• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection

    2021-06-04 03:49:54TianWangTaiyangZhangYuetianChenYixinZhao
    物理化學(xué)學(xué)報 2021年4期

    Tian Wang,Taiyang Zhang,Yuetian Chen ,Yixin Zhao

    School of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China.

    Abstract:In recent years,hybrid lead halide perovskites have attracted significant research interest in the optoelectronic fields owing to their exceptional physical and chemical properties.However,their commercialization process is limited largely because of the sensitive nature of perovskite materials towards external stresses,such as heat,UV irradiance,oxygen,and moisture.Among various perovskitestabilization methods,deposition of a protective layer over the vulnerable perovskite film via simple atomic layer deposition (ALD)technology is of great potential.However,the corrosive effect of H2O or O3 on perovskites,which is used as the oxygen source during ALD process,is one of the main obstacles in the application of regular ALD technology for coating compact and highly conformal layer directly onto the perovskite film.In this study,by introducing bifunctional 5-aminovaleric acid (AVA)crosslinking into the layers of CH3NH3PbBr3 (MAPbBr3)units,we propose a simple yet effective strategy to prevent the degradation of sensitive perovskite structure during the ALD process when H2O is used as the oxygen source.The formed crosslinked 2D/3D structure of AVA(MAPbBr3)2 perovskite film was extremely dense and ultra-smooth compared to the coarse MAPbBr3 film.With the passivation and protection of AVA,the AVA(MAPbBr3)2 perovskite film exhibited high moisture resistance,thereby leading to the successful deposition of dense and conformal Al2O3 protective layer onto the perovskite surface.The deposition of Al2O3 layer with different thicknesses had a negligible effect on the crystalline phase and morphology of AVA(MAPbBr3)2 film,as confirmed by X-ray diffraction,UV-Vis absorption spectroscopy,and scanning electron microscopy characterizations.The steady-state photoluminescence (PL)intensity and time-resolved PL lifetime of AVA(MAPbBr3)2 film was kept almost unchanged before and after the coating of Al2O3 layer,suggesting that the thin Al2O3 layer did not significantly alter the optical properties of the perovskite material,thereby enabling the potential usages in optical and optoelectronic devices.The thermal stability and water resistance ability of Al2O3-coated AVA(MAPbBr3)2 film was proven to have greatly improved in accelerated circumstances.No impurities or decomposition were detected for Al2O3-coated AVA(MAPbBr3)2 film after the long-time annealing at high temperature (150 °C for 2 h),whereas the crosslinked 2D/3D structure of bare MAPbBr3 film quickly broke down at the elevated temperature.Intriguingly,the AVA(MAPbBr3)2 film with 15-nm-thick Al2O3 coating layer could endure strong water corrosion for at least 10 min when immersed in water.Overall,the proposed strategy could not only give a good reference for successfully depositing metal oxides onto the perovskite films with preservation of the materials’ intrinsic properties,but also provide a method of introducing amino acid to passivate and protect the perovskite materials from H2O corrosion during the ALD process.Therefore,the proposed work has practical potential in improving the device stability against various external stresses under different operating conditions,thereby paving way for various applicational advances.

    Key Words:Lead halide perovskite; Atomic layer deposition; Crosslinked 2D/3D structure; Thermal stability;Water resistance

    1 Introduction

    In recent years,the application of atomic layer deposition(ALD)technology to deposit ultrathin pinhole-free,conformal and compatible Al2O3protective film has gained increased attention22,23,29–33.Due to the self-terminating surface chemistry,the coating thickness of Al2O3film by ALD can be precisely Angstrom-scale-controlled by the number of ALD cycles23,32,34–38.For now,ALD has not only been proven feasible for surface passivation and encapsulation in lab settings,but also facile for commercial large-scale manufacturing39.Despite all the advantages,there still exists one obstacle for ALD application in perovskite protection.In most of ALD processes,water or ozone(H2O or O3)is used as the oxygen source,which could be destructive to the sensitive organic-inorganic lead halide perovskite structure37,39–43.Dong et al.37used O3as oxygen source to deposit Al2O3as capping layer onto the perovskite at 70 °C and found that just one cycle of ALD was adequate to destroy the perovskite.Kim et al.23investigated the effect of H2O and O3on the degradation of perovskite and proposed a non-hydrolytic ALD method using acetic acid as the oxygen source.Koushik et al.44found that the MA+cations got etched from the perovskite lattice when using trimethylaluminum(TMA)and H2O as precursor sources.These damages would cause the decrease of device efficiencies.Therefore,it is of great significance to find out a way to improve the intrinsic stability of perovskite against water to avoid the destruction of perovskite structure during ALD process.

