• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection

    2021-06-04 03:49:54TianWangTaiyangZhangYuetianChenYixinZhao
    物理化學(xué)學(xué)報 2021年4期

    Tian Wang,Taiyang Zhang,Yuetian Chen ,Yixin Zhao

    School of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China.

    Abstract:In recent years,hybrid lead halide perovskites have attracted significant research interest in the optoelectronic fields owing to their exceptional physical and chemical properties.However,their commercialization process is limited largely because of the sensitive nature of perovskite materials towards external stresses,such as heat,UV irradiance,oxygen,and moisture.Among various perovskitestabilization methods,deposition of a protective layer over the vulnerable perovskite film via simple atomic layer deposition (ALD)technology is of great potential.However,the corrosive effect of H2O or O3 on perovskites,which is used as the oxygen source during ALD process,is one of the main obstacles in the application of regular ALD technology for coating compact and highly conformal layer directly onto the perovskite film.In this study,by introducing bifunctional 5-aminovaleric acid (AVA)crosslinking into the layers of CH3NH3PbBr3 (MAPbBr3)units,we propose a simple yet effective strategy to prevent the degradation of sensitive perovskite structure during the ALD process when H2O is used as the oxygen source.The formed crosslinked 2D/3D structure of AVA(MAPbBr3)2 perovskite film was extremely dense and ultra-smooth compared to the coarse MAPbBr3 film.With the passivation and protection of AVA,the AVA(MAPbBr3)2 perovskite film exhibited high moisture resistance,thereby leading to the successful deposition of dense and conformal Al2O3 protective layer onto the perovskite surface.The deposition of Al2O3 layer with different thicknesses had a negligible effect on the crystalline phase and morphology of AVA(MAPbBr3)2 film,as confirmed by X-ray diffraction,UV-Vis absorption spectroscopy,and scanning electron microscopy characterizations.The steady-state photoluminescence (PL)intensity and time-resolved PL lifetime of AVA(MAPbBr3)2 film was kept almost unchanged before and after the coating of Al2O3 layer,suggesting that the thin Al2O3 layer did not significantly alter the optical properties of the perovskite material,thereby enabling the potential usages in optical and optoelectronic devices.The thermal stability and water resistance ability of Al2O3-coated AVA(MAPbBr3)2 film was proven to have greatly improved in accelerated circumstances.No impurities or decomposition were detected for Al2O3-coated AVA(MAPbBr3)2 film after the long-time annealing at high temperature (150 °C for 2 h),whereas the crosslinked 2D/3D structure of bare MAPbBr3 film quickly broke down at the elevated temperature.Intriguingly,the AVA(MAPbBr3)2 film with 15-nm-thick Al2O3 coating layer could endure strong water corrosion for at least 10 min when immersed in water.Overall,the proposed strategy could not only give a good reference for successfully depositing metal oxides onto the perovskite films with preservation of the materials’ intrinsic properties,but also provide a method of introducing amino acid to passivate and protect the perovskite materials from H2O corrosion during the ALD process.Therefore,the proposed work has practical potential in improving the device stability against various external stresses under different operating conditions,thereby paving way for various applicational advances.

    Key Words:Lead halide perovskite; Atomic layer deposition; Crosslinked 2D/3D structure; Thermal stability;Water resistance

    1 Introduction

    In recent years,the application of atomic layer deposition(ALD)technology to deposit ultrathin pinhole-free,conformal and compatible Al2O3protective film has gained increased attention22,23,29–33.Due to the self-terminating surface chemistry,the coating thickness of Al2O3film by ALD can be precisely Angstrom-scale-controlled by the number of ALD cycles23,32,34–38.For now,ALD has not only been proven feasible for surface passivation and encapsulation in lab settings,but also facile for commercial large-scale manufacturing39.Despite all the advantages,there still exists one obstacle for ALD application in perovskite protection.In most of ALD processes,water or ozone(H2O or O3)is used as the oxygen source,which could be destructive to the sensitive organic-inorganic lead halide perovskite structure37,39–43.Dong et al.37used O3as oxygen source to deposit Al2O3as capping layer onto the perovskite at 70 °C and found that just one cycle of ALD was adequate to destroy the perovskite.Kim et al.23investigated the effect of H2O and O3on the degradation of perovskite and proposed a non-hydrolytic ALD method using acetic acid as the oxygen source.Koushik et al.44found that the MA+cations got etched from the perovskite lattice when using trimethylaluminum(TMA)and H2O as precursor sources.These damages would cause the decrease of device efficiencies.Therefore,it is of great significance to find out a way to improve the intrinsic stability of perovskite against water to avoid the destruction of perovskite structure during ALD process.

