張婉冰,張付申,3*
3D打印技術(shù)在固體廢棄物資源循環(huán)中的應(yīng)用
張婉冰1,2,張付申1,2,3*
(1.中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,固體廢棄物處理與資源化實(shí)驗(yàn)室,北京 100085;2.中國(guó)科學(xué)院大學(xué),北京 100049;3.中國(guó)科學(xué)院綠色過程制造創(chuàng)新研究院,北京 100190)
打印材料是限制3D打印技術(shù)發(fā)展和推廣應(yīng)用的瓶頸問題, 目前已經(jīng)發(fā)現(xiàn)部分固體廢棄物與3D打印的契合度很高,可以用于制備3D打印材料.本文綜述了4類可以用于3D打印的固體廢棄物,包括硅鋁基廢棄物、農(nóng)林廢棄物、廢舊塑料和廢舊金屬,著重討論了這4類廢棄物制備3D打印材料的方法以及廢棄物的添加對(duì)原打印材料造成的影響,同時(shí)分析了當(dāng)前廢棄物制備3D打印材料需要解決的問題,并對(duì)廢棄物基3D打印材料的發(fā)展趨勢(shì)進(jìn)行了展望.
3D打??;硅鋁基廢棄物;農(nóng)林廢棄物;廢舊塑料;廢舊金屬;資源綠色循環(huán)
3D打印起源于快速成型技術(shù),主要通過數(shù)字化系統(tǒng)將3D圖形或者模型的切片信息傳遞到控制系統(tǒng),以逐層打印的方式自下到上將所需的產(chǎn)品打印成型[1].近年來,3D打印技術(shù)發(fā)展迅速,其快速原型的定制生產(chǎn)[2],能將開發(fā)人員與設(shè)計(jì)產(chǎn)品直接聯(lián)系起來,因而具有靈活性高、生產(chǎn)建造時(shí)間短、資源浪費(fèi)少的特點(diǎn),被廣泛應(yīng)用到各個(gè)行業(yè),如汽車[3]、航空航天[4]、建筑[5]、食品[6]和醫(yī)療[7]等.打印材料是目前3D打印領(lǐng)域研究的熱點(diǎn),也是3D打印工藝深入發(fā)展和應(yīng)用的一個(gè)瓶頸.目前,可用于3D打印的主要材料包括水泥[8]、地聚物[8]、高分子[9-10]、陶瓷[11]、金屬粉末[11]等,3D打印產(chǎn)品質(zhì)量與材料的性能密切相關(guān).然而3D打印耗材一般造價(jià)昂貴[9,12],嚴(yán)重限制3D打印技術(shù)的推廣應(yīng)用.因此,開發(fā)廉價(jià)且適用性廣的3D打印材料,是推動(dòng)3D打印技術(shù)健康發(fā)展的核心.
近年來的研究發(fā)現(xiàn),部分固體廢棄物與3D打印的契合度很高,可以用于制備3D打印材料[13-14].我國(guó)是固體廢棄物產(chǎn)生大國(guó),典型的固廢綜合處置利用技術(shù)存在利用方式單一、利用率低、產(chǎn)品附加值低等問題[15-17].為充分挖掘固廢的回收利用價(jià)值,國(guó)內(nèi)外一些學(xué)者正在探索將固體廢棄物改性作為3D打印材料的可行性[14].
硅鋁基廢棄物是一類具有一定火山灰活性或潛在火山灰活性,高二氧化硅、氧化鋁的工業(yè)廢棄物,可以作為輔助膠凝材料或者生產(chǎn)地聚物水泥[25-26].該類型材料的流變行為受到顆粒間絮凝和水化反應(yīng)的影響,具有一定的觸變性[27],在某些方面是普通硅酸鹽水泥(OPC)、地聚物、硫鋁酸鹽水泥等膠凝材料的替代產(chǎn)品,與基于熔融沉積成型技術(shù)的打印砂漿高度重合.由于3D打印無需任何工具和人工輔助能直接將CAD模型轉(zhuǎn)化為三維結(jié)構(gòu)[27-28],因此在打印過程中需要對(duì)打印砂漿進(jìn)行連續(xù)、高度控制:砂漿由于水化反應(yīng)粒子間絮凝體系獲得一定屈服應(yīng)力,受到剪切作用體系絮狀結(jié)構(gòu)破壞,能順利通過泵從攪拌容器連續(xù)不斷供給至輸送管道和噴嘴;沉積后具有一定的初凝時(shí)間不能立即硬化,避免了印刷過程中層與層之間的冷結(jié)合而導(dǎo)致的低機(jī)械強(qiáng)度[29].Khalil等[30]利用93%OPC和7%硫鋁酸鹽復(fù)配水泥制備出可擠壓、可建造抗壓強(qiáng)度能與傳統(tǒng)砂漿相媲美的打印砂漿.
隨著建筑行業(yè)的發(fā)展,建筑材料資源日益緊缺,為了節(jié)能降耗、降低成本和減輕環(huán)境負(fù)荷,急需尋找一種低成本、環(huán)境友好型替代物[31].使用礦物摻合料或廢棄物是一種理想的解決方案,包括粉煤灰、磨細(xì)的高爐渣、赤泥、硅灰等硅鋁基廢棄物.Le等[18]成功利用粉煤灰和硅灰制備了高強(qiáng)度的廢棄物基水泥可打印膠凝材料.硅鋁基廢棄物由于產(chǎn)生途徑不同,其組分、粒徑分布、表觀形貌等各個(gè)方面差異較大,對(duì)打印砂漿的流變性的影響也不同.因此,本節(jié)主要闡述硅鋁基廢棄物的添加對(duì)打印砂漿流變性、水合反應(yīng)以及機(jī)械性能等方面產(chǎn)生的影響.
粉煤灰具有一定的火山灰活性,常溫下以水為介質(zhì)時(shí)能與氫氧化鈣或其他堿土金屬氫氧化物發(fā)生水化反應(yīng),水熱蒸汽養(yǎng)護(hù)下加速反應(yīng),生成具有水硬膠凝性的化合物[32-33].由于性質(zhì)穩(wěn)定,產(chǎn)量大,具有一定火山灰活性,粉煤灰是利用率最高的一類硅鋁基廢棄物.據(jù)估計(jì),全球粉煤灰的平均利用率接近53.50%[34],也是目前3D打印利用最多的廢棄物之一[19,35-36].表1列舉了粉煤灰在3D打印的應(yīng)用.
粉煤灰對(duì)打印砂漿的影響主要體現(xiàn)在流變性和機(jī)械性能兩個(gè)方面.當(dāng)粉煤灰部分取代水泥或者作為摻和料添加時(shí),對(duì)砂漿的流變性有很大的影響.目前關(guān)于粉煤灰對(duì)新拌砂漿流變性能影響的研究主要集中在自密實(shí)混凝土上,可以間接反映出粉煤灰對(duì)打印砂漿的影響.Laskar等[37]研究發(fā)現(xiàn),低摻量粉煤灰可導(dǎo)致水泥混凝土屈服應(yīng)力減小,而高摻量粉煤灰可導(dǎo)致屈服應(yīng)力略有增大.Jalal等[38]發(fā)現(xiàn)球形的粉煤灰顆粒能改善新拌自密實(shí)混凝土的流動(dòng)性,混凝土坍落度從800mm增加到870mm.Panda等[19]在研究高摻量粉煤灰打印砂漿時(shí)發(fā)現(xiàn),粉煤灰的加入會(huì)降低體系的黏度和屈服應(yīng)力,改善了混合物的流動(dòng)性.與水泥相比,粉煤灰的火山灰活性較低、比重小,相同質(zhì)量的粉煤灰取代水泥后減少了絮凝顆粒連接數(shù)量,對(duì)打印砂漿起到稀釋作用[39];粉煤灰顆粒的球形幾何形狀和光滑表面促進(jìn)了顆粒的滑動(dòng)和減少角顆粒的摩擦力,即“滾珠效應(yīng)”[40-41].這有利于打印砂漿的泵送,但降低了打印長(zhǎng)絲的結(jié)構(gòu)堆積性和黏度恢復(fù)能力.因此,在粉煤灰-OPC復(fù)合砂漿體系中,為了得到具有較高靜態(tài)屈服應(yīng)力的印刷長(zhǎng)絲,必須調(diào)節(jié)體系的觸變性能.表1中4種復(fù)合砂漿中里均添加了硅灰作為調(diào)節(jié)劑,將在1.3中討論其對(duì)打印砂漿的影響.另一方面,粉煤灰替代部分水泥時(shí)可以改善混凝土的機(jī)械性能和耐久性.粉煤灰作為摻雜物參與水合反應(yīng)生成具有致密結(jié)構(gòu)的二次針狀晶體結(jié)構(gòu)填充在原有縫隙中,減少了體系的總孔隙率和穿透空隙數(shù),進(jìn)而改善了材料的硬化性能[42].研究表明當(dāng)粉煤灰摻量為15%時(shí),構(gòu)建的抗壓強(qiáng)度提高約10%[43].
