色网站视频免费| 午夜福利在线在线| 97在线视频观看| 日本一二三区视频观看| 国产在线一区二区三区精| 久久亚洲国产成人精品v| av在线蜜桃| 久久久久久久久大av| 国产一区亚洲一区在线观看| 国产精品熟女久久久久浪| 嘟嘟电影网在线观看| 91精品一卡2卡3卡4卡| 91在线精品国自产拍蜜月| av女优亚洲男人天堂| 亚洲图色成人| 黄色日韩在线| 97人妻精品一区二区三区麻豆| av一本久久久久| 99久国产av精品国产电影| 狠狠精品人妻久久久久久综合| 国产精品人妻久久久久久| 国产熟女欧美一区二区| 亚洲欧美成人综合另类久久久| 汤姆久久久久久久影院中文字幕| 精品午夜福利在线看| 国产成人a∨麻豆精品| 国产精品伦人一区二区| av在线app专区| 亚洲无线观看免费| 只有这里有精品99| 国产男人的电影天堂91| 丰满少妇做爰视频| 别揉我奶头 嗯啊视频| 久久精品熟女亚洲av麻豆精品| 久久鲁丝午夜福利片| 亚洲激情五月婷婷啪啪| 久久久久久久午夜电影| 久久人人爽人人片av| 联通29元200g的流量卡| 我的老师免费观看完整版| 99久久精品热视频| 国精品久久久久久国模美| 青春草国产在线视频| 午夜视频国产福利| 亚洲欧美一区二区三区黑人 | 精品酒店卫生间| 黄片无遮挡物在线观看| 亚洲不卡免费看| 国产老妇女一区| 亚洲美女视频黄频| 王馨瑶露胸无遮挡在线观看| 在线观看人妻少妇| 高清午夜精品一区二区三区| 各种免费的搞黄视频| 天天躁日日操中文字幕| 亚洲美女搞黄在线观看| 大陆偷拍与自拍| 久久精品久久久久久噜噜老黄| 免费观看性生交大片5| 丰满少妇做爰视频| 国产色婷婷99| 国产精品一区二区性色av| 街头女战士在线观看网站| 在线观看国产h片| 少妇人妻精品综合一区二区| 中文资源天堂在线| 欧美日韩视频精品一区| 黄色怎么调成土黄色| 亚洲成人一二三区av| 美女cb高潮喷水在线观看| 麻豆乱淫一区二区| 尾随美女入室| 亚洲精品自拍成人| 黄色怎么调成土黄色| 久久精品夜色国产| 特级一级黄色大片| 日韩伦理黄色片| 午夜免费鲁丝| 女人被狂操c到高潮| 特级一级黄色大片| 草草在线视频免费看| 日本av手机在线免费观看| 欧美zozozo另类| 美女高潮的动态| 久久亚洲国产成人精品v| av在线观看视频网站免费| 青春草亚洲视频在线观看| 青春草国产在线视频| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| av免费在线看不卡| 性色avwww在线观看| 最近最新中文字幕大全电影3| av.在线天堂| 中国三级夫妇交换| 国产精品一区www在线观看| 国产在线男女| 在线天堂最新版资源| 国产成年人精品一区二区| 色婷婷久久久亚洲欧美| 午夜免费男女啪啪视频观看| 美女主播在线视频| 欧美日韩国产mv在线观看视频 | 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 黑人高潮一二区| 老司机影院成人| av专区在线播放| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美人成| 婷婷色av中文字幕| 小蜜桃在线观看免费完整版高清| 欧美日韩在线观看h| 一区二区三区四区激情视频| 国产在线一区二区三区精| 黄色日韩在线| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 日韩电影二区| 日本与韩国留学比较| 午夜免费鲁丝| 国产色爽女视频免费观看| 国产女主播在线喷水免费视频网站| 亚洲内射少妇av| 少妇人妻精品综合一区二区| 女人久久www免费人成看片| 日韩制服骚丝袜av| 国产 精品1| 中文资源天堂在线| 777米奇影视久久| 香蕉精品网在线| 国产午夜福利久久久久久| 日本av手机在线免费观看| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产鲁丝片午夜精品| 亚洲真实伦在线观看| 亚洲最大成人手机在线| 亚洲成色77777| 中国国产av一级| 在线观看一区二区三区激情| 黄片wwwwww| 好男人视频免费观看在线| 观看免费一级毛片| 日日啪夜夜撸| 亚洲色图综合在线观看| 在线观看一区二区三区激情| 日韩av在线免费看完整版不卡| 久久影院123| 美女高潮的动态| 黄色配什么色好看| 免费电影在线观看免费观看| 水蜜桃什么品种好| 伊人久久精品亚洲午夜| 免费播放大片免费观看视频在线观看| 免费观看的影片在线观看| 精品久久久噜噜| av网站免费在线观看视频| xxx大片免费视频| 在线免费十八禁| 国产精品国产av在线观看| 五月伊人婷婷丁香| 免费观看的影片在线观看| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区| 欧美zozozo另类| 男女那种视频在线观看| 91久久精品电影网| 欧美一区二区亚洲| 国产91av在线免费观看| 免费观看在线日韩| 舔av片在线| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 成人国产麻豆网| 大香蕉97超碰在线| 国产伦理片在线播放av一区| 国产一区二区三区av在线| 国产精品久久久久久av不卡| 