    To improve the intrinsic stabilities of perovskite structures,a series of approaches have been proposed,such as tuning the composition of perovskite (mixed cations or mixed halide)to obtain a more stable perovskite layer7,45–51,substituting of small cations with long chain or bigger organic molecules to convert the three dimensional (3D)hybrid perovskites to two dimensional(2D)structures (or mixed 2D and 3D structure)46,52–55,adding functional scaffolds or additives47,56and so on.For example,the introduction of AVA (5-aminovaleric acid)or AVAI additives into the perovskite structure can form crosslinked 2D/3D structure or mixed 2D and 3D structure,which could greatly improve the moisture stability57,58.Therefore,we propose that the combination of intrinsic structural-stability enhancement and extrinsic Al2O3protective layer would enable a double protection for the vulnerable perovskite towards external stimuli.

    Here in this study,we introduce the bifunctional 5-aminovaleric acid to passivate and protect MAPbBr3perovskite film from damaging by H2O in the regular ALD method when using TMA and H2O as sources.AVA was inserted into the layer of MAPbBr3units to form AVA(MAPbBr3)2film with crosslinked 2D/3D structure.The AVA(MAPbBr3)2film was extremely stable during the ALD process.And the Al2O3-coated AVA(MAPbBr3)2film exhibited remarkably improved thermal stability and water resistance in accelerated circumstances.

    2 Experimental

    2.1 Materials

    Methylamine ethanol solution (MA,33%,mass fraction (w))and HBr were purchased from Sigma-Aldrich Co.,Ltd.5-Aminovaleric acid (AVA),PbBr2and dimethyl formamide(DMF)were purchased from Aladdin Industrial Inc.Diethyl ether and ethanol were bought from Sinopharm Chemical Reagent Co.,Ltd.All the chemicals were used as-received without further purification.

    2.2 Synthesis of MABr and AVABr

    MABr and AVABr were synthesized according to previous reports57,59.Briefly,MA and HBr with a molar ratio of 1.2 :1 were reacted in an ice bath for 2 h followed by vacuum drying.The product was dissolved in hot ethanol and then injected into diethyl ether for recrystallization.The process was repeated for three times.The washed white powder was dried in a vacuum oven overnight to obtain purified MABr.AVABr was synthesized using the same method as MABr except with AVA as precursor.

    2.3 Film preparation

    The glass substrate was cleaned by soaking in 5% (w)NaOH ethanol solution for hours,then rinsed with deionized water and cleaned under 10 min of plasma.MAPbBr3film was prepared via solvent engineering method by spin coating the precursor solution of MABr and PbBr2(molar ratio of 1 :1)in DMF at 3500 r·min?1for 20 s,and annealed at 100 °C for 10 min.AVA(MAPbBr3)2film was prepared by an in situ gas/solid method previously reported by our group57,60.AVABr and PbBr2with the molar ratio of 1 :2 were dissolved in DMF to form a precursor solution.A drop of 80 μL precursor solution was spin coated on glass substrate at a speed of 4000 r·min?1for 20 s.The film was dried at room temperature for 10 min to evaporate DMF.Then the film was placed upside-down over MA ethanol solution for 3 s and the obtained colorless film were annealed at 100 °C for 10 min to remove the residual vapor and form the AVA(MAPbBr3)2perovskite.

    2.4 Deposition of Al2O3 by ALD process

    The Al2O3layers were deposited directly on perovskite films by the ALD system (ALD f-100-4,MNT)using trimethylaluminum (TMA)vapor as aluminum source and H2O vapor as oxygen source.High purity N2(99.999%)was used as purge gas.The pressure in the ALD reaction chamber was around 27 Pa,and the temperature was set at 85 °C.In each complete ALD cycle,~0.09 nm thickness Al2O3layer was acquired when both TMA and H2O were dosed into the chamber for 15 ms and waited for 5 s before a 20 s purge.

    2.5 Characterizations

    The crystal structure of films with or without ALD deposited Al2O3were analyzed using X-ray diffraction (Shimadzu XRD-6100,Cu Kαradiation).UV-Vis spectroscopy analysis was carried on Cary 60 UV-Vis spectrometer.Steady state photoluminescence (PL)spectra was measured by a LS55 luminescence spectrometer (Perkin Elmer Inc.,USA).Timeresolved photoluminescence was measured by QM/TM/IM fluorescence spectrofluorometer (PTI,USA).The morphologies of the perovskite films were characterized by scanning electron microscope (SEM,FEI Sirion 200).The atomic force microscope (AFM)images were obtained by a Bruker fast scan scanning probe microscope.

