• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam–Berry metasurfaces*

    2021-05-24 02:23:44WenyuLi李文宇GuozhongZhao趙國忠TianhuaMeng孟田華RanSun孫然andJiaoyanGuo郭姣艷
    Chinese Physics B 2021年5期
    關(guān)鍵詞:趙國

    Wenyu Li(李文宇), Guozhong Zhao(趙國忠), Tianhua Meng(孟田華), Ran Sun(孫然), and Jiaoyan Guo(郭姣艷)

    1Department of Physics,Capital Normal University,Beijing Key Laboratory for THz Spectroscopy and Imaging,Key Laboratory of THz Optoelectronics,Ministry of Education,Beijing 100048,China

    2Institute of Solid State Physics,Shanxi Datong University,Datong 037009,China

    Keywords: metasurface,terahertz vortex beam,Pancharatnam–Berry phase element,conversion efficiency

    1. Introduction

    The angular momentum consists of two parts: spin angular momentum (SAM) related to polarization states, and orbital angular momentum (OAM) relevant to phase distributions of the optical field.[1,2]The SAM represents the spin feature of photons, while the OAM indicates the orbital rotation of photons.[3,4]Vortex beams,which have helical wavefronts and orbital angular momentums,are being given extensive attention.[5–8]A vortex beam has a spiral phase structure exp(il?),where l is the topological charge and ? is the angular coordinate.[9,10]OAM vortex beams have a large number of applications in different fields, such as the communication system,[11,12]optical micro-manipulation,[13]super resolution imaging[14]and so on,due to their distinctive properties.

    Meanwhile, researchers have paid close attention to generating OAM vortex beams. The conventional methods for generating vortex beams involve mainly spiral phase plates,[15]computer generated holograms,[16]and so on.However, these means are all based on the accumulated optical path, and hence the device designed may suffer from a bulky shape.[17]It is worth mentioning that the vortex phase plates(VPPs)based on metasurfaces can provide phasediscontinuities to control and manipulate the propagation of electromagnetic waves.[18–23]The metasurfaces can provide abrupt phase changes based on two classifications. The first is based on the resonance of designed scatters,[20–22]and the second utilizes Pancharatnam–Berry(P-B)phase elements.[23–27]The majority of recent vortex beam generators use these two methods. In 2017,Luo et al.[26]designed ultra-thin P-B metasurfaces with a thickness of approximately λ/8,which added effective magnetic responses and could generate vortex beams with high efficiency. The unit cell is composed of three metallic structures separated by two dielectric spacers. In 2019,Li et al.[27]proposed a vortex beam generator based on reflective P-B metasurfaces in THz, and the unit cell consisted of a metal-dielectric-metal three-layer structure. The efficiency was 86% in a frequency range of 0.8–1.4 THz. In 2019,Tang et al.[24]used multiple plasmon resonances to increase the efficiency significantly. The high amplitude of transmission and similar slopes of phase responses in a broad bandwidth could be controlled by the open angle and rotation angle of unit cells, respectively. Despite the generation of vortex beams using metasurfaces,these vortex generators have a complex and multilayer structure, as well as integration difficulties. Moreover, some generators work in the reflective direction,which is not fit for practical applications. A singlelayer metasurface with a thickness of about 0.001λ is designed in this study,which is easier to fabricate and integrate. In addition, the phase covering 2π could be achieved only by adjusting the rotation angle of the unit cell, which replaces the tedious design proposed in other reports.

    In this paper,ultra-thin metasurfaces are used to generate THz OAM vortex beams. The OAM with various topological charges of l is realized using the P-B phase element, and the maximal cross-polarization conversion efficiency could approach the theoretical limit in whole working broadband. At the same time, the propagation behavior of the emerged THz vortex beam is analyzed in detail.The results demonstrate that this proposed method could generate an arbitrary value of THz vortex beam; at the same time the beam shows stable propagation characteristics and keeps a high fidelity over a broad frequency range.

    2. Theoretical analysis

    The proposed metasurfaces are made of a series of unit cells arranged regularly. To obtain the required phase distributions and maintain constant amplitudes,it is necessary to modify the wavefront by rotating unit cells. The unit cells,that is,P-B phase elements, can be designed for the THz functional components. The designed metasurface is shown in Fig.1(a).The transmission matrix of the unit cell in the xy coordinate system is represented by Jones calculus,which can be written as[28,29]

    Equation(3)demonstrates that the transmitted field from a PB metasurface consists of two polarization cases. The Eco-polexpresses that the polarization state is the same as the original incident wave. The Ecross-polpossesses inverse handedness and a phase shift of ±2θ, where the sign ‘±’ corresponds to the chirality of the incident beam.[31]This attached phase is called the P-B phase, which is a spin-dependent geometrical phase.[28–31]By rotating the P-B phase elements,the required phase changes of the converted beam can be easily achieved and cover the range of 0–2π;meanwhile,the transmission coefficients can be constant.