熟妇人妻不卡中文字幕| 午夜福利高清视频| 成人亚洲精品一区在线观看 | 夜夜爽夜夜爽视频| 亚洲欧美日韩无卡精品| 日韩免费高清中文字幕av| 亚洲av中文字字幕乱码综合| av播播在线观看一区| 久久久久久久精品精品| 新久久久久国产一级毛片| 在线天堂最新版资源| 男女国产视频网站| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 久久久久久久午夜电影| 直男gayav资源| 制服丝袜香蕉在线| 午夜亚洲福利在线播放| 精品人妻一区二区三区麻豆| 亚洲精品日韩在线中文字幕| videossex国产| 日韩一区二区视频免费看| 免费高清在线观看视频在线观看| 男男h啪啪无遮挡| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 男男h啪啪无遮挡| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 天天躁日日操中文字幕| 少妇的逼水好多| 国产精品无大码| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 亚洲精品日韩在线中文字幕| 嫩草影院入口| 观看免费一级毛片| 久久99蜜桃精品久久| 97热精品久久久久久| 中文字幕制服av| 欧美xxⅹ黑人| 黑人高潮一二区| 久久精品国产亚洲网站| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 蜜桃久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 观看美女的网站| 国产日韩欧美亚洲二区| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 成人午夜精彩视频在线观看| 欧美三级亚洲精品| 91久久精品国产一区二区三区| 内地一区二区视频在线| 22中文网久久字幕| 69人妻影院| 99久久人妻综合| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 尾随美女入室| 有码 亚洲区| 久久久久久久大尺度免费视频| 亚洲欧美一区二区三区黑人 | 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 乱系列少妇在线播放| 成年版毛片免费区| 免费观看性生交大片5| 日韩国内少妇激情av| 免费大片18禁| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频| 成年女人看的毛片在线观看| 成年人午夜在线观看视频| 身体一侧抽搐| 国产成人aa在线观看| 午夜福利高清视频| 久久精品国产亚洲网站| 日韩欧美精品v在线| 建设人人有责人人尽责人人享有的 | 人人妻人人看人人澡| 成人特级av手机在线观看| 国产精品国产av在线观看| 国产精品爽爽va在线观看网站| 国产又色又爽无遮挡免| 国产高清国产精品国产三级 | 亚洲av中文av极速乱| 黄色视频在线播放观看不卡| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲网站| 国产 一区精品| 超碰97精品在线观看| 成人黄色视频免费在线看| 免费看日本二区| 婷婷色综合大香蕉| av线在线观看网站| 国产精品国产三级国产av玫瑰| 极品少妇高潮喷水抽搐| 国产男人的电影天堂91| 赤兔流量卡办理| 欧美少妇被猛烈插入视频| 国产精品国产av在线观看| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线观看播放| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 国产成人免费无遮挡视频| 一个人看的www免费观看视频| videossex国产| 夜夜看夜夜爽夜夜摸| 国产精品熟女久久久久浪| 永久免费av网站大全| 亚洲成人久久爱视频| 日韩av不卡免费在线播放| 免费在线观看成人毛片| 久久国产乱子免费精品| 欧美成人午夜免费资源| 黑人高潮一二区| 国产淫语在线视频| 国产高清国产精品国产三级 | 美女主播在线视频| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看| 观看免费一级毛片| 精品久久久久久久久av| 91精品一卡2卡3卡4卡| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 欧美xxxx黑人xx丫x性爽| 肉色欧美久久久久久久蜜桃 | 精品人妻视频免费看| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 少妇人妻精品综合一区二区| 97人妻精品一区二区三区麻豆| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 黑人高潮一二区| 99久久精品一区二区三区| 中国国产av一级| 日韩,欧美,国产一区二区三区| 69人妻影院| 老司机影院毛片| 欧美xxxx黑人xx丫x性爽| 亚洲第一区二区三区不卡| 久久久久精品性色| 蜜臀久久99精品久久宅男| 国产精品伦人一区二区| 