    3 Results and discussion

    We firstly investigated the effect of Al2O3deposition on MAPbBr3perovskite film by ALD.The XRD patterns and UVVis spectra of the MAPbBr3perovskite films with and without deposition of 10 nm thickness Al2O3were compared.The strong diffraction peaks (Fig.1a)at 14.84° and 30.08° assigning to the(100)and (200)planes (blue dashed lines)of MAPbBr3disappeared,indicating the decomposition of MAPbBr3by reacting with H2O vapor during the ALD process61,62.The comparison in the UV-Vis spectra before and after the Al2O3deposition as shown in Fig.1b also confirmed the destruction of MAPbBr3after ALD.It is obvious that MAPbBr3perovskite film could be damaged when depositing Al2O3directly onto it,let alone providing the originally expected surface protection23,63.On the contrary,after directly depositing 10 nm Al2O3onto the surface of AVA-passivated AVA(MAPbBr3)2films,the XRD patterns remained unchanged in comparison with the pristine AVA(MAPbBr3)2perovskite (Fig.1c),suggesting the remarkable resistance of AVA(MAPbBr3)2film against H2O in the process of ALD.We also investigated the influence of ALD processing time (which is proportional to the thickness of Al2O3)on the structure of AVA(MAPbBr3)2films.Prolonging ALD time means longer exposure to TMA,H2O and longer annealing time at the operation temperature (85 °C).Intriguingly,no change that reflects the degradation of perovskite films were observed when 5 and 15 nm thicknesses of Al2O3layers were coated onto the AVA(MAPbBr3)2films.Fig.1d displayed the UV-Vis spectra of AVA(MAPbBr3)2films with different thickness of Al2O3layers.The Al2O3-coated films exhibited the same characteristic perovskite absorption as the pristine one.All these results strongly indicate that,the introduction of bifunctional AVA groups into the MAPbBr3structure would effectively passivate and protect MAPbBr3from moisture-induced decomposition during the ALD process.

    Fig.1 (a)XRD patterns and (b)UV-Vis spectra of the MAPbBr3 perovskite films before and after ALD of Al2O3; (c)XRD patterns and(d)UV-Vis spectra of the AVA(MAPbBr3)2 perovskite films before and after ALD of Al2O3.

    Fig.2 shows the morphologies of prepared perovskite films before and after the ALD process.The bare MAPbBr3perovskite film has a rough surface scattered with different sized MAPbBr3crystals (Fig.2a).While the AVA(MAPbBr3)2film was ultrasmooth with no obvious sign of grain boundaries (Fig.2b).The extremely dense morphology was due to the introduction of bifunctional AVA groups into the precursor solution forming a special crosslinked 2D/3D structure,where H3+and COO?in AVA crosslinked the MAPbBr3units by occupying the MA+sites and Br?sites respectively on the surface of two nearby unit57.The deposition of compact and conformal Al2O3directly onto AVA(MAPbBr3)2film had no distinct impact on the perovskite morphology as confirmed by SEM and AFM images (Fig.2c,d).It was also revealed by AFM height profiles that the Al2O3-coated film was quite compact with less than 20 nm roughness on the surface.The enhanced stability of AVA(MAPbBr3)2film towards H2O during the ALD process was benefiting from its denser morphology and the crosslinked 2D/3D structure57.On one hand,researches claimed that the pinhole-free morphologies and 2D structure can improve the stability of perovskite when exposed to moisture46,52–55.On the other hand,the organic ammonium cation in AVA could modify the surface of MAPbBr3perovskite grains and hence block the approach of H2O to the perovskite,avoiding the decomposition of MAPbBr3units46,64.Therefore,the AVA inserting into the lattice structure of MAPbBr3can passivate and protect the MAPbBr3units from reacting with H2O and suppressing their degradation during the whole ALD process.

    Fig.2 SEM images of bare (a)MAPbBr3 and (b)AVA(MAPbBr3)2 film before ALD; (c)SEM image and(d)AFM image of AVA(MAPbBr3)2 film after ALD of 10 nm conformal Al2O3 layer.The scale bar is 1 μm.