    To improve the intrinsic stabilities of perovskite structures,a series of approaches have been proposed,such as tuning the composition of perovskite (mixed cations or mixed halide)to obtain a more stable perovskite layer7,45–51,substituting of small cations with long chain or bigger organic molecules to convert the three dimensional (3D)hybrid perovskites to two dimensional(2D)structures (or mixed 2D and 3D structure)46,52–55,adding functional scaffolds or additives47,56and so on.For example,the introduction of AVA (5-aminovaleric acid)or AVAI additives into the perovskite structure can form crosslinked 2D/3D structure or mixed 2D and 3D structure,which could greatly improve the moisture stability57,58.Therefore,we propose that the combination of intrinsic structural-stability enhancement and extrinsic Al2O3protective layer would enable a double protection for the vulnerable perovskite towards external stimuli.

    Here in this study,we introduce the bifunctional 5-aminovaleric acid to passivate and protect MAPbBr3perovskite film from damaging by H2O in the regular ALD method when using TMA and H2O as sources.AVA was inserted into the layer of MAPbBr3units to form AVA(MAPbBr3)2film with crosslinked 2D/3D structure.The AVA(MAPbBr3)2film was extremely stable during the ALD process.And the Al2O3-coated AVA(MAPbBr3)2film exhibited remarkably improved thermal stability and water resistance in accelerated circumstances.

    2 Experimental

    2.1 Materials

    Methylamine ethanol solution (MA,33%,mass fraction (w))and HBr were purchased from Sigma-Aldrich Co.,Ltd.5-Aminovaleric acid (AVA),PbBr2and dimethyl formamide(DMF)were purchased from Aladdin Industrial Inc.Diethyl ether and ethanol were bought from Sinopharm Chemical Reagent Co.,Ltd.All the chemicals were used as-received without further purification.

    2.2 Synthesis of MABr and AVABr

    MABr and AVABr were synthesized according to previous reports57,59.Briefly,MA and HBr with a molar ratio of 1.2 :1 were reacted in an ice bath for 2 h followed by vacuum drying.The product was dissolved in hot ethanol and then injected into diethyl ether for recrystallization.The process was repeated for three times.The washed white powder was dried in a vacuum oven overnight to obtain purified MABr.AVABr was synthesized using the same method as MABr except with AVA as precursor.

    2.3 Film preparation

    The glass substrate was cleaned by soaking in 5% (w)NaOH ethanol solution for hours,then rinsed with deionized water and cleaned under 10 min of plasma.MAPbBr3film was prepared via solvent engineering method by spin coating the precursor solution of MABr and PbBr2(molar ratio of 1 :1)in DMF at 3500 r·min?1for 20 s,and annealed at 100 °C for 10 min.AVA(MAPbBr3)2film was prepared by an in situ gas/solid method previously reported by our group57,60.AVABr and PbBr2with the molar ratio of 1 :2 were dissolved in DMF to form a precursor solution.A drop of 80 μL precursor solution was spin coated on glass substrate at a speed of 4000 r·min?1for 20 s.The film was dried at room temperature for 10 min to evaporate DMF.Then the film was placed upside-down over MA ethanol solution for 3 s and the obtained colorless film were annealed at 100 °C for 10 min to remove the residual vapor and form the AVA(MAPbBr3)2perovskite.

    2.4 Deposition of Al2O3 by ALD process

    The Al2O3layers were deposited directly on perovskite films by the ALD system (ALD f-100-4,MNT)using trimethylaluminum (TMA)vapor as aluminum source and H2O vapor as oxygen source.High purity N2(99.999%)was used as purge gas.The pressure in the ALD reaction chamber was around 27 Pa,and the temperature was set at 85 °C.In each complete ALD cycle,~0.09 nm thickness Al2O3layer was acquired when both TMA and H2O were dosed into the chamber for 15 ms and waited for 5 s before a 20 s purge.

    2.5 Characterizations

    The crystal structure of films with or without ALD deposited Al2O3were analyzed using X-ray diffraction (Shimadzu XRD-6100,Cu Kαradiation).UV-Vis spectroscopy analysis was carried on Cary 60 UV-Vis spectrometer.Steady state photoluminescence (PL)spectra was measured by a LS55 luminescence spectrometer (Perkin Elmer Inc.,USA).Timeresolved photoluminescence was measured by QM/TM/IM fluorescence spectrofluorometer (PTI,USA).The morphologies of the perovskite films were characterized by scanning electron microscope (SEM,FEI Sirion 200).The atomic force microscope (AFM)images were obtained by a Bruker fast scan scanning probe microscope.