    The proposed transmission ultra-thin vortex phase metasurface with q=1/2 and the unit cell are depicted in Figs.1(a)and 1(b),respectively. q is the space rotation rate and is equal to dθ/d?; it can be an integer or a half integer. Meanwhile,q is also called the topological charge of the metasurface and means the amount of rotation of the unit cells for a full coordinate rotation.[3]However,different from q,l is the topological charge of the vortex beam and can take any positive or negative integer value. Each unit cell consists of a gold metallic layer and polyimide substrate. The thicknesses t1of metal in the unit cell is 0.2μm,equivalent to about 0.001λ. The polyimide has a thickness t2of 50μm,and the permittivity is 3.5.The parameters of the structure are marked in Fig.1(b).

    Fig.1. Geometry outlines of the designed metasurface and the corresponding unit cell. (a) Profile of the VPP (q=1/2), (b) dimensions of the unit cell, p=90μm,a=58μm,and w=11μm;θ shows the rotation angle of the unit cell.

    Furthermore,the electromagnetic performance of the proposed unit cell was numerically simulated using CST Microwave Studio. Figure 2(a)shows simulated linear transmission coefficients. At the frequency of 1.2–1.9 THz,for the ypolarized incident wave, the transmission coefficient remains at nearly 0.9, while the transmission of the x-polarized incidence is much lower.The surface current distributions are simulated to explore the physical mechanism of the designed unit cell at two resonance frequencies of 0.76 THz and 1.58 THz.Figure 2(b) shows the resonance frequency of 1.58 THz for an x-polarized incident wave, and figure 2(c)shows the resonance frequency of 0.76 THz for a y-polarized incident wave.As shown in Fig.2(b),surface currents on the upper and lower metal strips are all parallel to the x-polarized incident wave.Therefore,electric dipole resonances are induced at 1.58 THz and txxis relatively low near this resonant frequency.However,two obvious circular oscillations are formed on the surface of the unit cell,as shown in Fig.2(c). The finding indicates that the strong L-C resonance occurs at the low-frequency resonant absorption peak of 0.76 THz for the y-polarized incident wave. Furthermore, figure 2(d) indicates that Ecross-poland Eco-polhave nearly identical transmission coefficients in the frequency of 1.2–1.9 THz under LCP incidence. In this case,the transmission coefficients for Ecross-polare equal to 0.48,and the transmission efficiency is 23%in the operational band,which can nearly approach the theoretical limit of 25% in a single layer structure.[31]Figures 2(e)and 2(f)show transmission characteristics of a unit cell under different rotating angles θ. As illustrated in Fig.2(e),the amplitudes are all consistent under the LCP incident in 1.2–1.9 THz,and transmission coefficients are virtually independent on the rotating angles of the unit cell. Figure 2(f) shows that the phase spectral lines with different rotation angles are mutually parallel,and phase changes are distinctly equal to twice the rotation angle. Meanwhile, some resonance peaks emerge and the corresponding phase changes irregularly due to high-order resonance at high frequency, as shown in Figs. 2(e) and 2(f). However, these are not in the operating frequency band. Arbitrary phase changes could be achieved using the proposed P-B phase elements with different rotation angles; at the same time, the conversion efficiency of the cross-polarization portion could be fairly high. Due to the P-B phase possessing polarizationdependent properties, such transmission VPPs also naturally exhibit polarization-dependency. Therefore,the rotational direction of the transmission wavefront can be interchangeable using the same VPP by changing the chirality of the incident wave.

    Fig. 2. Transmission characteristics and surface current distributions of the unit cell. (a) Transmission coefficients under a linear-polarized beam.(b)Surface current distributions caused by an x-polarized wave at 1.58 THz.(c) Surface current distributions caused by a y-polarized wave at 0.76 THz.(d) Transmission coefficients from LCP incidence when θ =0°. Transmission coefficients (e) and the phase (f) of cross-polarized waves under LCP incidence with varying rotation angles.