粉煤灰不僅可以參與配置OPC基打印砂漿,也會(huì)影響地聚物和磷酸鎂鉀等打印砂漿的性能.Panda等[44]等以粉煤灰為膠凝材料,以模量為1.8的水玻璃為激發(fā)劑,開發(fā)出一種新穎環(huán)保的3D打印地聚物砂漿,與OPC體系中粉煤灰傾向于作為不活潑的填充材料不同,在地聚物體系中粉煤灰能夠在堿性激發(fā)劑的作用下參與早期水合反應(yīng),逐漸生成AlO4和SiO4三維立體絮狀結(jié)構(gòu)[29,44].Weng等[45]用粉煤灰代替60wt%的氧化鎂同時(shí)引入10wt%的硅粉,開發(fā)出一種較為理想的磷酸鎂鉀打印砂漿;粉煤灰的加入改善了磷酸鎂鉀水泥新拌混合物的可加工性,使得新拌砂漿的坍落度值從101mm增加到109mm,同時(shí)降低了動(dòng)態(tài)屈服應(yīng)力.粉煤灰還可以引入到3D噴涂打印材料中.與砂漿打印過程相似,3D噴涂過程也包含材料的輸送和沉積過程[46-47],但噴涂材料需要抵抗重力累積產(chǎn)生的剪切力,因此減少材料的密度是改善可打印噴涂材料性能最直接的辦法.粉煤灰空心微珠薄壁中空、比重小、可作為噴涂材料的輕質(zhì)骨料,有效降低體系的密度[48-49].因而Lu等[50]利用超輕粉煤灰空心微珠與月桂酸鈉引氣劑成功制備一種適宜噴涂、材料均勻分布的輕質(zhì)3D打印噴涂材料,粉煤灰空心微珠與引氣劑的聯(lián)合作用使得材料密度降低了38.5%.
表1 粉煤灰在3D打印中的應(yīng)用及其配比
注: -為未添加; B為膠凝材料;C為水泥; S為集料;FA為粉煤灰;SF為硅灰;S為集料;SP為減水劑.
高爐渣(GFS)是一種鋼鐵制造業(yè)的熔渣副產(chǎn)品,磨碎后可與OPC反應(yīng),顯示出優(yōu)異的膠凝性能,被認(rèn)為是一種有效的水泥替代材料[51].GFS幾乎是一種非晶相物質(zhì),出爐溫度和淬火速率是影響晶體含量的影響因素,一般晶體含量的增加會(huì)降低水硬性[52].由于用礦渣代替水泥可改善混合物的流變性以及硬化性能,因此GFS可被用于打印凈漿、砂漿和混凝土中.
目前,大多數(shù)研究發(fā)現(xiàn),GFS的添加會(huì)降低OPC砂漿的塑性黏度,但GFS對(duì)砂漿屈服應(yīng)力的影響尚不確定[40].Park等[53]研究表明,在GFS-OPC系統(tǒng)中屈服應(yīng)力隨GFS的增多而減小后增大,塑性黏度隨GFS的增多而減小.Jiang等[54]發(fā)現(xiàn)GFS提高了體系的觸變性,同時(shí)導(dǎo)致屈服應(yīng)力和塑性黏度成比例地降低.GFS具有比OPC顆粒更高的負(fù)zeta電位,有助于更好的顆粒分散,從而提高系統(tǒng)的流動(dòng)性,另一個(gè)方面是爐渣的添加會(huì)減慢水泥的早期水化,導(dǎo)致水泥水合產(chǎn)品的產(chǎn)量降低,不利于印刷長(zhǎng)絲的硬化.因此Panda等[55]在以GFS作為主要膠凝材料,以堿性硅酸鈉作為激發(fā)材料設(shè)計(jì)打印砂漿時(shí),考慮到GFS的抗絮凝效應(yīng),在體系中加入納米黏土和水菱鎂礦作為額外的成核位點(diǎn),改善了體系水合反應(yīng)速率從而提高了靜態(tài)屈服應(yīng)力和結(jié)構(gòu)堆積性.
筆者所設(shè)計(jì)的民族綜合信息大數(shù)據(jù)平臺(tái)資源庫(kù)管理系統(tǒng),可實(shí)現(xiàn)內(nèi)蒙古民族信息的統(tǒng)一管理和資源整合。隨著信息技術(shù)的發(fā)展,資源庫(kù)管理系統(tǒng)將進(jìn)一步推進(jìn)大數(shù)據(jù)平臺(tái)的發(fā)展,民族信息的管理體系也將隨之完善。
不同廢棄物之間同樣存在相互影響,GFS的加入通常會(huì)影響到地聚合砂漿的凝結(jié)時(shí)間[55],地聚物砂漿中主要的早期硬化產(chǎn)物主要是硅鋁酸鹽,當(dāng)混合體系的GFS增加時(shí),體系中的游離氧化鈣增多,鋁硅酸鈣含量增多,改善了早期地質(zhì)聚合物砂漿的凝結(jié)行為,增加了早期強(qiáng)度[56].GFS的含量越多,地聚合物砂漿越快進(jìn)入到凝固期.這直接影響了材料在印刷過程中的加工性,但在實(shí)際生產(chǎn)運(yùn)行中,打印砂漿凝結(jié)時(shí)間的設(shè)計(jì)往往需要考慮開放時(shí)間的設(shè)置,因此可以通過預(yù)先設(shè)計(jì)構(gòu)建的印刷路徑和打印速度來調(diào)節(jié)凝結(jié)時(shí)間和開放時(shí)間[54].
高堿性[58]、超細(xì)粒度[59]的特點(diǎn)使赤泥對(duì)環(huán)境構(gòu)成極大的威脅和安全隱患,尤其是匈牙利氧化鋁廠赤泥外泄事件[60]對(duì)赤泥處理敲響了警鐘.赤泥受礬土礦和冶煉工藝的影響,不同赤泥的成分、性質(zhì)和物相也各有不同.一般而言,燒結(jié)法產(chǎn)生的赤泥具有一定的β-2CaO·SiO2、γ-2CaO·SiO2以及無定型鋁硅酸鹽等水硬性礦物質(zhì)[58].赤泥的處置和再利用由于結(jié)合堿而變的極其復(fù)雜.而堿激發(fā)水合反應(yīng)的地聚物將有益于使高堿度赤泥轉(zhuǎn)化為對(duì)環(huán)境無害的土木工程材料[61-62].當(dāng)超細(xì)赤泥混合在砂漿中,會(huì)顯著改變打印砂漿的流變行為.研究發(fā)現(xiàn)細(xì)顆粒的赤泥傾向于阻礙砂漿流動(dòng),尤其是在赤泥含量較高而添加的水量不足以填充系統(tǒng)的孔隙度時(shí),固體顆粒未離分,當(dāng)給予一定剪切動(dòng)力時(shí),固體顆粒之間劇烈摩擦,流動(dòng)性差[63].Senff等[64]發(fā)現(xiàn)在流變測(cè)試中赤泥增加了砂漿的初始屈服應(yīng)力,但對(duì)體系塑性黏度的影響不大.Riberiro等[63]也觀察到類似現(xiàn)象,將赤泥添加到OPC砂漿中,系統(tǒng)的扭矩、屈服應(yīng)力值增加.赤泥不同于粉煤灰等其他硅鋁基廢棄物,主要由結(jié)構(gòu)-凝結(jié)體、結(jié)構(gòu)-集粒體、結(jié)構(gòu)-團(tuán)聚體三級(jí)結(jié)構(gòu)構(gòu)成,具有膠結(jié)性的孔架狀結(jié)構(gòu),呈軟塑-流塑淤泥質(zhì)狀態(tài),被歸為低至高塑性類型材料,在一定程度上可以調(diào)節(jié)打印砂漿的維穩(wěn)性[62,65].蘆令超等[66]設(shè)計(jì)出一種赤泥3D打印堿激發(fā)膠凝材料,加入一定的外加劑調(diào)控赤泥-礦渣堿激發(fā)水泥的觸變性,改善3D打印過程新拌砂漿的結(jié)構(gòu)穩(wěn)定性和建造性能,能將新拌砂漿的塑性黏度和屈服應(yīng)力控制在2.1~3.0Pa·s、595~ 687Pa內(nèi).