    3 Results and discussion

    We firstly investigated the effect of Al2O3deposition on MAPbBr3perovskite film by ALD.The XRD patterns and UVVis spectra of the MAPbBr3perovskite films with and without deposition of 10 nm thickness Al2O3were compared.The strong diffraction peaks (Fig.1a)at 14.84° and 30.08° assigning to the(100)and (200)planes (blue dashed lines)of MAPbBr3disappeared,indicating the decomposition of MAPbBr3by reacting with H2O vapor during the ALD process61,62.The comparison in the UV-Vis spectra before and after the Al2O3deposition as shown in Fig.1b also confirmed the destruction of MAPbBr3after ALD.It is obvious that MAPbBr3perovskite film could be damaged when depositing Al2O3directly onto it,let alone providing the originally expected surface protection23,63.On the contrary,after directly depositing 10 nm Al2O3onto the surface of AVA-passivated AVA(MAPbBr3)2films,the XRD patterns remained unchanged in comparison with the pristine AVA(MAPbBr3)2perovskite (Fig.1c),suggesting the remarkable resistance of AVA(MAPbBr3)2film against H2O in the process of ALD.We also investigated the influence of ALD processing time (which is proportional to the thickness of Al2O3)on the structure of AVA(MAPbBr3)2films.Prolonging ALD time means longer exposure to TMA,H2O and longer annealing time at the operation temperature (85 °C).Intriguingly,no change that reflects the degradation of perovskite films were observed when 5 and 15 nm thicknesses of Al2O3layers were coated onto the AVA(MAPbBr3)2films.Fig.1d displayed the UV-Vis spectra of AVA(MAPbBr3)2films with different thickness of Al2O3layers.The Al2O3-coated films exhibited the same characteristic perovskite absorption as the pristine one.All these results strongly indicate that,the introduction of bifunctional AVA groups into the MAPbBr3structure would effectively passivate and protect MAPbBr3from moisture-induced decomposition during the ALD process.

    Fig.1 (a)XRD patterns and (b)UV-Vis spectra of the MAPbBr3 perovskite films before and after ALD of Al2O3; (c)XRD patterns and(d)UV-Vis spectra of the AVA(MAPbBr3)2 perovskite films before and after ALD of Al2O3.

    Fig.2 shows the morphologies of prepared perovskite films before and after the ALD process.The bare MAPbBr3perovskite film has a rough surface scattered with different sized MAPbBr3crystals (Fig.2a).While the AVA(MAPbBr3)2film was ultrasmooth with no obvious sign of grain boundaries (Fig.2b).The extremely dense morphology was due to the introduction of bifunctional AVA groups into the precursor solution forming a special crosslinked 2D/3D structure,where H3+and COO?in AVA crosslinked the MAPbBr3units by occupying the MA+sites and Br?sites respectively on the surface of two nearby unit57.The deposition of compact and conformal Al2O3directly onto AVA(MAPbBr3)2film had no distinct impact on the perovskite morphology as confirmed by SEM and AFM images (Fig.2c,d).It was also revealed by AFM height profiles that the Al2O3-coated film was quite compact with less than 20 nm roughness on the surface.The enhanced stability of AVA(MAPbBr3)2film towards H2O during the ALD process was benefiting from its denser morphology and the crosslinked 2D/3D structure57.On one hand,researches claimed that the pinhole-free morphologies and 2D structure can improve the stability of perovskite when exposed to moisture46,52–55.On the other hand,the organic ammonium cation in AVA could modify the surface of MAPbBr3perovskite grains and hence block the approach of H2O to the perovskite,avoiding the decomposition of MAPbBr3units46,64.Therefore,the AVA inserting into the lattice structure of MAPbBr3can passivate and protect the MAPbBr3units from reacting with H2O and suppressing their degradation during the whole ALD process.

    Fig.2 SEM images of bare (a)MAPbBr3 and (b)AVA(MAPbBr3)2 film before ALD; (c)SEM image and(d)AFM image of AVA(MAPbBr3)2 film after ALD of 10 nm conformal Al2O3 layer.The scale bar is 1 μm.