    In order to further illustrate the forecasts of Eq. (3), we analyze the phase modifications of Ecross-poland Eco-poltransmitted waves, with different orientation angles of unit cells,and the consequences are shown in Fig. 3. For the Eco-poltransmitted component,the phase is always kept constant with varying rotating angles of unit cells. On the contrary, for the cross-pol transmitted component, the phase change shows a clear linear relationship and the value is twice as much as the rotation angle. These results respond to the theoretical analysis of Eq. (3). In other words, the expected local phase variation could be easy tailored using unit cells with different angles.

    Fig.3. The phase variation of the Ecross-pol and Eco-pol transmitted components,as a function of the orientation angles of the unit cells,as well as the corresponding unit cells.

    After finding the suitable unit cell, we now design the metasurfaces used with the unit cells. Metasurfaces with different topological charges of 1/2,1,3/2,2 and 5/2 are designed and the top views of metasurfaces are illustrated in Figs.1(a)and 4. Each metasurface includes two circular arrays. The radius of the inner ring is R1q=180 μm, and the outer ring is R2q=280 μm, q=1/2,1,3/2 and 2. In addition, q=5/2,R1q=280μm and R2q=380μm. The geometric dimensions of the unit cells are the same as the aforementioned single one,as shown in Fig.1(b).

    Fig.4.Spatial arrangement of unit cells of different VPPs with four different topological charges.

    3. Results and discussion

    The magnitude and phase distributions of crosspolarization transmission waves from the proposed VPPs are numerically investigated using CST Microwave Studio,where open boundaries in the x and y directions are applied. The circularly polarized(LCP and RCP)Gaussian beams are illuminated on the front of the metasurfaces, and a field monitor is set at Z=?800μm to record the transmitted electric field.The results are shown in Fig. 5. As shown in the figure, the emerging cross-polarization beams all appear as a dark spot at the origin, because of the phase singularity at the beam center, and the light intensity is distributed only on the ring.However, the amplitude distributions are not uniform probably because the arrangement is not very compact and even.Such defects could be improved by changing the number of unit cells in each ring and the number of rings on the metasurface.This is actually to reduce the interval of phase change.At the same time,the adjacent phase gradient of the metasurfaces increases, and the size of singular points also becomes more and more obvious as the topological charge increases. While comparing the phase profiles(b)and(d),it is observed that the phase changes by|l·2π|around the origin with both LCP and RCP incidence and the value is also equal to twice the topological charge of the metasurfaces, that is, l·2π =±2q·2π.However, changing the input polarization state from LCP to RCP does not change the magnitude profile, but reverses the twist directions of the phase profile. That is to say, the sign of the topological charge reverses, while the number of spirals remains unchanged. These results are consistent with the previous analysis,with the sign of l relying on the chirality of the incident wave. Furthermore, the twist direction of wavefronts is inverse using the same metasurface by transforming the handedness of the incident wave, implying that this unit cell possesses birefringent properties. In our work, the spinorbit interaction is the reason of production of OAM at the phase of the vortex beam.[4]Besides, this method could be used to generate THz vortex beams with higher topological charges.

    As discussed in Eq.(3),the transmitted field has two components: the crosspolarization component energy is 25% of the total energy of incident,which is the theoretical limit value of the crosspolarization conversion efficiency of a single-layer metasurface,[31]while the remaining 25% energy maintains the polarization state of incident wave. For this part of energy, phase changes cannot be introduced, so there is no vortex characteristic. In our work, the conversion efficiency of the unit cell is around 23%, while the efficiency of VPPs we proposed are about 10%. Actually, although the arrangement of two concentric rings can generate vortex beams of any order easily and conveniently, the crosspolarization conversion efficiency will be reduced because this arrangement cannot make the unit structure covered with the whole metasurface.However, the efficiencies of the unit cells under different rotation angles are all 23% in the operational band. That is to say, we can generate vortex beams with a maximum conversion efficiency of 23% in the transmission field by arranging the unit cells we proposed reasonably. As mentioned in other literature, when the whole metasurface is fully filled by the unit cells,the conversion efficiency of the unit cell is approximately regarded as the efficiency of the vortex beam generated by the metasurfaces. Of course,we can increase the efficiency by increasing the number of concentric circles and the number of cells. Therefore,the unit cell proposed in our work can be used to generate vortex beams with a maximum conversion efficiency of 23%.

    Fig. 5. Magnitude profiles and phase distributions of the THz vortex beam generated by the metasurfaces with distance to the metasurfaces of Z =?800μm at 1.6 THz. The magnitude profiles(a),(c)and the phase distributions(b),(d)of the cross-polarization component of the transmitted beams.The(a),(b)and(c),(d)rows correspond to LCP and RCP incident beams,respectively.