赤泥作為堿激發(fā)水泥的輔助膠凝材料,能夠提高砂漿的打印性能,赤泥所含有的堿性成分在一定程度上減少了激發(fā)劑堿的用量;所含有的水硬性物質(zhì)對(duì)堿激發(fā)水泥的硬化強(qiáng)度有一定貢獻(xiàn),能夠減輕堿激發(fā)水泥后期硬化過程的強(qiáng)度倒縮[67].雖然赤泥中含有一定量的水硬性物質(zhì),但是由于固相和水相間反應(yīng)速度很慢,反應(yīng)分子滲透擴(kuò)散緩慢,自身水合反應(yīng)與水泥顆粒相比較弱.因此為了提高赤泥的反應(yīng)活性,可以采用機(jī)械活化、化學(xué)活化、熱活化等方法破壞赤泥結(jié)晶相晶體結(jié)構(gòu)轉(zhuǎn)化為無定形態(tài),使顆粒表面產(chǎn)生缺陷,從而提高反應(yīng)活性[58].這些方法同時(shí)可以改善由于赤泥的直接加入導(dǎo)致的混凝土強(qiáng)度的急劇下降.
硅灰是制造工業(yè)硅和硅合金過程中產(chǎn)生的一種超細(xì)粉狀廢棄物,具有高的比表面積(>20000m2/ kg),粒徑一般小于0.1μm,比OPC顆粒小100倍[38].硅灰中無定形二氧化硅的含量超過80%,具有高火山灰活性,能與氧化鈣、氧化鎂等發(fā)生水化作用,是一種良好的混凝土添加劑與改性劑.
硅灰的加入能增加打印砂漿的屈服應(yīng)力和塑性黏度,降低水泥基新拌砂漿的流動(dòng)性,可以用作高均勻性和內(nèi)聚性混凝土的調(diào)節(jié)劑[68-69].另外,硅灰可以填充在水泥大顆粒間的縫隙中,提高了系統(tǒng)的比表面積,增加了粒子間接觸、摩擦面積;表面電離后可能與鈣等多價(jià)陽(yáng)離子橋接,促進(jìn)C-S-H膠體的形成.因而,硅灰可改善低火山灰活性物質(zhì)摻雜導(dǎo)致體系水合反應(yīng)速率降低的情況[67-69].Weng等[45]在高摻量粉煤灰混凝土體系中,利用硅灰、減水劑的調(diào)節(jié)作用,設(shè)計(jì)出一種靜態(tài)屈服應(yīng)力可達(dá)3350Pa、動(dòng)態(tài)屈服應(yīng)力為492.7Pa、塑性黏度為16.65Pa·s的打印砂漿,是一種較為理想的3D打印材料.當(dāng)在粉煤灰-OPC體系中加入2.5%的硅灰,使得體系的屈服應(yīng)力幾乎提高了一倍,顯著改善了砂漿的屈服應(yīng)力、結(jié)構(gòu)堆積性和黏度恢復(fù)能力,這使得打印砂漿在高剪切速率(例如擠出/泵送)過程中具有低黏度、高流動(dòng)性,而在低剪切速率時(shí)(如靜置)具有高黏度、低形變性[19].但是由于飛灰顆粒傾向于團(tuán)聚,因此在使用過程中必須采用減水劑使其充分分散開.不同類型的減水劑對(duì)硅灰的作用不同.Laskar等[37]發(fā)現(xiàn)在使用聚羧酸鹽減水劑的情況下,硅灰能提高新拌砂漿的靜態(tài)屈服應(yīng)力;而在使用聚萘磺酸鹽減水劑的情況下,會(huì)導(dǎo)致系統(tǒng)靜態(tài)屈服應(yīng)力降低.因此,在研究硅粉對(duì)3D混凝土打印砂漿流變性能的影響時(shí),需要了解硅灰與高效減水劑之間的相互作用.
相比之下,含有硅灰的混凝土比其它任何類型的混凝土更容易發(fā)生塑性收縮,尤其是在干燥環(huán)境中或制造高表面積的構(gòu)件時(shí),且塑性形變與硅灰的加入量呈正相關(guān)關(guān)系[70].硅灰水泥的比表面積決定了孔的細(xì)度,并且隨著體系比表面積的增加,孔的細(xì)度將增加,導(dǎo)致水蒸發(fā)的孔容積增加,從而增加了塑性收縮.在實(shí)際生產(chǎn)或者設(shè)計(jì)過程中可以通過集料、細(xì)化毛細(xì)管孔隙的大小和分布來預(yù)防[71].
基于以上分析,硅鋁基廢棄物對(duì)新拌混凝土印刷材料的影響主要體現(xiàn)在兩個(gè)方面:集料和水合反應(yīng).低水灰比時(shí),細(xì)顆粒會(huì)填充在水泥顆粒間隙中,提高了體系的堆積密度,釋放了顆粒之間的水分,顯著增加涂覆在漿體顆粒的水膜厚度,從而改善砂漿的流動(dòng)性[40].而硅灰為納米級(jí)顆粒布朗運(yùn)動(dòng)起主導(dǎo)作用、且具有較大的材料吸附和聚電解質(zhì)界面層,這使得體系具有顯著的表面反應(yīng)活性[72],因此能夠提高體系的初始靜態(tài)屈服應(yīng)力和膠凝材料再絮凝能力,有助于材料沉積后的形狀保持性[73-74].其次,硅鋁基廢棄物由于產(chǎn)生條件不同其形態(tài)也各有不同,也會(huì)在集料過程產(chǎn)生截然不同的影響.例如粉煤灰的“滾珠效應(yīng)”[38-39],而GFS由于破碎過程造成顆粒的不規(guī)則性,因此顆粒的角形形成了牢固的結(jié)合,從而增加了顆粒間的互鎖[75-76],可能導(dǎo)致體系的屈服應(yīng)力和黏度會(huì)在一定程度上增加.從水合反應(yīng)的角度看,粉煤灰、GFS等硅鋁基廢棄物具有比水泥顆粒低的火山灰活性,在3D打印過程中能夠起到改善新拌物料的和易性、減少水合反應(yīng)產(chǎn)熱的作用[40,77],是促進(jìn)火山灰反應(yīng)的活化劑[78].在打印砂漿中使用硅鋁基廢棄物可以調(diào)節(jié)流變性和穩(wěn)定性,降低打印砂漿的成本,減少與生產(chǎn)OPC排放的CO2量.利用副產(chǎn)品或廢棄物作為混凝土中的替代膠凝材料,可通過在發(fā)展與環(huán)境之間建立平衡來提供更具可持續(xù)性的3D打印混凝土技術(shù).
農(nóng)林廢棄物是農(nóng)業(yè)林業(yè)生產(chǎn)加工過程中產(chǎn)生的一類副產(chǎn)品,具有數(shù)量大、可再生、可生物降解等特點(diǎn),目前傾向于成本低、處理速度快、技術(shù)要求低的處置方法[79].但農(nóng)林廢棄物往往含有特定的功能組分,具有一定成為各種功能材料的原材料源的潛力[80].針對(duì)農(nóng)林廢棄物的可降解性和木質(zhì)材料的特性,一般將農(nóng)林廢棄物經(jīng)一定前處理后粉碎至一定大小,利用選擇性激光燒結(jié)(SLS)或熔融沉積建模(FDM)的技術(shù)再塑[81-83].然而農(nóng)林廢棄物本身并沒有可塑性,一般作為復(fù)合材料如木塑復(fù)合材料的惰性天然源填料.廢棄物顆粒在聚合物基質(zhì)的分散粘結(jié)作用下能凝聚成一個(gè)整體.
近年來在生物可降解和相容性聚合物的合成方面的進(jìn)展使得農(nóng)林廢棄物-聚合物復(fù)合材料可以應(yīng)用在3D打印上[9-10,20-22].因此,本節(jié)主要闡述SLS和FDM技術(shù)如何利用農(nóng)林廢棄物以及廢棄物的添加對(duì)打印過程造成的影響.