    The steady-state photoluminescence (PL)spectra and timeresolved PL decays of AVA(MAPbBr3)2films before and after the coating of Al2O3layer were compared.The steady-state PL intensity of AVA(MAPbBr3)2film barely changed after the deposition of different thickness of Al2O3(Fig.3a).The average PL lifetime for AVA(MAPbBr3)2with or without 10 nm Al2O3coating was 10.55 and 10.63 ns,respectively (Fig.3b),suggesting that the thin Al2O3did not affect the optical dynamic properties,which holds promise for using this perovskite film for optical and optoelectronic devices.The photos of bare and coated AVA(MAPbBr3)2films in Fig.3b showed comparable brightness.The above measurements strongly suggest that the compact and compatible Al2O3layer had been successfully deposited onto the AVA(MAPbBr3)2perovskite film through ALD process without damaging the film or affecting the optical properties of the perovskite film.

    Fig.3 (a)Steady-state PL spectra and (b)time-resolved PL decay curves of AVA(MAPbBr3)2 films with and without the deposition of different thickness Al2O3 by ALD.Insert photos in (b)are bare AVA(MAPbBr3)2 film (left)and AVA(MAPbBr3)2 film with 10 nm Al2O3 coating (right).

    Thermal stability and water resistance of the Al2O3-coated AVA(MAPbBr3)2films were investigated under accelerated circumstances.Samples were annealed at 150 °C for 2 h in atmosphere with up to 90% relative humidity.Without Al2O3deposition,the crosslinked 2D/3D structure of AVA(MAPbBr3)2soon broke down to mixed 2D and 3D structure as indicated by the appearance of a strong peak at 8.5° related to 2D structure(Fig.4a)57.While the films with different thickness of Al2O3coatings exhibited excellent thermal stability as no impurities were formed after the long time annealing at high temperature(Fig.4b).The enhanced peak intensity was ascribed to the regrowth of AVA(MAPbBr3)2crystals65,66.The compact Al2O3layer can effectively prevent the escaping of organic cations(MA+)from the AVA(MAPbBr3)2perovskite structure during annealing,therefore leading to outstanding thermal stability.The water resistance of bare AVA(MAPbBr3)2and Al2O3deposited films were evaluated by directly immersing them in water (Fig.5).Not surprisingly,the uncovered AVA(MAPbBr3)2film rapidly decomposed within 3 s.As expected,the Al2O3-coated AVA(MAPbBr3)2films displayed remarkably improved tolerance of water erosion,and the water resistance abilities of those films exhibited positive relation with the thickness of coated protection layers.The results were easily understood as the thicker and compacter the layer was,the stronger protection it would provide.The films with 5 to 15 nm Al2O3coverage could endure the water corrosion from seconds to minutes.As can be seen from the pictures,the decomposition began from the edges as uneven points and then extended to areas.For the 15 nm Al2O3-coated film,no apparent damages can be observed within 3 min in water,and the film even could go through the water stimulation for at least 10 min before completely decomposing.This test result confirmed that,the Al2O3layer that armored onto the surface of AVA(MAPbBr3)2perovskite could separate the vulnerable perovskite from intimate contact with water,resulting in significantly improved water resistance.

    Fig.4 XRD patterns of (a)bare AVA(MAPbBr3)2 film and(b)conformal Al2O3-coated AVA(MAPbBr3)2 films before and after annealing at 150 °C for 2 h as comparison of thermal stabilities.

    Fig.5 Optical photos to compare the water resistance abilities of bare and Al2O3-coated AVA(MAPbBr3)2 films as a function of time in water.

    4 Conclusions

    In summary,the Al2O3protection layer was successfully deposited onto the perovskite film via regular ALD method using TMA and H2O as aluminum and oxygen source,respectively.This direct deposition method effectively protected the perovskite film with no damage or sacrifice to the film performances.For the perovskite film used in this study,the insertion of bifunctional AVA into MAPbBr3layer not only worked as a crosslinker to form ultra-dense AVA(MAPbBr3)2film with a more stable crosslinked 2D/3D structure,but also passivated the perovskite crystal boundaries and impeded the direct contact of MAPbBr3and H2O,leading to the successful Al2O3deposition.The Al2O3-coated films exhibited significant improvement in both thermal stability and water resistance under accelerated circumstances (i.e.annealed at 150 °C and immersed in water).The strategy of introducing amino acid to passivate and protect perovskite from H2O corrosion during ALD process has practical potential in improving device stability in the future.