    Fig. 6. (a), (b) Magnitude and phase distributions of the THz vortex beam at 1.6 THz with distance to the metasurfaces of Z =100 μm,?300μm,?500μm,?800μm,and ?1000μm.

    Figure 6 shows the magnitude and phase distributions of the converted transmitted vortex beam at 1.6 THz at different propagation distances. A phase singularity exists at the origin due to noncontinuous phase changes introduced by rotating the unit cells,which brings about the zero intensity at the core of the beam and retains at different propagation distances.The dark spot at the origin is bigger and appears in a divergent state at a propagation distance of 100μm(λ/2)of subwavelength.When the distance increases,the spot becomes convergent and the dark spot becomes larger with distance. However,the dark spots spread steadily throughout the process, which confirms that the vortex beam reserves in the cross-polarized wave and is stable in the propagation. Meanwhile,it is can be observed that the equiphase lines are the spoke-wise rays in the beginning, and with the increase of the propagation distance, they transform into the winding curves. Besides, the phase profile rotates in a clockwise direction when the beam propagates in the different propagation distances, as indicated in Fig. 6(b).These imply that the transmitted THz vortex beams have a high fidelity in the propagation process. The analytic expression of the Laguerre–Gaussian (LG) mode is analyzed to explain phase properties of the vortex field.[22]The LG modesare given by

    To analyze the broadband features of the designed metasurfaces,we take the metasurface of q=1/2 as an example to discuss. Figure 7 shows the magnitude and phase profiles of generated THz vortex waves at 800μm away from the metasurface, under different frequencies of 1.2 THz, 1.6 THz and 1.9 THz respectively. From the magnitude maps,it is discovered that the perfect doughnut shapes and unchanging dark spots are showed in all working frequency bands. We also note that the dimension of doughnut shapes is different on three incident frequencies, which could be caused by different interferences occurring in three frequencies. Furthermore,the phase profiles also show the helix outlines and all curve in a clockwise direction. Therefore,both the magnitude and the phase distributions hold a high fidelity to the vortex behavior in a broadband range. Based on the aforementioned discussion, we can judge that the ultra-thin transmission metasurfaces possess perfect characteristics in a wide working bandwidth.

    Fig. 7. Magnitude and phase distributions of the THz vortex beam (l =1)under the LCP normally incident with different frequencies.

    4. Conclusions

    In summary,we design ultra-thin THz transmission metasurfaces with topological charge q by rotating the angle of the P-B phase elements. The metasurfaces are capable of generating THz vortex beams carrying integer magnitudes of OAM values ranging from ±1 to ±5. The numerical simulation results indicate that the designed metasurface possesses the cross-polarization conversion efficiency of 10% and a broad bandwidth of 0.7 THz in the frequency range of 1.2–1.9 THz.Besides,vortex beams with a maximum conversion efficiency of 23%in the transmission field could be generated by increasing the number of concentric circles and the number of cells on metasurfaces. The evolution properties of the generated THz vortex beam have also been investigated.The results show that the phase profile always rotates in a clockwise sense and the generated THz vortex beam has a high fidelity in the propagation process. The proposed method provides a novel way to design high-efficiency and broadband transmission vortex beam generators. The proposed metasurfaces can be widely applied to integrated optics and vortex optics.