99热网站在线观看| av专区在线播放| 一级二级三级毛片免费看| 黄色配什么色好看| 日本一二三区视频观看| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 99热国产这里只有精品6| 老师上课跳d突然被开到最大视频| av国产精品久久久久影院| 久久女婷五月综合色啪小说 | 久久久久久久久久久免费av| 亚洲四区av| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 免费av毛片视频| 国产淫语在线视频| 午夜免费鲁丝| 国产高清不卡午夜福利| 水蜜桃什么品种好| 久久99精品国语久久久| 狠狠精品人妻久久久久久综合| 99久久中文字幕三级久久日本| 亚洲丝袜综合中文字幕| 日本爱情动作片www.在线观看| 久久女婷五月综合色啪小说 | 大香蕉久久网| 国产亚洲av嫩草精品影院| 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| 精品国产露脸久久av麻豆| 久久久久精品性色| 精品人妻视频免费看| 精品亚洲乱码少妇综合久久| 国产一区二区亚洲精品在线观看| av专区在线播放| 午夜亚洲福利在线播放| 在线天堂最新版资源| 欧美xxxx性猛交bbbb| 亚洲自拍偷在线| 伊人久久国产一区二区| 97在线视频观看| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 亚洲av欧美aⅴ国产| 久久精品久久久久久久性| 精品国产三级普通话版| 在线观看一区二区三区激情| 久久综合国产亚洲精品| 国产av码专区亚洲av| 国产精品一区www在线观看| 精品人妻视频免费看| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx在线观看| 中文资源天堂在线| 亚洲国产最新在线播放| 久久精品人妻少妇| 欧美高清性xxxxhd video| 欧美精品国产亚洲| 国产成人一区二区在线| 久久久久九九精品影院| 汤姆久久久久久久影院中文字幕| av线在线观看网站| 夫妻午夜视频| 黄色配什么色好看| av国产久精品久网站免费入址| 国产高潮美女av| 亚洲精品中文字幕在线视频 | 亚洲国产高清在线一区二区三| 熟女人妻精品中文字幕| 亚洲成人中文字幕在线播放| 国产日韩欧美在线精品| 午夜亚洲福利在线播放| 欧美xxⅹ黑人| 美女视频免费永久观看网站| 免费av毛片视频| 国产精品国产av在线观看| 国产精品久久久久久av不卡| 久久久亚洲精品成人影院| 国产爽快片一区二区三区| 中国三级夫妇交换| 麻豆成人av视频| 日韩免费高清中文字幕av| 国产精品国产三级专区第一集| 高清毛片免费看| 欧美另类一区| 国产白丝娇喘喷水9色精品| 久久韩国三级中文字幕| 亚洲精品aⅴ在线观看| 亚洲精品中文字幕在线视频 | 麻豆久久精品国产亚洲av| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 99久久精品一区二区三区| 卡戴珊不雅视频在线播放| 欧美区成人在线视频| 好男人在线观看高清免费视频| av免费观看日本| 精品久久久噜噜| 久久精品久久精品一区二区三区| 1000部很黄的大片| 欧美成人精品欧美一级黄| 五月玫瑰六月丁香| 日韩,欧美,国产一区二区三区| 亚洲精品日本国产第一区| 欧美日韩精品成人综合77777| av在线app专区| 美女xxoo啪啪120秒动态图| 熟女电影av网| 性色av一级| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| 婷婷色综合www| 久久热精品热| 97在线人人人人妻| 超碰av人人做人人爽久久| 免费观看av网站的网址| 久热久热在线精品观看| 精品久久久久久久久av| 久久女婷五月综合色啪小说 | 国产av码专区亚洲av| 久久99热6这里只有精品| 成人国产av品久久久| 久久影院123| 高清午夜精品一区二区三区| 国产亚洲一区二区精品| 在线观看三级黄色| 五月开心婷婷网| 亚洲精品第二区| 日日撸夜夜添| 国产伦在线观看视频一区| 男人和女人高潮做爰伦理| 自拍偷自拍亚洲精品老妇| 在线观看一区二区三区激情| 亚洲,一卡二卡三卡| 男女啪啪激烈高潮av片| 尤物成人国产欧美一区二区三区| 丰满乱子伦码专区| 亚洲成人av在线免费| 干丝袜人妻中文字幕| 国产av不卡久久| 国产精品一区二区三区四区免费观看| 最近的中文字幕免费完整| 99热国产这里只有精品6| 人人妻人人看人人澡| 男插女下体视频免费在线播放| 精华霜和精华液先用哪个| 日韩视频在线欧美| 天天躁日日操中文字幕| av在线观看视频网站免费| 成人美女网站在线观看视频| 校园人妻丝袜中文字幕| 久久热精品热| 在线观看人妻少妇| 亚洲色图综合在线观看| 男人舔奶头视频| 国产大屁股一区二区在线视频| 天美传媒精品一区二区| 日韩人妻高清精品专区| 中文在线观看免费www的网站| 日本爱情动作片www.在线观看| 精品人妻偷拍中文字幕| 精品人妻一区二区三区麻豆| 亚洲精品久久午夜乱码| 久久热精品热| 久久久a久久爽久久v久久| 免费观看无遮挡的男女| 免费高清在线观看视频在线观看| 国产成人精品一,二区| 色播亚洲综合网|