    午夜久久久久精精品| 久久久久久九九精品二区国产 | www.999成人在线观看| 午夜亚洲福利在线播放| 热99re8久久精品国产| 黑人欧美特级aaaaaa片| 老司机在亚洲福利影院| 一进一出抽搐gif免费好疼| 宅男免费午夜| 两性夫妻黄色片| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看视频国产中文字幕亚洲| 久久精品人妻少妇| 成人免费观看视频高清| 欧美乱妇无乱码| 成熟少妇高潮喷水视频| 精品久久久久久久久久免费视频| 天堂√8在线中文| 一二三四社区在线视频社区8| 久久香蕉国产精品| av视频在线观看入口| 18禁美女被吸乳视频| 亚洲精华国产精华精| 高清毛片免费观看视频网站| 成人手机av| 国产精品美女特级片免费视频播放器 | 中文在线观看免费www的网站 | 亚洲午夜理论影院| 亚洲午夜精品一区,二区,三区| 亚洲 欧美 日韩 在线 免费| 亚洲真实伦在线观看| 丁香欧美五月| 哪里可以看免费的av片| 日韩欧美免费精品| 又紧又爽又黄一区二区| 老熟妇乱子伦视频在线观看| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区色噜噜| 欧美又色又爽又黄视频| 不卡一级毛片| 国产男靠女视频免费网站| 国产高清激情床上av| 亚洲熟妇中文字幕五十中出| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 免费搜索国产男女视频| 一本一本综合久久| 国内精品久久久久久久电影| 日本三级黄在线观看| 丁香六月欧美| 天天一区二区日本电影三级| 日日摸夜夜添夜夜添小说| 成在线人永久免费视频| 亚洲 欧美 日韩 在线 免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产毛片av蜜桃av| 国产不卡一卡二| 琪琪午夜伦伦电影理论片6080| 日韩av在线大香蕉| 在线观看免费午夜福利视频| 欧美一级毛片孕妇| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 动漫黄色视频在线观看| 99re在线观看精品视频| 88av欧美| 两个人视频免费观看高清| 婷婷丁香在线五月| 日本成人三级电影网站| 久久精品影院6| 久久久国产成人免费| 丁香六月欧美| 国产又爽黄色视频| 高清毛片免费观看视频网站| 一级毛片高清免费大全| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av高清一级| 欧美一级毛片孕妇| 亚洲电影在线观看av| 男女床上黄色一级片免费看| 欧美日韩福利视频一区二区| 国产亚洲精品av在线| 精品人妻1区二区| 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 亚洲熟妇中文字幕五十中出| 久久香蕉激情| 看片在线看免费视频| 999久久久国产精品视频| 亚洲熟妇熟女久久| 黄色片一级片一级黄色片| 人妻丰满熟妇av一区二区三区| 亚洲一区二区三区色噜噜| 老汉色av国产亚洲站长工具| 国产区一区二久久| 日韩国内少妇激情av| 18禁黄网站禁片免费观看直播| 日韩av在线大香蕉| 欧美一级a爱片免费观看看 | 国产又爽黄色视频| 狠狠狠狠99中文字幕| 制服诱惑二区| 中文字幕人成人乱码亚洲影| 国产精品香港三级国产av潘金莲| 女生性感内裤真人,穿戴方法视频| 久久人妻福利社区极品人妻图片| 免费看十八禁软件| x7x7x7水蜜桃| 日韩欧美在线二视频| 一级毛片高清免费大全| 欧美精品亚洲一区二区| av中文乱码字幕在线| 亚洲久久久国产精品| 免费人成视频x8x8入口观看| 久久这里只有精品19| 国产又黄又爽又无遮挡在线| 熟妇人妻久久中文字幕3abv| 天天躁夜夜躁狠狠躁躁| 国产一卡二卡三卡精品| 少妇裸体淫交视频免费看高清 | 亚洲国产欧洲综合997久久, | 日韩精品中文字幕看吧| 国产精品久久久久久亚洲av鲁大| 丝袜美腿诱惑在线| 国产精品久久电影中文字幕| 亚洲熟女毛片儿| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 欧美国产精品va在线观看不卡| 中文字幕人成人乱码亚洲影| 视频在线观看一区二区三区| 亚洲人成网站高清观看| 国产精品综合久久久久久久免费| 露出奶头的视频| 亚洲免费av在线视频| 欧美性长视频在线观看| 国产又爽黄色视频| 国产成人影院久久av| 久久久久久久久免费视频了| 国产精品免费视频内射| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 老汉色av国产亚洲站长工具| 麻豆成人午夜福利视频| 窝窝影院91人妻| 精品国产超薄肉色丝袜足j| 色综合亚洲欧美另类图片| 狠狠狠狠99中文字幕| 国产97色在线日韩免费| 