一般情況下,與SLS技術(shù)相匹配的材料有:聚十二酰胺[83-85]、聚醚醚酮[86]、金屬[87]、陶瓷[88]等,但材料的范圍有限,可用的材料往往成本高昂[9].因此,近些年有學(xué)者嘗試?yán)棉r(nóng)林廢棄物開發(fā)出具有綠色環(huán)保、價(jià)格低廉、可生物降解的復(fù)合SLS打印材料[20].
農(nóng)林廢棄物SLS再生利用技術(shù)路線主要過程如圖1所示.與純基質(zhì)相比,制備出的農(nóng)林復(fù)合材料具有良好的機(jī)械強(qiáng)度、抗老化性能和尺寸穩(wěn)定性.Idriss等[21]利用牧豆樹木粉和聚醚砜粉末生產(chǎn)低成本、環(huán)保、高強(qiáng)度、優(yōu)異成形性的燒結(jié)零件,當(dāng)牧豆樹木粉添加量為10%時(shí)內(nèi)部孔的數(shù)量和尺寸較低,燒結(jié)頸較大;木粉分布均勻、不發(fā)生團(tuán)聚且能與聚醚砜形成穩(wěn)固的粘結(jié)界面.Yu等[20]選取了易粉碎、球型顆粒的核桃殼粉作為原料,在聚醚砜粉的粘結(jié)作用下制備出具有平坦、光滑和致密的層結(jié)構(gòu)的有機(jī)復(fù)合SLS燒結(jié)部件;當(dāng)激光功率為11W時(shí),聚醚砜能夠充分熔化并潤(rùn)濕核桃殼顆粒,兩者形成較大的連續(xù)相,使零件具有良好的強(qiáng)度.但是由于農(nóng)林廢棄物和SLS技術(shù)的特點(diǎn)所生產(chǎn)的燒結(jié)件內(nèi)部仍是多孔的、表面粗糙的,因此需要后期處理.經(jīng)后期蠟滲透處理后,孔被蠟填充,減少了粉末之間的空隙率,材料橫截面變得致密和均勻,機(jī)械性能得到顯著改善[21].牧豆樹-聚醚砜零件的抗彎強(qiáng)度和抗拉強(qiáng)度分別提高14.84%、15.99%[21].
圖1 SLS技術(shù)在農(nóng)林廢棄物3D打印中的應(yīng)用
利用低成本、環(huán)保、可持續(xù)的農(nóng)林廢棄物粉末與合適的聚合物粉末混合可作為SLS的原料,制備具有良好成型精度和力學(xué)性能的燒結(jié)件是可行的,一方面能擴(kuò)大SLS的應(yīng)用領(lǐng)域,解決材料的有限性和高成本問題;另一方面能夠改善傳統(tǒng)農(nóng)林廢棄物焚燒、堆肥等處理方式利用率低下的情況,將廢棄、低價(jià)值的物質(zhì)生產(chǎn)成具有高附加值的工業(yè)產(chǎn)品.目前農(nóng)林廢棄物復(fù)合SLS材料仍處于經(jīng)驗(yàn)式探索階段,并且由于不同種類、不同部位的農(nóng)林廢棄物粉末的結(jié)構(gòu)和性質(zhì)不同,在激光處理過程中與熔融態(tài)聚合物相互作用也存在不確定性,必須確定合適的復(fù)合粉末配比、直徑范圍和最佳工藝參數(shù),以確保生產(chǎn)高質(zhì)量的燒結(jié)零件;此外需要建立起完整有效的混合粉體質(zhì)量評(píng)估體系來預(yù)測(cè)混合粉體的燒結(jié)行為,優(yōu)化粉體的性能.
不同于SLS以激光作為燒結(jié)熱源而將粉末材料燒結(jié)成打印體, FDM是基于聚合物長(zhǎng)絲經(jīng)加熱噴槍融化后,平鋪至打印平板進(jìn)行打印.聚乳酸和丙烯腈-丁二烯-苯乙烯聚合物是FDM 3D打印技術(shù)最常見的商業(yè)化長(zhǎng)絲.為降低FDM可打印長(zhǎng)絲的成本、解決環(huán)境污染問題,有學(xué)者嘗試開發(fā)復(fù)合型打印長(zhǎng)絲,利用生物相容性、生物降解性、柔韌性和高斷裂伸長(zhǎng)率的聚合物與廢棄生物質(zhì)粉末共混制備復(fù)合打印長(zhǎng)絲[22].
農(nóng)林廢棄物FDM再生利用技術(shù)路線主要過程如圖2所示.利用FDM技術(shù)對(duì)農(nóng)林廢棄物進(jìn)行3D打印需要經(jīng)歷兩次塑性階段:(1)廢棄物經(jīng)過前處理后與基質(zhì)共混,后經(jīng)擠出機(jī)在一定熱場(chǎng)、壓力場(chǎng)下制造可打印復(fù)合長(zhǎng)絲;(2)復(fù)合長(zhǎng)絲經(jīng)FDM打印設(shè)備在高溫條件下熔融成混合流動(dòng)態(tài),伴隨料絲的送入,熔融態(tài)物料從噴嘴中擠出形成熔絲.為保證生物長(zhǎng)絲的結(jié)構(gòu)穩(wěn)定性和均勻性,廢棄物粉要能夠均勻地分布在基質(zhì)中,兩者之間沒有氣隙、裂紋或分離區(qū).Tran等[22]將微粉化的殼廢料(平均粒徑50μm)與聚己內(nèi)酯(PCL)基質(zhì)共混熱壓,利用可可殼的強(qiáng)抗氧化性能和生物降解性制造出具有特殊性能的復(fù)合生物打印長(zhǎng)絲.3D打印樣本顯示出清晰的結(jié)構(gòu),沉積層之間具有良好的粘附性和精細(xì)的分辨率.這種材料有可能用于家庭和生物醫(yī)學(xué)應(yīng)用.打印長(zhǎng)絲中的PCL與廢棄生物質(zhì)粉末之間并未建立化學(xué)作用,生物絲為簡(jiǎn)單的聚合物,能保持原純基質(zhì)的晶體結(jié)構(gòu)、熱特性和結(jié)晶度等參數(shù).但從現(xiàn)有的木塑產(chǎn)品的研究看[89],農(nóng)林廢棄物含有的木質(zhì)素等功能性組分為改善有機(jī)填料和聚合基質(zhì)之間的粘附力提供一定基礎(chǔ),可以通過添加馬來酸酐等增容劑以改善有機(jī)填料和聚合物基體之間的界面粘結(jié)性,進(jìn)而提供更良好的機(jī)械性能.因而可以基于木塑材料的研究基礎(chǔ),進(jìn)一步探索在3D打印過程中農(nóng)林廢棄物和增容劑經(jīng)歷兩次塑性階段后對(duì)復(fù)合材料的性能的影響.
圖2 FDM技術(shù)在農(nóng)林廢棄物3D打印中的應(yīng)用
為打印速度
在開發(fā)農(nóng)林廢棄物與聚合物基質(zhì)共混的FDM復(fù)合印刷長(zhǎng)絲工藝中,廢棄物顆粒作為復(fù)合材料的增強(qiáng)組分可改善組件的機(jī)械性能,降低因使用可生物降解的聚合物有關(guān)的成本,擴(kuò)展了3D打印應(yīng)用領(lǐng)域.此外用生物質(zhì)本身可能含有的特殊成分如黃酮類和多酚等,與基質(zhì)共混后可獲得具有高抗氧化性和生物降解性的特殊功能材料[90].但FDM打印機(jī)對(duì)復(fù)合材料的要求較高,廢棄物顆粒與基質(zhì)之間不能產(chǎn)生氣隙、裂縫或分離區(qū)域,并且在長(zhǎng)絲結(jié)構(gòu)內(nèi)不產(chǎn)生顆粒的結(jié)塊和聚集.但當(dāng)廢棄物添加量超過40%時(shí),農(nóng)林廢棄物堆積、堵塞打印機(jī)噴嘴,從而導(dǎo)致打印失敗[22].目前,農(nóng)林廢棄物/聚合物FDM打印技術(shù)與SLS技術(shù)類似,仍處于探索階段,但Tran等[22]能夠成功制備出具有良好的層粘合性、精細(xì)的分辨率和具有互連的通道網(wǎng)絡(luò)的可打印復(fù)合材料樣本,為開發(fā)新型環(huán)境友好型生物打印原材料提供了新的思路.