    The steady-state photoluminescence (PL)spectra and timeresolved PL decays of AVA(MAPbBr3)2films before and after the coating of Al2O3layer were compared.The steady-state PL intensity of AVA(MAPbBr3)2film barely changed after the deposition of different thickness of Al2O3(Fig.3a).The average PL lifetime for AVA(MAPbBr3)2with or without 10 nm Al2O3coating was 10.55 and 10.63 ns,respectively (Fig.3b),suggesting that the thin Al2O3did not affect the optical dynamic properties,which holds promise for using this perovskite film for optical and optoelectronic devices.The photos of bare and coated AVA(MAPbBr3)2films in Fig.3b showed comparable brightness.The above measurements strongly suggest that the compact and compatible Al2O3layer had been successfully deposited onto the AVA(MAPbBr3)2perovskite film through ALD process without damaging the film or affecting the optical properties of the perovskite film.

    Fig.3 (a)Steady-state PL spectra and (b)time-resolved PL decay curves of AVA(MAPbBr3)2 films with and without the deposition of different thickness Al2O3 by ALD.Insert photos in (b)are bare AVA(MAPbBr3)2 film (left)and AVA(MAPbBr3)2 film with 10 nm Al2O3 coating (right).

    Thermal stability and water resistance of the Al2O3-coated AVA(MAPbBr3)2films were investigated under accelerated circumstances.Samples were annealed at 150 °C for 2 h in atmosphere with up to 90% relative humidity.Without Al2O3deposition,the crosslinked 2D/3D structure of AVA(MAPbBr3)2soon broke down to mixed 2D and 3D structure as indicated by the appearance of a strong peak at 8.5° related to 2D structure(Fig.4a)57.While the films with different thickness of Al2O3coatings exhibited excellent thermal stability as no impurities were formed after the long time annealing at high temperature(Fig.4b).The enhanced peak intensity was ascribed to the regrowth of AVA(MAPbBr3)2crystals65,66.The compact Al2O3layer can effectively prevent the escaping of organic cations(MA+)from the AVA(MAPbBr3)2perovskite structure during annealing,therefore leading to outstanding thermal stability.The water resistance of bare AVA(MAPbBr3)2and Al2O3deposited films were evaluated by directly immersing them in water (Fig.5).Not surprisingly,the uncovered AVA(MAPbBr3)2film rapidly decomposed within 3 s.As expected,the Al2O3-coated AVA(MAPbBr3)2films displayed remarkably improved tolerance of water erosion,and the water resistance abilities of those films exhibited positive relation with the thickness of coated protection layers.The results were easily understood as the thicker and compacter the layer was,the stronger protection it would provide.The films with 5 to 15 nm Al2O3coverage could endure the water corrosion from seconds to minutes.As can be seen from the pictures,the decomposition began from the edges as uneven points and then extended to areas.For the 15 nm Al2O3-coated film,no apparent damages can be observed within 3 min in water,and the film even could go through the water stimulation for at least 10 min before completely decomposing.This test result confirmed that,the Al2O3layer that armored onto the surface of AVA(MAPbBr3)2perovskite could separate the vulnerable perovskite from intimate contact with water,resulting in significantly improved water resistance.

    Fig.4 XRD patterns of (a)bare AVA(MAPbBr3)2 film and(b)conformal Al2O3-coated AVA(MAPbBr3)2 films before and after annealing at 150 °C for 2 h as comparison of thermal stabilities.

    Fig.5 Optical photos to compare the water resistance abilities of bare and Al2O3-coated AVA(MAPbBr3)2 films as a function of time in water.

    4 Conclusions

    In summary,the Al2O3protection layer was successfully deposited onto the perovskite film via regular ALD method using TMA and H2O as aluminum and oxygen source,respectively.This direct deposition method effectively protected the perovskite film with no damage or sacrifice to the film performances.For the perovskite film used in this study,the insertion of bifunctional AVA into MAPbBr3layer not only worked as a crosslinker to form ultra-dense AVA(MAPbBr3)2film with a more stable crosslinked 2D/3D structure,but also passivated the perovskite crystal boundaries and impeded the direct contact of MAPbBr3and H2O,leading to the successful Al2O3deposition.The Al2O3-coated films exhibited significant improvement in both thermal stability and water resistance under accelerated circumstances (i.e.annealed at 150 °C and immersed in water).The strategy of introducing amino acid to passivate and protect perovskite from H2O corrosion during ALD process has practical potential in improving device stability in the future.