亚洲av片天天在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产成年人精品一区二区| 这个男人来自地球电影免费观看| 欧美国产日韩亚洲一区| 色婷婷久久久亚洲欧美| ponron亚洲| 欧美黑人欧美精品刺激| 18禁美女被吸乳视频| 亚洲免费av在线视频| 国产99久久九九免费精品| 国产精品98久久久久久宅男小说| 美女大奶头视频| 极品教师在线免费播放| 可以在线观看的亚洲视频| 国产精品一区二区免费欧美| 在线观看66精品国产| 午夜a级毛片| 满18在线观看网站| 免费看日本二区| 亚洲国产日韩欧美精品在线观看 | 久久精品国产综合久久久| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放 | 国产午夜福利久久久久久| 中文字幕人妻丝袜一区二区| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 美女高潮到喷水免费观看| 国产成人欧美在线观看| 久久婷婷成人综合色麻豆| 亚洲av日韩精品久久久久久密| 久久性视频一级片| 欧美黄色淫秽网站| 在线看三级毛片| 脱女人内裤的视频| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 久久伊人香网站| 久久精品亚洲精品国产色婷小说| 成人av一区二区三区在线看| 国产私拍福利视频在线观看| 色播亚洲综合网| 精品午夜福利视频在线观看一区| 亚洲专区字幕在线| 男人舔奶头视频| АⅤ资源中文在线天堂| 在线观看免费日韩欧美大片| 国产片内射在线| 不卡av一区二区三区| 精华霜和精华液先用哪个| 国产成人精品无人区| 老司机福利观看| 老司机深夜福利视频在线观看| 最好的美女福利视频网| 啦啦啦 在线观看视频| 国产精华一区二区三区| 国产高清videossex| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久亚洲av鲁大| 国产一区二区在线av高清观看| 亚洲成av人片免费观看| 国产又黄又爽又无遮挡在线| 国产精品免费视频内射| 日韩精品免费视频一区二区三区| 少妇裸体淫交视频免费看高清 | 夜夜爽天天搞| 成人亚洲精品av一区二区| 激情在线观看视频在线高清| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 免费看a级黄色片| 麻豆av在线久日| 99国产精品99久久久久| 97碰自拍视频| 国产亚洲精品综合一区在线观看 | 久久香蕉激情| 美女扒开内裤让男人捅视频| 亚洲午夜理论影院| 一进一出抽搐gif免费好疼| 亚洲成av片中文字幕在线观看| 视频在线观看一区二区三区| 欧美中文综合在线视频| 亚洲午夜精品一区,二区,三区| 一区二区日韩欧美中文字幕| 夜夜爽天天搞| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| 国产主播在线观看一区二区| 69av精品久久久久久| 法律面前人人平等表现在哪些方面| 国产精品98久久久久久宅男小说| 久久中文看片网| 欧美成狂野欧美在线观看| 久久人妻av系列| 亚洲精品在线美女| 免费观看人在逋| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 久久久久久久午夜电影| 两个人看的免费小视频| 亚洲成人精品中文字幕电影| x7x7x7水蜜桃| 每晚都被弄得嗷嗷叫到高潮| 18禁裸乳无遮挡免费网站照片 | 亚洲熟妇熟女久久| 黄色丝袜av网址大全| 午夜影院日韩av| 成年人黄色毛片网站| 女性被躁到高潮视频| 亚洲男人天堂网一区| 少妇的丰满在线观看| 麻豆久久精品国产亚洲av| 久久中文字幕一级| 色综合婷婷激情| 亚洲男人天堂网一区| 欧美中文综合在线视频| 在线视频色国产色| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 日韩欧美免费精品| 午夜日韩欧美国产| 日韩三级视频一区二区三区| 男女那种视频在线观看| 欧美午夜高清在线| 国产激情久久老熟女| 欧美又色又爽又黄视频| 国产成人一区二区三区免费视频网站| 国产高清视频在线播放一区| 国产熟女午夜一区二区三区| 亚洲中文字幕日韩| 久久天躁狠狠躁夜夜2o2o| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 男男h啪啪无遮挡| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 波多野结衣高清无吗| 成年人黄色毛片网站| 白带黄色成豆腐渣| 黄频高清免费视频| av电影中文网址| 久久香蕉国产精品| 久久青草综合色| 黄片小视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 三级毛片av免费| 午夜视频精品福利| 