塑料在城市固體廢棄物中占相當(dāng)大的比例,以熱塑性聚合物的貢獻(xiàn)最大,其產(chǎn)生量約占所有合成聚合物的80%,主要來自包裝、容器以及紡織纖維的生產(chǎn)[91].由于常見的廢舊塑料管理方法如填埋和焚燒都會(huì)對(duì)環(huán)境產(chǎn)生負(fù)面影響,因此需要采用其他方法處理廢舊塑料.因此,如今廢舊塑料的回收利用正在迅速發(fā)展,由于熱塑性塑料的再加工性、熱固性塑料的支撐作用可以使其用于生產(chǎn)3D打印的聚合長(zhǎng)絲或者支撐材料[23,92].目前對(duì)新型、可持續(xù)的3D打印材料的需求一直在持續(xù)增長(zhǎng).打印長(zhǎng)絲的一種替代來源是回收的廢舊塑料制品,這是一種節(jié)約能源和維持環(huán)境的方法.
Ferrari等[23]利用聚對(duì)苯二甲酸乙二醇酯(PET)飲料瓶,經(jīng)過清潔、干燥、切割、破碎等前處理過程獲得PET粉,然后利用擠出機(jī)將其制備成可用于FDM可打印聚合物長(zhǎng)絲,并與商用PET打印長(zhǎng)絲對(duì)比.回收的塑料由于使用等方面的需求與商業(yè)打印塑料在生產(chǎn)工藝上存在差別,導(dǎo)致了兩者晶體結(jié)構(gòu)的不同,進(jìn)而影響了印刷長(zhǎng)絲性能.此外,Ferrari[23]還分析了PET粉在擠出機(jī)磨具出口處不同冷卻速度對(duì)打印線材結(jié)晶度的影響,發(fā)現(xiàn)經(jīng)快速冷卻的樣品具有更高的韌性,這一結(jié)果表明再生PET能夠在合適的加工條件下生成無定型態(tài)聚合物,改善了商用PET打印長(zhǎng)絲的脆性,使其更適宜用于3D打印. Incekara等[92]利用具有熱固性的廢棄聚氨酯,粉末化后作為支撐材料與熱塑性聚合物甲酸乙酯共熱,通過長(zhǎng)絲擠壓的方式獲得聚氨酯增強(qiáng)復(fù)合材料,該復(fù)合材料可用于FDM打印,并且在3D打印過程中表現(xiàn)出較好的靈活性.PET和聚氨酯的回收表明了部分廢舊塑料有可能成為3D打印長(zhǎng)絲的替代品.從技術(shù)的角度來看,廢舊塑料前處理基于物理切割和破碎過程,未添加或者添加少量對(duì)環(huán)境產(chǎn)生負(fù)面效應(yīng)的化學(xué)試劑;從經(jīng)濟(jì)的角度來看,回收塑料比商用塑料廉價(jià),成本低.但廢舊塑料物化性質(zhì)受原始加工條件、環(huán)境效應(yīng)和回收處理工藝的影響,不同種類的廢舊塑料再生后的結(jié)晶度也各有不同,這對(duì)其生產(chǎn)的打印長(zhǎng)絲的力學(xué)性能有很大的影響.同時(shí)廢舊塑料的回收再生并不是一個(gè)簡(jiǎn)單的過程,而是一個(gè)跨學(xué)科的實(shí)踐,必須考慮聚合物化學(xué)、物理、加工和制造工程[93].此外,FDM技術(shù)對(duì)廢舊塑料的性能要求較高,目前只采用了高強(qiáng)度、低密度、良好蠕變行為、高耐化學(xué)性的廢舊塑料,其循環(huán)使用過程中受加工過程和使用條件的影響重復(fù)使用率較低.因此,如何提高廢舊塑料用于制備FDM打印長(zhǎng)絲的普遍適用性和重復(fù)利用性是未來探索和研究的方向.
迄今關(guān)于金屬及其化合物材料的3D打印已經(jīng)有較多報(bào)道[94],一般使用的核心材料是球型金屬粉末,普遍為微米級(jí),粒度微分分布曲線均呈單峰,近似為正態(tài)分布[95].然而,昂貴的金屬粉末已成為限制金屬3D打印發(fā)展的一個(gè)重要因素.為了降低成本,有研究學(xué)者已經(jīng)提出了使用廢舊金屬來降低金屬3D打印成本的理念[24].目前,已有科研人員針對(duì)參與多次成型循環(huán)的3D打印金屬粉末進(jìn)行回收再處理,經(jīng)篩分-等離子處理-篩分-退火等過程完成回收金屬粉末的除雜、再生、均一化[96],使得粉末可以再次被用于3D打印,將原料的利用率提高到90%以上.然而目前仍缺少?gòu)慕饘偕a(chǎn)、加工、利用和回收過程中產(chǎn)生的廢舊金屬回收利用的案例.如金屬切割、打磨行業(yè)產(chǎn)生的廢舊金屬粉末是一類具有潛在利用價(jià)值的3D打印金屬打印的原料源.但是廢舊金屬粉末在產(chǎn)生、回收過程中不可避免地?fù)诫s一些與設(shè)計(jì)產(chǎn)品無關(guān)或產(chǎn)生有害影響的物質(zhì),如二氧化硅等,致使廢舊金屬粉末不能夠完全熔化而產(chǎn)生空隙,對(duì)機(jī)械性能(例如疲勞)產(chǎn)生重大的負(fù)面影響[97].此外在印刷過程中,高能束會(huì)與廢舊金屬粉末的相互作用產(chǎn)生一系列復(fù)雜的物理過程,包括粉末熔化、熔體動(dòng)態(tài)流動(dòng)和快速凝固[98],不可避免地產(chǎn)生熱傳導(dǎo)、表面擴(kuò)散和固液相變等組織轉(zhuǎn)化問題[97].大多數(shù)金屬結(jié)構(gòu)應(yīng)用要求各項(xiàng)同性, 但在印刷過程中由于廢舊金屬粉末會(huì)攜帶較多的雜質(zhì),導(dǎo)致金屬外延生長(zhǎng),生成具有各項(xiàng)異性的高度定向柱狀晶體[99-100].此外,以高能電子束或者激光束為基礎(chǔ)的金屬3D技術(shù)仍與社會(huì)和行業(yè)需求存在巨大差距.因此,廢舊金屬粉末3D技術(shù)作為最近引起公眾關(guān)注的一項(xiàng)新技術(shù),研究仍處于初級(jí)階段,許多基本信息尚未得到充分理解,需要開展更深層次的探究.
固體廢棄物用于3D打印是一種新興的固體廢棄物循環(huán)利用技術(shù),具有一定的可行性、有效性和先進(jìn)性.硅鋁基廢棄物、農(nóng)林廢棄物、廢舊塑料和廢舊金屬這4類廢棄物具有不同的性質(zhì),需要根據(jù)各自的特性,分別與不同類型的3D打印技術(shù)相匹配.硅鋁基廢棄物的水化反應(yīng)特性能應(yīng)用于3D混凝土打印[18-19,33-35,67];農(nóng)林廢棄物與聚合物的兼容性使其能夠適用于熔融沉積建模和選擇性激光燒結(jié)技術(shù)[20-22];廢舊塑料可以制備成打印長(zhǎng)絲或者打印長(zhǎng)絲支撐材料用于熔融沉積建?;蜻m用于選擇性激光燒結(jié)技術(shù)[23,91];廢舊金屬經(jīng)一系列類處理后可應(yīng)用至選擇性激光燒結(jié)技術(shù)中[24,95].利用固體廢棄物作為3D打印材料具有諸多優(yōu)勢(shì),主要體現(xiàn)在原料價(jià)格、處理成本、環(huán)境效益與優(yōu)惠政策等方面.該技術(shù)很少需要添加昂貴化學(xué)試劑,并且3D打印很少產(chǎn)生新的廢棄物,能夠提高固體廢棄物資源化利用效率;同時(shí)能降低3D打印原料的價(jià)格,充分發(fā)揮小規(guī)模、小批量設(shè)計(jì)生產(chǎn)的優(yōu)勢(shì).