    99国产精品一区二区三区| 一级黄色大片毛片| 1024视频免费在线观看| 男女下面进入的视频免费午夜 | 色综合亚洲欧美另类图片| 天天躁夜夜躁狠狠躁躁| 国产精品98久久久久久宅男小说| 久久精品亚洲精品国产色婷小说| 在线av久久热| 男人操女人黄网站| 99香蕉大伊视频| 99在线视频只有这里精品首页| 久久精品影院6| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 午夜激情av网站| 美国免费a级毛片| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 精品免费久久久久久久清纯| 久久精品国产亚洲av高清一级| 亚洲七黄色美女视频| 露出奶头的视频| 天天添夜夜摸| 国产一区二区三区在线臀色熟女| 国产成人精品在线电影| 变态另类丝袜制服| 欧美黄色片欧美黄色片| 99热只有精品国产| 亚洲熟妇中文字幕五十中出| АⅤ资源中文在线天堂| av视频免费观看在线观看| 国产又色又爽无遮挡免费看| 日本 av在线| 国产三级在线视频| 亚洲国产精品999在线| 91字幕亚洲| 一区二区三区高清视频在线| 不卡一级毛片| 一级黄色大片毛片| 黄网站色视频无遮挡免费观看| 成人国产综合亚洲| 搞女人的毛片| 激情在线观看视频在线高清| 搞女人的毛片| 久热爱精品视频在线9| 亚洲 欧美 日韩 在线 免费| 国产精品亚洲一级av第二区| 亚洲中文字幕一区二区三区有码在线看 | 12—13女人毛片做爰片一| 亚洲欧美激情在线| 免费无遮挡裸体视频| 国产亚洲精品一区二区www| 美国免费a级毛片| www国产在线视频色| 在线av久久热| 国产极品粉嫩免费观看在线| 俄罗斯特黄特色一大片| 免费观看人在逋| 国产亚洲精品久久久久5区| 啪啪无遮挡十八禁网站| 免费看十八禁软件| 久久九九热精品免费| 在线观看免费午夜福利视频| 亚洲欧美激情综合另类| 99在线视频只有这里精品首页| 国产欧美日韩一区二区精品| 99精品久久久久人妻精品| 亚洲人成电影免费在线| 女人精品久久久久毛片| 精品久久久久久成人av| 色综合欧美亚洲国产小说| 亚洲国产精品久久男人天堂| 精品久久蜜臀av无| 91大片在线观看| 欧美大码av| xxx96com| 色播在线永久视频| 美女国产高潮福利片在线看| 久久香蕉精品热| 又紧又爽又黄一区二区| 老司机靠b影院| 好男人电影高清在线观看| 日韩欧美国产一区二区入口| 波多野结衣av一区二区av| 男女做爰动态图高潮gif福利片 | 午夜免费观看网址| 国产精品一区二区三区四区久久 | 大型黄色视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| av中文乱码字幕在线| 无遮挡黄片免费观看| 国产又爽黄色视频| 精品国产美女av久久久久小说| 国产精品二区激情视频| 亚洲久久久国产精品| 黄色视频不卡| 18禁国产床啪视频网站| 女生性感内裤真人,穿戴方法视频| 黄频高清免费视频| 99riav亚洲国产免费| 高清毛片免费观看视频网站| 午夜久久久在线观看| 国产99久久九九免费精品| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区mp4| 免费在线观看影片大全网站| 国产又爽黄色视频| 国产欧美日韩精品亚洲av| 最近最新中文字幕大全免费视频| 又大又爽又粗| 美女 人体艺术 gogo| 亚洲国产精品久久男人天堂| 亚洲国产欧美网| 日韩欧美一区二区三区在线观看| 国产一卡二卡三卡精品| 国产亚洲欧美在线一区二区| 啪啪无遮挡十八禁网站| 免费在线观看黄色视频的| 校园春色视频在线观看| 国产成人啪精品午夜网站| 啦啦啦韩国在线观看视频| 久久久久国产精品人妻aⅴ院| 久久久久久免费高清国产稀缺| 久久久久久人人人人人| av欧美777| 亚洲av电影在线进入| 久久性视频一级片| 久久久国产成人精品二区| 九色国产91popny在线| 国产精品亚洲美女久久久| 国产精品免费视频内射| 天天躁夜夜躁狠狠躁躁| 亚洲国产毛片av蜜桃av| 99热只有精品国产| 51午夜福利影视在线观看| 久久久国产成人免费| 成人国语在线视频| 久久热在线av| 亚洲午夜精品一区,二区,三区| 乱人伦中国视频| www.999成人在线观看| 亚洲无线在线观看| 亚洲中文字幕一区二区三区有码在线看 | 美女高潮喷水抽搐中文字幕| 19禁男女啪啪无遮挡网站| 99riav亚洲国产免费| 亚洲第一电影网av| 午夜激情av网站| 久久婷婷成人综合色麻豆| 国产精品影院久久| 亚洲精品久久成人aⅴ小说| 99在线人妻在线中文字幕| 一区在线观看完整版| 熟女少妇亚洲综合色aaa.| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 亚洲五月天丁香| 日韩视频一区二区在线观看| 他把我摸到了高潮在线观看| 久久久久久久精品吃奶| 久久婷婷成人综合色麻豆| 国产成人啪精品午夜网站| 女人爽到高潮嗷嗷叫在线视频| 国产在线精品亚洲第一网站| 侵犯人妻中文字幕一二三四区| 国产不卡一卡二| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文看片网| 97碰自拍视频| 999久久久国产精品视频| 亚洲国产看品久久| 日韩欧美三级三区| 国内毛片毛片毛片毛片毛片| 在线免费观看的www视频| 亚洲成人免费电影在线观看| 悠悠久久av| 免费在线观看影片大全网站| 妹子高潮喷水视频| av视频免费观看在线观看| 国产精品av久久久久免费| 波多野结衣一区麻豆| 国产成人啪精品午夜网站| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 欧美日韩亚洲综合一区二区三区_| 好男人在线观看高清免费视频 | 丝袜人妻中文字幕| 99久久精品国产亚洲精品| 亚洲精品av麻豆狂野| 激情在线观看视频在线高清| 久久国产乱子伦精品免费另类| 久久久久久久午夜电影| 一本久久中文字幕| 亚洲欧美精品综合久久99| 中文字幕高清在线视频| 午夜精品国产一区二区电影| 欧美黄色片欧美黄色片| 中国美女看黄片| 成人三级做爰电影| 好看av亚洲va欧美ⅴa在| 少妇粗大呻吟视频| 欧美激情 高清一区二区三区| 老鸭窝网址在线观看| 狂野欧美激情性xxxx| 一级毛片精品| 国产午夜福利久久久久久| 一区二区日韩欧美中文字幕| 91av网站免费观看| 久99久视频精品免费| 正在播放国产对白刺激| 激情在线观看视频在线高清| 成人国产一区最新在线观看| 他把我摸到了高潮在线观看| av视频在线观看入口| www国产在线视频色| 91九色精品人成在线观看| 少妇粗大呻吟视频| 深夜精品福利| 日韩大码丰满熟妇| 国产成人欧美在线观看| 长腿黑丝高跟| 久久中文字幕一级| 女警被强在线播放| 亚洲 欧美一区二区三区| 国产一区二区三区视频了| 亚洲成人国产一区在线观看| 啪啪无遮挡十八禁网站| 国产精品亚洲av一区麻豆| 成人精品一区二区免费| 午夜福利高清视频| 国产一区二区三区综合在线观看| 一区二区三区精品91| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 久久人人精品亚洲av| 亚洲无线在线观看| 在线观看免费午夜福利视频| 国产人伦9x9x在线观看| 一二三四在线观看免费中文在| 日本欧美视频一区| 日本免费a在线| 老司机午夜十八禁免费视频| 可以在线观看毛片的网站| 久久香蕉精品热| 亚洲av美国av| 男人操女人黄网站| 日日爽夜夜爽网站| 中文亚洲av片在线观看爽| 国产xxxxx性猛交| 制服丝袜大香蕉在线| 热99re8久久精品国产| 男男h啪啪无遮挡| 国产精品久久久久久亚洲av鲁大| 亚洲无线在线观看| 国产极品粉嫩免费观看在线| 国产精品电影一区二区三区| 久久精品91蜜桃| 欧美午夜高清在线| 最近最新免费中文字幕在线| 多毛熟女@视频| 亚洲色图av天堂| 久久精品国产亚洲av香蕉五月| 亚洲一码二码三码区别大吗| 欧美中文日本在线观看视频| 色婷婷久久久亚洲欧美| 啦啦啦免费观看视频1| 日本免费a在线| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 波多野结衣av一区二区av| 久久人妻福利社区极品人妻图片| 日本vs欧美在线观看视频| 午夜福利影视在线免费观看| 欧美色视频一区免费| 一进一出抽搐动态| 91老司机精品| 精品国产亚洲在线| 日韩 欧美 亚洲 中文字幕| 国产高清有码在线观看视频 | av天堂久久9| 国产视频一区二区在线看| 日韩欧美一区视频在线观看| 在线观看午夜福利视频| 国产人伦9x9x在线观看| 老熟妇乱子伦视频在线观看| 日本欧美视频一区| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 欧美老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 正在播放国产对白刺激| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久精品电影 | 香蕉国产在线看| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 一进一出好大好爽视频| 久9热在线精品视频| 国产激情欧美一区二区| 神马国产精品三级电影在线观看 | 精品福利观看| 深夜精品福利| 在线观看日韩欧美| 欧美日本视频| 丁香欧美五月| 日日干狠狠操夜夜爽| www.