日韩有码中文字幕| 每晚都被弄得嗷嗷叫到高潮| 国产真实乱freesex| 亚洲成人免费电影在线观看| 亚洲精品久久国产高清桃花| 欧美不卡视频在线免费观看 | 性欧美人与动物交配| 欧美成人一区二区免费高清观看 | 久久久久久久久免费视频了| 1024香蕉在线观看| 成人18禁高潮啪啪吃奶动态图| 国产在线观看jvid| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| 亚洲成人免费电影在线观看| www.www免费av| 手机成人av网站| 51午夜福利影视在线观看| 9191精品国产免费久久| 成人亚洲精品一区在线观看| 国产激情偷乱视频一区二区| 欧美激情极品国产一区二区三区| 看免费av毛片| 国产精品久久久久久精品电影 | 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 欧美国产日韩亚洲一区| 亚洲成人免费电影在线观看| 琪琪午夜伦伦电影理论片6080| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 老司机福利观看| 久久婷婷成人综合色麻豆| 亚洲欧美一区二区三区黑人| 久久国产精品人妻蜜桃| 2021天堂中文幕一二区在线观 | 黄色成人免费大全| 久久久水蜜桃国产精品网| 两人在一起打扑克的视频| 国产精品亚洲一级av第二区| 亚洲人成77777在线视频| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 嫩草影院精品99| 最近在线观看免费完整版| 欧美黑人巨大hd| 在线播放国产精品三级| 亚洲电影在线观看av| 露出奶头的视频| 午夜成年电影在线免费观看| 老司机靠b影院| 男女之事视频高清在线观看| 国产又黄又爽又无遮挡在线| 免费看a级黄色片| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 99热只有精品国产| 两人在一起打扑克的视频| 一级黄色大片毛片| a级毛片a级免费在线| 最近最新中文字幕大全电影3 | 国产91精品成人一区二区三区| 在线av久久热| 精华霜和精华液先用哪个| 亚洲成国产人片在线观看| 成人三级黄色视频| 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 国产精品永久免费网站| 宅男免费午夜| 国产精品电影一区二区三区| or卡值多少钱| 91在线观看av| 国产黄色小视频在线观看| 热re99久久国产66热| 成人亚洲精品一区在线观看| 欧美乱色亚洲激情| 亚洲av熟女| 欧美绝顶高潮抽搐喷水| 欧美zozozo另类| 又黄又爽又免费观看的视频| 日本 欧美在线| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 国产精品免费视频内射| 给我免费播放毛片高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看成人毛片| 无遮挡黄片免费观看| 99久久综合精品五月天人人| 国产主播在线观看一区二区| 黑人欧美特级aaaaaa片| 天堂动漫精品| 亚洲国产欧美网| 叶爱在线成人免费视频播放| 国产精品乱码一区二三区的特点| 最近最新免费中文字幕在线| 亚洲电影在线观看av| 国产色视频综合| 亚洲 欧美 日韩 在线 免费| 久久国产乱子伦精品免费另类| 麻豆国产av国片精品| 每晚都被弄得嗷嗷叫到高潮| 男人操女人黄网站| 天天躁夜夜躁狠狠躁躁| 亚洲真实伦在线观看| 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| av福利片在线| 久久久国产欧美日韩av| 国产精品 欧美亚洲| 黄片小视频在线播放| 国产成人av激情在线播放| 国产av不卡久久| 久久热在线av| 亚洲欧美日韩高清在线视频| 亚洲人成网站高清观看| 美女高潮到喷水免费观看| 国产成人精品久久二区二区91| 搡老妇女老女人老熟妇| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 国产三级黄色录像| 亚洲国产欧美日韩在线播放| 看免费av毛片| 亚洲全国av大片| 久久久久国内视频| 国产亚洲精品av在线| 精品乱码久久久久久99久播| 久久久国产成人精品二区| 少妇粗大呻吟视频| 变态另类成人亚洲欧美熟女| 久久精品国产亚洲av高清一级| 欧美国产精品va在线观看不卡| 国内毛片毛片毛片毛片毛片| 757午夜福利合集在线观看| 久久亚洲真实| 夜夜看夜夜爽夜夜摸| 真人一进一出gif抽搐免费| 日本免费一区二区三区高清不卡| 在线看三级毛片| 亚洲国产毛片av蜜桃av| 国产成人啪精品午夜网站| 午夜免费观看网址| 国产激情欧美一区二区| 精品久久久久久久毛片微露脸| 91九色精品人成在线观看| 午夜亚洲福利在线播放| 