近年來,3D打印技術(shù)在環(huán)境領(lǐng)域已經(jīng)取得了持續(xù)進(jìn)步.若干種廢棄物制備3D打印材料的技術(shù)可行性已經(jīng)得到證明,但是尚面臨著諸多問題和困難:(1)由于采用的原材料是各種廢棄物,在產(chǎn)品的設(shè)計(jì)、使用等方面受到許多限制;原料成分復(fù)雜,各組分物理化學(xué)性質(zhì)相互影響,在實(shí)際生產(chǎn)應(yīng)用中會(huì)產(chǎn)生不可預(yù)料的結(jié)果;(2)不同性質(zhì)的固體廢棄物受打印技術(shù)的影響很大,在打印過程中環(huán)境場(chǎng)會(huì)決定廢棄物的利用方式,如廢棄金屬粉體受高能電子束或激光的作用會(huì)與周圍的粒子發(fā)生融合;(3)產(chǎn)品由于成分混雜的原因,所制備的材料性能普遍下降,往往需要額外加入一些物質(zhì)改善材料的性能.因而為了提高固體廢棄物在3D打印中的利用率,制定3D打印相關(guān)標(biāo)準(zhǔn)明確3D打印的指標(biāo)和檢測(cè)標(biāo)準(zhǔn),必須進(jìn)一步探索固體廢棄物3D打印的作用機(jī)制,使其滿足3D打印的相關(guān)要求.目前,固體廢棄物用于3D打印領(lǐng)域整體尚處于研究和示范階段,其發(fā)展取決于3D打印技術(shù)的進(jìn)步、廢棄物本身與打印材料的兼容和成本的降低,如何走向工業(yè)化大規(guī)模應(yīng)用是今后的發(fā)展方向.固體廢棄物作為材料源使得3D打印的發(fā)展更清潔綠色化,更符合持續(xù)發(fā)展的要求和目標(biāo).在國(guó)家推行綠色環(huán)保和發(fā)展3D打印技術(shù)的趨勢(shì)下,將會(huì)有更多種類的廢棄物應(yīng)用于3D打印產(chǎn)品之中.在固體廢棄物3D打印的產(chǎn)業(yè)路徑中,3D打印技術(shù)將起至關(guān)重要的作用:打印技術(shù)的研究和開發(fā)能擴(kuò)展固廢的應(yīng)用范圍,提高其在固體廢棄物資源循環(huán)中應(yīng)用的可行性.固體廢棄物用于3D打印的產(chǎn)品也應(yīng)該在技術(shù)設(shè)備發(fā)展的基礎(chǔ)上向著多樣化和功能化方向發(fā)展,在現(xiàn)有建筑設(shè)計(jì)、小批量設(shè)計(jì)和制造等領(lǐng)域應(yīng)用的基礎(chǔ)上,還將適用于功能材料、服裝設(shè)計(jì)、教學(xué)研究等領(lǐng)域.其次,金屬材料、復(fù)合材料、膠凝材料等方面的發(fā)展是影響3D打印技術(shù)的發(fā)展的關(guān)鍵因素之一.打印材料的發(fā)展和打印性能標(biāo)準(zhǔn)的制定有利于廢棄物打印產(chǎn)品市場(chǎng)的規(guī)范和完善,以期獲得更大的發(fā)展空間.今后應(yīng)當(dāng)根據(jù)建筑業(yè)、制造業(yè)和汽車行業(yè)等下游行業(yè)的需求,結(jié)合礦產(chǎn)、農(nóng)林和金屬制造加工等行業(yè)產(chǎn)生的廢棄物的性質(zhì),完善生態(tài)體系建設(shè),形成回收、分選、加工、制造和利用完整的固體廢棄物資源循環(huán)利用體系,開發(fā)價(jià)格低廉的適用性功能材料,實(shí)現(xiàn)廢棄物3D打印的真正產(chǎn)業(yè)化.
[1] Kietzmann J, Pitt L, Berthon P. Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing [J]. Business Horizons, 2015,58(2):209-215.
[2] Wong K V, Hernandez A. A review of additive manufacturing [J]. Isrn Mechanical Engineering, 2012,2012:30-38.
[3] 朱艷青,史繼富,王雷雷,等.3D打印技術(shù)發(fā)展現(xiàn)狀 [J]. 制造技術(shù)與機(jī)床, 2015,(12):50-57. Zhu Y Q, Shi J F, Wang L L, et al. Current status of the three - dimensional printing technology [J]. Manufacturing Technology & Machine Tool, 2015,(12):50-57.
[4] Zhang D, Chi B, Li B, et al. Fabrication of highly conductive graphene flexible circuits by 3D printing [J]. Synthetic Metals, 2016,217:79-86.
[5] Kolarevic B. Digital fabrication manufacturing architecture in the information age [J]. Modeling and Fabrication, 2001,20:268-278.
[6] Voon S L, An J, Wong G, et al. 3D food printing: a categorised review of inks and their development [J]. Virtual and Physical Prototyping, 2019,14(3):203-218.
[7] Chia H N, Wu B M. Recent advances in 3D printing of biomaterials [J]. Journal of Biological Engineering, 2015,9(4):1-14.
[8] Sakin M, Kiroglu Y C. 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM [J]. Energy Procedia, 2017,134:702-711.
[9] 陳碩平,易和平,羅志虹,等.高分子3D打印材料和打印工藝 [J]. 材料導(dǎo)報(bào), 2016,30(7):54-59. Chen S P, Ying H P, Luo Z H, et al. The 3DPrinting Polymers and Their Printing Technologies [J]. Materials Reports, 2016,30(7):54-59.
[10] Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals [J]. Rapid Prototyping Journal, 1995,1(1):26-36.
[11] Manapat J Z, Chen Q, Ye P, et al. 3D printing of polymer nanocomposites via stereolithography [J]. Macromolecular Materials and Engineering, 2017,302(9):1-16.
[12] 張學(xué)軍,唐思熠,肇恒躍,等.3D打印技術(shù)研究現(xiàn)狀和關(guān)鍵技術(shù) [J]. 材料工程, 2016,44(2):122-128. Zhang X J, Tang S Y, Zhao H Y, et al. Research Status and Key Technologies of 3D Printing [J]. Journal of Materials Engineering, 2016,44(2):122-128.
[13] De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete-Technical, economic and environmental potentials [J]. Cement and Concrete Research, 2018,112:25-36.
[14] 張以河,胡 攀,張 娜,等.鐵礦廢石及尾礦資源綜合利用與綠色礦山建設(shè) [J]. 資源與產(chǎn)業(yè), 2019,21(3):1-13. Zhang Y H, Hu P, Zhang N, et al. Comprehensive use of iron ore wastes and tailings and green mine construction [J]. Resources & Industries, 2019,21(3):1-13.
[15] 湯桂蘭,胡 彪,康在龍,等.廢舊塑料回收利用現(xiàn)狀及問題[J]. 再生資源與循環(huán)經(jīng)濟(jì), 2013,6(1):31-35. Tang G L, Hu B, Kang Z L, et al. Current status and problems on waste plastic recycling [J]. Recyclable Resources and Circular Economy, 2013,6(1):31-35.
[16] 王金武,唐 漢,王金峰.東北地區(qū)作物秸稈資源綜合利用現(xiàn)狀與發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017,48(5):1-21. Wang J L, Tang H, Wang J F. Comprehensive Utilization Status and Development Analysis of Crop Straw Resource in Northeast China [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(5):1-21.
[17] 薛亞洲,范繼濤,王雪峰,等.北京等六省(市)礦山固廢綜合利用的思考 [J]. 中國(guó)國(guó)土資源經(jīng)濟(jì), 2018,31(1):19-23. Xue Y Z, Fang J T, Wang X F, et al. Thought on Comprehensive Utilization of Solid Wastes in Mines of Six Provinces (Cities) like Beijing in China [J]. Natural Resource Economics of China, 2018, 31(1):19-23.
[18] Le T T, Austin S A, Lim S, et al. Hardened properties of high- performance printing concrete [J]. Cement and Concrete Research, 2012,42(3):558-566.
[19] Panda B, Ruan S, Unluer C, et al.Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay [J]. Composites Part B: Engineering, 2019,165:75-83.
[20] Yu Y, Guo Y, Jiang T, et al. Laser sintering and post-processing of a walnut shell/Co-PES composite [J]. RSC Advances, 2017,7(37): 23176-23181.