熟女人妻精品国产| 亚洲成人免费电影在线观看| 国产精品二区激情视频| 99精品久久久久人妻精品| 亚洲av片天天在线观看| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 人人妻人人澡人人看| 一区二区三区国产精品乱码| 韩国精品一区二区三区| 淫秽高清视频在线观看| 国产区一区二久久| 久久久久国产精品人妻aⅴ院| 婷婷六月久久综合丁香| 又大又爽又粗| 夜夜躁狠狠躁天天躁| 天天躁夜夜躁狠狠躁躁| 中文字幕另类日韩欧美亚洲嫩草| 久9热在线精品视频| 成人欧美大片| 韩国精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 三级毛片av免费| 精品高清国产在线一区| 一级a爱片免费观看的视频| 欧美在线一区亚洲| 国产精品 欧美亚洲| 丝袜在线中文字幕| 俄罗斯特黄特色一大片| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女 | 国产97色在线日韩免费| www日本在线高清视频| 一区福利在线观看| 男女之事视频高清在线观看| www国产在线视频色| 亚洲色图av天堂| 搡老妇女老女人老熟妇| 精品免费久久久久久久清纯| www.精华液| 久久婷婷成人综合色麻豆| 午夜福利免费观看在线| 国产麻豆69| 亚洲午夜理论影院| 精品国产一区二区三区四区第35| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 日韩中文字幕欧美一区二区| 久久久久久国产a免费观看| 国内精品久久久久久久电影| 国产免费男女视频| 国产不卡一卡二| 久久性视频一级片| 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 超碰av人人做人人爽久久| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 亚洲精品日韩av片在线观看| 亚洲精华国产精华精| 老女人水多毛片| 亚洲真实伦在线观看| 搡老妇女老女人老熟妇| 九九爱精品视频在线观看| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 亚洲图色成人| 我的老师免费观看完整版| 俄罗斯特黄特色一大片| 欧美极品一区二区三区四区| 国产精品98久久久久久宅男小说| 亚洲av免费在线观看| 久久99热6这里只有精品| 国产视频一区二区在线看| 色综合站精品国产| 一级av片app| 欧美日韩黄片免| 极品教师在线免费播放| 别揉我奶头 嗯啊视频| 成人av一区二区三区在线看| 观看美女的网站| 国产大屁股一区二区在线视频| 男女啪啪激烈高潮av片| 免费人成视频x8x8入口观看| 成人美女网站在线观看视频| 色在线成人网| 美女cb高潮喷水在线观看| 欧美日韩国产亚洲二区| 99热网站在线观看| 一级黄片播放器| av天堂中文字幕网| 九九热线精品视视频播放| 国产久久久一区二区三区| 欧美+亚洲+日韩+国产| 免费搜索国产男女视频| 免费观看精品视频网站| 成人三级黄色视频| 春色校园在线视频观看| 亚洲最大成人中文| 深夜精品福利| 麻豆精品久久久久久蜜桃| 日本成人三级电影网站| 琪琪午夜伦伦电影理论片6080| 国产精品伦人一区二区| 永久网站在线| 日本免费a在线| 可以在线观看毛片的网站| 日本色播在线视频| 人妻少妇偷人精品九色| 成年版毛片免费区| 淫秽高清视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 午夜免费激情av| 色5月婷婷丁香| 99热只有精品国产| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看 | 精品99又大又爽又粗少妇毛片 | 禁无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一级一片aⅴ在线观看| 男人狂女人下面高潮的视频| 色哟哟哟哟哟哟| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区| 久久中文看片网| 成熟少妇高潮喷水视频| 成人毛片a级毛片在线播放| 女人十人毛片免费观看3o分钟| 真人做人爱边吃奶动态| 我的女老师完整版在线观看| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 99久国产av精品| 国产精品野战在线观看| 婷婷六月久久综合丁香| 在线看三级毛片| 身体一侧抽搐| 免费搜索国产男女视频| 国产亚洲精品av在线| 精品久久久久久久久av| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 午夜精品在线福利| 国产乱人伦免费视频| 超碰av人人做人人爽久久| 国产精品野战在线观看| 高清日韩中文字幕在线| 99久国产av精品| 此物有八面人人有两片| 