    猜你喜歡
    趙國
    把你戴在胸前
    心聲歌刊(2022年2期)2022-06-06 05:14:26
    《迎新春》系列
    希望在肩上
    7.拆臺
    我一直在趙國
    中國詩歌(2019年6期)2019-11-15 00:26:47
    師與書·趙國華
    江蘇教育(2017年45期)2017-07-05 11:31:34
    古法奇觀
    “沒看見”
    Stability of Composite Braking Produced by Retarder and Braking System
    生存智慧
    心理與健康(2005年3期)2005-04-29 13:24:58
    国产色视频综合| 村上凉子中文字幕在线| 中文字幕av电影在线播放| 亚洲精品美女久久av网站| 亚洲一区中文字幕在线| 久久草成人影院| 日韩欧美国产在线观看| 天天添夜夜摸| 男女午夜视频在线观看| 亚洲一区二区三区不卡视频| 免费在线观看黄色视频的| 亚洲精品美女久久av网站| 日韩欧美国产一区二区入口| 亚洲在线自拍视频| 男女之事视频高清在线观看| 亚洲精品在线观看二区| 黑人操中国人逼视频| 精品国产一区二区久久| 天天添夜夜摸| 国产一区在线观看成人免费| 欧美乱色亚洲激情| 午夜久久久在线观看| 亚洲精华国产精华精| 午夜a级毛片| 国产亚洲av高清不卡| 国产人伦9x9x在线观看| 色精品久久人妻99蜜桃| 亚洲av美国av| 自线自在国产av| 又黄又粗又硬又大视频| 亚洲国产精品久久男人天堂| 十八禁人妻一区二区| 亚洲精品美女久久av网站| 18禁观看日本| 亚洲午夜精品一区,二区,三区| 午夜成年电影在线免费观看| 久久久久久久精品吃奶| 午夜a级毛片| 精品国产超薄肉色丝袜足j| 亚洲国产日韩欧美精品在线观看 | 亚洲av美国av| 精品国产亚洲在线| 精品一区二区三区av网在线观看| 国产亚洲av嫩草精品影院| 国产精品九九99| 精品国产一区二区三区四区第35| 亚洲av五月六月丁香网| 黄色a级毛片大全视频| 成人国语在线视频| 淫秽高清视频在线观看| 亚洲片人在线观看| 国产精品综合久久久久久久免费 | 91大片在线观看| 欧美色视频一区免费| 国产三级黄色录像| av欧美777| 亚洲人成网站在线播放欧美日韩| 国产精品秋霞免费鲁丝片| 亚洲无线在线观看| 久久久国产欧美日韩av| 丰满人妻熟妇乱又伦精品不卡| 一级,二级,三级黄色视频| 91成年电影在线观看| 日韩成人在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 制服人妻中文乱码| 日韩一卡2卡3卡4卡2021年| 满18在线观看网站| 男女下面进入的视频免费午夜 | videosex国产| 嫩草影视91久久| 国产精品国产高清国产av| 最新美女视频免费是黄的| 亚洲色图 男人天堂 中文字幕| 亚洲中文av在线| 精品久久久久久,| 亚洲专区国产一区二区| 久久人人爽av亚洲精品天堂| 99在线视频只有这里精品首页| 黄色视频不卡| 美女午夜性视频免费| 精品福利观看| 韩国av一区二区三区四区| 我的亚洲天堂| 国产欧美日韩一区二区三区在线| 不卡av一区二区三区| 99精品在免费线老司机午夜| 黄色丝袜av网址大全| 中文字幕色久视频| 在线观看免费午夜福利视频| 久久天躁狠狠躁夜夜2o2o| 欧美日韩乱码在线| 天天添夜夜摸| av有码第一页| 国产一卡二卡三卡精品| 日韩欧美国产一区二区入口| 欧美亚洲日本最大视频资源| 亚洲色图av天堂| 亚洲男人的天堂狠狠| 91国产中文字幕| 国产蜜桃级精品一区二区三区| 老汉色∧v一级毛片| 免费在线观看视频国产中文字幕亚洲| 免费观看精品视频网站| av片东京热男人的天堂| 亚洲精品久久国产高清桃花| 亚洲av第一区精品v没综合| 黄色视频,在线免费观看| 好男人电影高清在线观看| 免费无遮挡裸体视频| 久久青草综合色| 亚洲成国产人片在线观看| 九色国产91popny在线| a级毛片在线看网站| 久久精品国产清高在天天线| 午夜福利18| 在线观看舔阴道视频| 亚洲av成人一区二区三| 两人在一起打扑克的视频| 日韩有码中文字幕| 国产av又大| 一级片免费观看大全| 色播亚洲综合网| 老汉色av国产亚洲站长工具| 久久天堂一区二区三区四区| 亚洲视频免费观看视频| 美女免费视频网站| 激情在线观看视频在线高清| 国产免费男女视频| 免费在线观看视频国产中文字幕亚洲| 亚洲av片天天在线观看| 看片在线看免费视频| 国产在线精品亚洲第一网站| 日本三级黄在线观看| 熟女少妇亚洲综合色aaa.