[21] Idriss A I B, Li J, Wang Y, et al. Selective Laser Sintering (SLS) and Post-Processing of Prosopis Chilensis/Polyethersulfone Composite (PCPC) [J]. Materials, 2020,13(13):1-14.
[22] Tran T N, Bayer I S, Heredia-Guerrero J A, et.al Cocoa shell waste biofilaments for 3D Printing applications [J]. Macromolecular Materials and Engineering, 2017,302(11):10-20.
[23] Ferrari F, Esposito Corcione C, Montagna F, et al. 3D Printing of polymer waste for improving people's awareness about marine litter [J]. Polymers, 2021,12(8):1-14.
[24] Kim H, Lee S. Printability and physical properties of iron slag powder composites using material extrusion-based 3D printing [J]. Journal of Iron and Steel Research International, 2021,28(1):111–121.
[25] Hu W, Nie Q, Huang B, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes [J]. Journal of Cleaner Production, 2018,186:799-806.
[26] Hu W, Nie Q, Huang B, et al. Investigation of the strength development of cast-in-place geopolymer piles with heating systems [J]. Journal of Cleaner Production, 2019,215:1481-1489.
[27] Roussel N. Rheological requirements for printable concretes [J]. Cement and Concrete Research, 2018,112:76-85.
[28] Panda B, Chandra Paul S, Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material [J]. Materials Letters, 2017,209:146-149.
[29] Panda B, Unluer C, Tan M J. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing [J]. Composites Part B: Engineering, 2019,176:1-9.
[30] Khalil N, Aouad G, El Cheikh K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars [J]. Construction and Building Materials, 2017,157:382-391.
[31] 周 偉,米 紅.中國(guó)能源消費(fèi)排放的CO2測(cè)算[J]. 中國(guó)環(huán)境科學(xué), 2010,30(8):1142-1148. Zhou W, Mi H. Calculation on enery-related CO2emissions in China [J].China Environmental Science, 2010,30(8):1142-1148.
[32] 勞德平,丁書強(qiáng),倪 文,等.響應(yīng)面優(yōu)化制備粉煤灰基PASC混凝劑性能與表征[J]. 中國(guó)環(huán)境科學(xué), 2018,38(12):4599-4607. LAO D P DING S Q NI W et al. Response surface method optimization of preparation fly ash based polysilicate aluminum chloride coagulant: performance and microstructure characterization [J].China Environmental Science, 2018,38(12):4599-4607.
[33] 姚志通.固體廢棄物粉煤灰的資源化利用 [D]. 杭州:浙江大學(xué), 2010. Yao Z T. The resource utilization of solid waste coal fly ash [D]. Hangzhou: Zhejiang University, 2007.
[34] Herath C, Gunasekara C, Law D W, et al. Performance of high volume fly ash concrete incorporating additives: A systematic literature review [J]. Construction and Building Materials, 2020,258:1-13.
[35] Panda B, Tay Y W D, Paul S C, et al. Current challenges and future potential of 3D concrete printing [J]. Materialwissenschaft und Werkstofftechnik, 2018,49(5):666-673.
[36] Long W J, Tao J L, Lin C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing [J]. Journal of Cleaner Production, 2019, 239:118054-118067.
[37] Laskar A I, Talukdar S. Rheological behavior of high performance concrete with mineral admixtures and their blending [J]. Construction and Building Materials, 2008,22(12):2345-2354.
[38] Jalal M, Fathi M, Farzad M. Effects of fly ash and TiO2nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete [J]. Mechanics of Materials, 2013,61:11-27.
[39] Bentz D P, Ferraris C F, Galler M A, et al. Influence of particle size distributions on yield stress and viscosity of cement-fly ash pastes [J]. Cement and Concrete Research, 2012,42(2):404-409.
[40] Jiao D, Shi C, Yuan Q, et al. Effect of constituents on rheological properties of fresh concrete-A review [J]. Cement and Concrete Composites, 2017,83:146-159.
[41] Li Y, Chen B. Factors that affect the properties of magnesium phosphate cement [J]. Construction and Building Materials, 2013, 47:977-983.
[42] Xu B, Ma H, Shao H, et al. Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars [J]. Cement and Concrete Research, 2017,99:86-94.
[43] Alal M, Mansouri E. Effects of fly ash and cement content on rheological, mechanical, and transport properties of high-performance self-compacting concrete [J]. Science and Engineering of Composite Materials, 2012,19(4):393-405.
[44] Panda B, Tan M J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing [J]. Ceramics International, 2018,44(9):10258-10265.
[45] Weng Y, Ruan S, Li M, et al. Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing [J]. Construction and Building Materials, 2019,221:595-603.
[46] Gosselin C, Duballet R, Roux P, et al. Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders [J]. Materials & Design, 2016,100:102-109.
[47] Khoshnevis B. Automated construction by contour crafting—related robotics and information technologies [J]. Automation in Construction, 2004,13(1):5-19.
[48] Hanif A, Lu Z, Li Z. Utilization of fly ash cenosphere as lightweight filler in cement-based composites - A review [J]. Construction and Building Materials, 2017,144:373-384.
[49] Hanif A, Lu Z, Diao S, et al. Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers [J]. Construction and Building Materials, 2017,140:139-149.
[50] Lu B, Qian Y, Li M, et al. Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent [J]. Construction and Building Materials, 2019,211:1073-1084.
[51] Pal S C, Mukherjee A, Pathak S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete [J]. Cement and Concrete Research, 2003,33(9):1481-1486.
[52] Pal S C, Mukherjee A, Pathak S R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete [J]. Cement and Concrete Research, 2003,33(9):1481-1486.
[53] Park C K, Noh M H, Park T H, Rheological properties of cementitious materials containing mineral admixtures [J]. Cement and Concrete Research, 2005,35(5):842-849.
[54] Jiang H, Fall M, Yilmaz E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy [J]. Powder Technology, 2020,372:258- 266.
[55] Panda B, Ruan S, Unluer C, et al. Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing [J]. Composites Part B: Engineering, 2020,186:107826-1078313.
[56] Nath P, Sarker P K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition [J]. Construction and Building Materials, 2014,66:163-171.
[57] Garcia Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O [J]. Cement and Concrete Research, 2011,41(9):923-931.
[58] Gr?fe M, Power G, Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry [J]. Hydrometallurgy, 2011,108(1/2):60-79.
[59] Power G, Gr?fe M, Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices [J]. Hydrometallurgy, 2011,108(1/2):33-45.
[60] Ruyters S, Mertens J, Vassilieva E, et al. The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil [J]. Environmental Science & Technology, 2011, 45(4):1616-1622.
[61] Bayat A, Hassani A, Yousefi A A. Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar [J]. Construction and Building Materials, 2018,167:775-790.
[62] Reddy P S, Reddy N G, Serjun V Z, et al. Properties and assessment of applications of red mud (bauxite residue): Current status and research needs [J]. Waste and Biomass Valorization, 2020,12(3):1185-1217.
[63] Ribeiro D V, Silva A S, Labrincha J A, et al. Rheological properties and hydration behavior of portland cement mortars containing calcined red mud [J]. Canadian Journal of Civil Engineering, 2013,40(6):557- 566.
[64] Senff L, Hotza D, Labrincha J A. Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars [J]. Construction and Building Materials, 2011,25(1):163-170.
[65] 裴德健.利用冶金渣制備硅鈣基多元體系陶瓷的機(jī)理及應(yīng)用研究[D]. 北京:北京科技大學(xué), 2019. Pei D J. Study on the mechanism and application of Si-Ca multielement ceramics prepared from metallurgical slags [D]. University of Science and Technology Beijing, 2019.
[66] 蘆令超,陳明旭,李來波,等.一種赤泥3D打印堿激發(fā)膠凝材料及其使用方法:中國(guó), 109721298A [P]. 2019-10-15. Lu L C, Chen M X, Li LB, et al. A kind of red mud 3D printing alkali-activated gelling material and Instructions: China, 109721298A [P]. 2019.
[67] 賀深陽(yáng),蔣述興,汪文凌.我國(guó)赤泥建材資源化研究進(jìn)展 [J]. 輕金屬, 2007,(12):1-5. He S Y, Jiang S X, Wang W L.Research progress of utilizing red mud as resource of building material in China [J]. Light Metals, 2007, (12):1-5.