国产精品嫩草影院av在线观看 | 久久精品国产自在天天线| 国产成人av教育| 人妻夜夜爽99麻豆av| 中亚洲国语对白在线视频| 内射极品少妇av片p| 中文字幕熟女人妻在线| 男女那种视频在线观看| 久久亚洲精品不卡| 一级av片app| 在线观看av片永久免费下载| 亚洲av免费高清在线观看| 又紧又爽又黄一区二区| 亚洲七黄色美女视频| 在线国产一区二区在线| 99在线人妻在线中文字幕| 久久久精品欧美日韩精品| 精品久久久噜噜| 丰满的人妻完整版| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 亚洲电影在线观看av| www.www免费av| 色综合色国产| 日本爱情动作片www.在线观看 | netflix在线观看网站| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频| 亚洲美女黄片视频| 久久久久久久精品吃奶| 啦啦啦韩国在线观看视频| 99久久中文字幕三级久久日本| 1024手机看黄色片| 国产精品一区二区三区四区免费观看 | 在线观看美女被高潮喷水网站| 久久人妻av系列| 日本 av在线| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 一进一出抽搐动态| 亚洲成人久久性| 成年人黄色毛片网站| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 国产免费男女视频| 超碰av人人做人人爽久久| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 欧美一级a爱片免费观看看| 国产91精品成人一区二区三区| 九九爱精品视频在线观看| 日韩中字成人| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 在线免费十八禁| 国产免费一级a男人的天堂| 久久九九热精品免费| 小说图片视频综合网站| 国产精品久久久久久av不卡| 少妇高潮的动态图| 国产高清有码在线观看视频| 内射极品少妇av片p| 午夜亚洲福利在线播放| 中文字幕高清在线视频| 久久久久久国产a免费观看| 天堂av国产一区二区熟女人妻| 琪琪午夜伦伦电影理论片6080| 国产在线男女| 丰满乱子伦码专区| 少妇的逼水好多| 露出奶头的视频| 人人妻人人看人人澡| 亚洲精品粉嫩美女一区| 午夜精品一区二区三区免费看| 99热只有精品国产| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人| 免费高清视频大片| 啦啦啦观看免费观看视频高清| 深夜精品福利| 亚洲在线自拍视频| 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区久久| 欧美潮喷喷水| 亚洲最大成人av| 啦啦啦韩国在线观看视频| 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 久久久久久久久久黄片| 国产成人a区在线观看| 一区福利在线观看| 成人二区视频| 久久欧美精品欧美久久欧美| 岛国在线免费视频观看| 国产伦精品一区二区三区四那| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 日韩一区二区视频免费看| 欧美黑人欧美精品刺激| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 日韩大尺度精品在线看网址| 亚洲熟妇熟女久久| 成人精品一区二区免费| 99九九线精品视频在线观看视频| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久 | 国产私拍福利视频在线观看| 国产成人a区在线观看| 国产av不卡久久| 91在线观看av| 亚洲欧美日韩卡通动漫| 在线观看66精品国产| 99久久精品国产国产毛片| 日本免费一区二区三区高清不卡| 夜夜夜夜夜久久久久| 日本色播在线视频| 国产精品永久免费网站| 88av欧美| 日韩欧美在线乱码| 校园人妻丝袜中文字幕| 国产黄片美女视频| 日本一二三区视频观看| 大型黄色视频在线免费观看| 欧美丝袜亚洲另类 | 熟女人妻精品中文字幕| 亚洲真实伦在线观看| 精品日产1卡2卡| 丰满的人妻完整版| 99久久精品一区二区三区| 偷拍熟女少妇极品色| 看十八女毛片水多多多| 久久久久九九精品影院| 日韩欧美 国产精品| 久久久久性生活片| 久久国产乱子免费精品| 亚洲图色成人| 久久精品影院6| 欧美日韩国产亚洲二区| 一个人观看的视频www高清免费观看| 又紧又爽又黄一区二区| 国产真实乱freesex| 欧美日本亚洲视频在线播放| 国产久久久一区二区三区| 天堂动漫精品| 内射极品少妇av片p| 久久久久九九精品影院|