欧美精品亚洲一区二区| a在线观看视频网站| 悠悠久久av| 热99re8久久精品国产| 男女午夜视频在线观看| 亚洲精品国产一区二区精华液| 国产免费av片在线观看野外av| 精品第一国产精品| 色综合站精品国产| 超碰成人久久| 欧美成人一区二区免费高清观看 | 女人爽到高潮嗷嗷叫在线视频| 一夜夜www| 国产乱人伦免费视频| 俺也久久电影网| 午夜视频精品福利| 欧美黄色淫秽网站| 两个人免费观看高清视频| 国产aⅴ精品一区二区三区波| 波多野结衣高清作品| 中文字幕av电影在线播放| 欧美性猛交╳xxx乱大交人| 欧美精品啪啪一区二区三区| 又大又爽又粗| 日本免费一区二区三区高清不卡| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 免费观看精品视频网站| 99国产综合亚洲精品| 亚洲av五月六月丁香网| 两性夫妻黄色片| www.自偷自拍.com| 亚洲av电影不卡..在线观看| 久久久久久久久久黄片| 亚洲午夜理论影院| 99久久无色码亚洲精品果冻| 欧美亚洲日本最大视频资源| 成年免费大片在线观看| 国产蜜桃级精品一区二区三区| 精品国产乱子伦一区二区三区| 免费高清在线观看日韩| 国产精品国产高清国产av| 黄片大片在线免费观看| www.自偷自拍.com| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| 中文资源天堂在线| av超薄肉色丝袜交足视频| 麻豆久久精品国产亚洲av| 精品无人区乱码1区二区| 精品国产一区二区三区四区第35| 精品第一国产精品| 琪琪午夜伦伦电影理论片6080| 少妇熟女aⅴ在线视频| 俺也久久电影网| 国产精品影院久久| 日韩欧美在线二视频| 欧美激情极品国产一区二区三区| 超碰成人久久| 制服诱惑二区| 久久国产乱子伦精品免费另类| 亚洲第一电影网av| 国产三级黄色录像| 老司机在亚洲福利影院| 欧美人与性动交α欧美精品济南到| 91成人精品电影| 亚洲精品国产一区二区精华液| 免费高清视频大片| 国产免费男女视频| 久久久久九九精品影院| 午夜免费成人在线视频| 国产片内射在线| 露出奶头的视频| 白带黄色成豆腐渣| 久9热在线精品视频| 国产在线观看jvid| 人人澡人人妻人| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 非洲黑人性xxxx精品又粗又长| 一a级毛片在线观看| 50天的宝宝边吃奶边哭怎么回事| 精品国产乱码久久久久久男人| 午夜两性在线视频| 国产精品亚洲av一区麻豆| 国产一卡二卡三卡精品| 国产亚洲精品av在线| 日韩高清综合在线| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 久久国产精品影院| av在线天堂中文字幕| 亚洲 欧美一区二区三区| 日本 av在线| 精品无人区乱码1区二区| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 一级作爱视频免费观看| 黑人巨大精品欧美一区二区mp4| 啪啪无遮挡十八禁网站| 欧美国产精品va在线观看不卡| 少妇裸体淫交视频免费看高清 | 人人妻人人澡人人看| 999精品在线视频| 国产亚洲av嫩草精品影院| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 精品少妇一区二区三区视频日本电影| 最近最新中文字幕大全免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产99久久九九免费精品| avwww免费| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 老司机午夜福利在线观看视频| 99久久久亚洲精品蜜臀av| 久久精品91无色码中文字幕| 亚洲精品中文字幕在线视频| 婷婷丁香在线五月| 琪琪午夜伦伦电影理论片6080| 在线观看66精品国产| 国内精品久久久久久久电影| 宅男免费午夜| 亚洲自偷自拍图片 自拍| 香蕉国产在线看| 国产一区在线观看成人免费| 啦啦啦韩国在线观看视频| 亚洲黑人精品在线| 99国产极品粉嫩在线观看| 天堂影院成人在线观看| 久久中文字幕人妻熟女| 999久久久精品免费观看国产| 欧美成人免费av一区二区三区| 老汉色av国产亚洲站长工具| 曰老女人黄片| 很黄的视频免费| 精品乱码久久久久久99久播| www日本在线高清视频| 别揉我奶头~嗯~啊~动态视频| 一区二区日韩欧美中文字幕| 人人妻人人看人人澡| 91国产中文字幕| 一级a爱片免费观看的视频| 国产激情欧美一区二区| 18美女黄网站色大片免费观看| 亚洲精品一区av在线观看| 精品国产乱子伦一区二区三区| 母亲3免费完整高清在线观看| 男人舔奶头视频| 久久热在线av| 国产成人精品无人区| 999久久久国产精品视频| 国产av一区在线观看免费| 精品久久久久久久毛片微露脸|