[68] Rahman M K, Baluch M H, Malik M A. Thixotropic behavior of self compacting concrete with different mineral admixtures [J]. Construction and Building Materials, 2014,50:710-717.
[69] Ahari R S, Erdem T K, Ramyar K. Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials [J]. Cement and Concrete Composites, 2015,59:26-37.
[70] Baghabra Al-Amoudi O S, Maslehuddin M, Abiola T O. Effect of type and dosage of silica fume on plastic shrinkage in concrete exposed to hot weather [J]. Construction and Building Materials, 2004,18(10): 737-743.
[71] Cohen M D, Olek J, Dolch W L. Mechanism of plastic shrinkage cracking in portland cement and portland cement-silica fume paste and mortar [J]. Cement and Concrete Research, 1990,20(1):103-119.
[72] Tadros T F. Surface and colloid chemistry in advanced ceramics processing [J]. Advances in Colloid and Interface Science, 1995, 61:192–193.
[73] Senff L, Labrincha J A, Ferreira V M, et al. Effect of nano-silica on rheology and fresh properties of cement pastes and mortars [J]. Construction and Building Materials, 2009,23(7):2487-2491.
[74] Kruger J, Zeranka S, Van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete [J]. Construction and Building Materials, 2019,224:372-386.
[75] Cheah C B, Samsudin M H, Ramli M, et al. The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: A complete microstructural and mechanical characterization [J]. Journal of Cleaner Production, 2017, 156:114-123.
[76] Deb P S, Nath P, Sarker P K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature [J]. Materials & Design (1980~2015), 2014, 62:32-39.
[77] Walling S A, Provis J L. Magnesia-based cements: A journey of 150years, and cements for the future? [J]. Chemical Reviews, 2016, 116(7):4170-204.
[78] Jo B W, Kim C H, Tae G H, et al. Characteristics of cement mortar with nano-SiO2particles [J]. Construction and Building Materials, 2007,21(6):1351-1355.
[79] 田 赟,王海燕,孫向陽(yáng),等.農(nóng)林廢棄物環(huán)保型基質(zhì)再利用研究進(jìn)展與展望 [J]. 土壤通報(bào), 2011.42(2):497-502. Tian Y, Wang H Y, Sun X Y, et al. The Progress and Prospects of Agricultural and Forest Residue Substrate [J]. Chinese Journal of Soil Science, 2011,42(2):497-502.
[80] Muizniecea I, Dace E, Blumberga D. Dynamic modeling of the environmental and economic aspects of bio-resources from agricultural and forestry wastes [J]. Procedia Earth and Planetary Science, 2015,15:806-812.
[81] Dhinakaran V, Manoj Kumar K P, Bupathi Ram P M, et al. A review on recent advancements in fused deposition modeling [J]. Materials Today: Proceedings, 2020,27:752-756.
[82] Chen Z W, Li Z Y, Li J J, et al. 3D printing of ceramics: A review [J]. Journal of the European Ceramic Society, 2019,39(4):661-687.
[83] Vyavahare S, Teraiya S, Panghal D, et al. Fused deposition modelling: a review [J]. Rapid Prototyping Journal, 2020,26(1):176-201.
[84] Hague R, D’costa G, Dickens P M. Structural design and resin drainage characteristics of QuickCast 2.0 [J]. Rapid Prototyping Journal, 2001,7(2):66-73.
[85] Childs T H C, Berzins M, Ryder G R, et al. Selective laser sintering of an amorphous polymer-simulations and experiments [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005,213(4):333-349.
[86] Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK [J]. CIRP Annals, 2007,56(1):205-208.
[87] Salman O O, Brenne F, Niendorf T, et al. Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting [J]. Journal of Manufacturing Processes, 2019,45:255-261.
[88] Qian B, Shen Z. Laser sintering of ceramics [J]. Journal of Asian Ceramic Societies, 2018,1(4):315-321.
[89] Nitz H, Semke H, Landers R, et al. Reactive extrusion of polycaprolactone compounds containing wood flour and lignin [J]. Journal of Applied Polymer science, 2010,81(8):1972-1984.
[90] Tran T N, Heredia-Guerrero J A, Mai B T, et al. Bioelastomers based on cocoa shell waste with antioxidant ability [J]. Advanced Sustainable Systems, 2017,1(7):1-11.
[91] Mourshed M, Masud M H, Rashid F, et al. Towards the effective plastic waste management in Bangladesh: a review [J]. Environmental Science and Pollution Research, 2017,24(35):27021-27046.
[92] Incekara E. Composite material used to produce a filament as raw material of an object to be configured with specific FDM type dimensioned printer contains at least thermoplastic polymer and waste polyurethane reinforced of thermoset feature: WO2020142031-A2 [P]. 2020-07-09.
[93] 耿曉夢(mèng),趙由才,夏 旻,等.存余垃圾中廢舊塑料性能演變及資源轉(zhuǎn)化探討 [J]. 中國(guó)環(huán)境科學(xué), 2021,41(1):273-278. Geng X M, Zhao Y C, Xia Y, et al. Characteristics variation and reutilization technology of waste plastics in aged refuse [J].China Environmental Science,2021,41(1):273-278.
[94] Schj?tt-Pedersen N, Welo T, Ringen G, et al. Using set-based design for developing a 3D metal forming process [J]. Procedia CIRP, 2019,84:149-154.
[95] 耿澤昊.金屬拋光粉塵濕法處理系統(tǒng)的開發(fā)與試驗(yàn)研究[D]. 鎮(zhèn)江:江蘇大學(xué), 2018. Geng Z H. Design & Experiment Investigation on Metal Burnishing Dust Wet Removal System [D]. Zhenjiang: Jiangsu University, 2018.
[96] Song M, Zhang X, Zhang Y, et al. Performing a regeneration method for 3D printing to recycle metal powder involves collecting and sieving waste metal powder in a vacuum or atmosphere protection environment, and sieving recycled metal powder to remove large particles: CN210786616-U [P]. 2020-06-23.
[97] Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components – Process, structure and properties [J]. Progress in Materials Science, 2018,92:112-224.
[98] Matthews M J, Guss G, Khairallah S A, et al. Denudation of metal powder layers in laser powder bed fusion processes [J]. Acta Materialia, 2016,114:33-42.
[99] 段宣政,趙 菲,王淑丹,等.國(guó)內(nèi)外金屬3D打印材料現(xiàn)狀與發(fā)展[J]. 焊接, 2020,(2):49-55,68. Duan X Z, Zhao F, Wang S D, et al. Current situation and development of 3D printing materials for metal at home and abroad [J]. Welding & Joining, 2020,(2):49-55,68.
[100]Basak A, Das S. Epitaxy and microstructure evolution in metal additive manufacturing [J]. Annual Review of Materials Research, 2016,46(1):125-149.
Application of 3D printing technology in the resource recycling of solid wastes.
ZHANG Wan-bing1,2, ZHANG Fu-shen1,2,3*
(1.Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China)., 2021,41(5):2299~2310
Printing material is the bottleneck problem limiting the development and industrial application of 3D printing technology. Thus far, it had been found that some solid wastes had high compatibility with 3D printing, which could be used to prepare 3D printing material. This paper reviewed four types of solid wastes which could be applied in 3D printing, including Si-Al based waste, agricultural and forestry waste, plastic waste and scrap metals. The methods of preparing 3D printing materials from these four types of wastes and the influence of wastes additions on the original printing materials were discussed emphatically. Meanwhile, the problems needed to be solved in the preparation of 3D printing materials from wastes were analyzed, and the development prospects of waste-based 3D printing materials was also articulated.
3D printing;Si-Al based waste;agricultural and forestry waste;plastic waste;metal scraps;green recycling of resource
X705
A 文章標(biāo)號(hào):1000-6923(2021)05-2299-12
張婉冰(1996-),女,河南商丘人,中國(guó)科學(xué)院生態(tài)環(huán)境研究中心碩士研究生,主要從事固體廢棄物資源化研究.
2020-10-28
國(guó)家自然科學(xué)基金資助項(xiàng)目(51778606);中國(guó)科學(xué)院綠色過程制造創(chuàng)新研究院自主部署聯(lián)合基金項(xiàng)目(IAGM2020C23);2020中央引導(dǎo)地方科技發(fā)展基金項(xiàng)目(2020ZY0032)
* 責(zé)任作者, 研究員, fszhang@rcees.ac.cn