| 精品国产一区二区久久| 午夜福利视频1000在线观看 | 国产精品久久视频播放| 欧美日韩亚洲综合一区二区三区_| 日本精品一区二区三区蜜桃| av欧美777| 精品人妻在线不人妻| 99re在线观看精品视频| 午夜免费成人在线视频| 日本五十路高清| 成人av一区二区三区在线看| 国产亚洲精品久久久久久毛片| 91九色精品人成在线观看| 夜夜躁狠狠躁天天躁| 成年女人毛片免费观看观看9| 嫩草影院精品99| 宅男免费午夜| av中文乱码字幕在线| 亚洲 欧美 日韩 在线 免费| 日日夜夜操网爽| 在线播放国产精品三级| 国产亚洲欧美98| bbb黄色大片| 电影成人av| 久久久精品欧美日韩精品| 亚洲av成人av| av欧美777| 精品国产一区二区三区四区第35| 大型黄色视频在线免费观看| 亚洲自偷自拍图片 自拍| 精品高清国产在线一区| 50天的宝宝边吃奶边哭怎么回事| av天堂久久9| 午夜成年电影在线免费观看| 色av中文字幕| 老司机午夜福利在线观看视频| 成人18禁在线播放| 国产成人一区二区三区免费视频网站| www国产在线视频色| 性少妇av在线| www国产在线视频色| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 精品国产一区二区久久| aaaaa片日本免费| 国产欧美日韩综合在线一区二区| 久久九九热精品免费| 久久久久久久精品吃奶| 国产成人精品久久二区二区91| 免费女性裸体啪啪无遮挡网站| 国产三级黄色录像| 国产精品一区二区三区四区久久 | 波多野结衣av一区二区av| 久久婷婷成人综合色麻豆| 女人被躁到高潮嗷嗷叫费观| 精品日产1卡2卡| 国产极品粉嫩免费观看在线| 精品熟女少妇八av免费久了| 99香蕉大伊视频| 在线观看66精品国产| 天天一区二区日本电影三级 | 精品人妻在线不人妻| 久久中文看片网| 琪琪午夜伦伦电影理论片6080| 男女之事视频高清在线观看| 1024视频免费在线观看| 国产精华一区二区三区| 在线观看免费日韩欧美大片| 免费在线观看亚洲国产| 成人国语在线视频| 91大片在线观看| 99精品在免费线老司机午夜| 亚洲国产日韩欧美精品在线观看 | 亚洲性夜色夜夜综合| 制服诱惑二区| 淫妇啪啪啪对白视频| 午夜激情av网站| 纯流量卡能插随身wifi吗| 久久国产乱子伦精品免费另类| 国产私拍福利视频在线观看| www.999成人在线观看| 亚洲精品国产精品久久久不卡| 久久久精品欧美日韩精品| av超薄肉色丝袜交足视频| 禁无遮挡网站| 国产麻豆69| 色av中文字幕| 啦啦啦观看免费观看视频高清 | 国产不卡一卡二| 宅男免费午夜| 99国产综合亚洲精品| 十八禁人妻一区二区| 老司机午夜十八禁免费视频| 老司机福利观看| 人人澡人人妻人| 在线观看舔阴道视频| 久久久久久免费高清国产稀缺| 久久久久久人人人人人| 女人高潮潮喷娇喘18禁视频| 国产又爽黄色视频| 久久香蕉国产精品| 18禁裸乳无遮挡免费网站照片 | 精品人妻在线不人妻| 俄罗斯特黄特色一大片| 禁无遮挡网站| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕久久专区| 美女国产高潮福利片在线看| 少妇粗大呻吟视频| 亚洲片人在线观看| 精品久久久久久久毛片微露脸| 视频在线观看一区二区三区| 久久这里只有精品19| 国产aⅴ精品一区二区三区波| 在线观看舔阴道视频| 黄色 视频免费看| 巨乳人妻的诱惑在线观看| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放 | 免费一级毛片在线播放高清视频 | 亚洲狠狠婷婷综合久久图片| 国产精品av久久久久免费| 国产精华一区二区三区| 国产亚洲欧美精品永久| 国产精品野战在线观看| 777久久人妻少妇嫩草av网站| 日韩欧美国产一区二区入口| 久热这里只有精品99| 亚洲性夜色夜夜综合| 国产97色在线日韩免费| 一级毛片女人18水好多| 九色亚洲精品在线播放| 97人妻天天添夜夜摸| 日本免费一区二区三区高清不卡 | 国产区一区二久久| 伦理电影免费视频| 成年版毛片免费区| 村上凉子中文字幕在线| 久久久久久久午夜电影| 中国美女看黄片| 免费不卡黄色视频| 欧美大码av| 亚洲一区中文字幕在线| 波多野结衣av一区二区av| av有码第一页| 亚洲人成电影观看| 中文字幕人妻熟女乱码| 国内精品久久久久久久电影| 久久久久国产一级毛片高清牌| 国产片内射在线| 成人永久免费在线观看视频| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 国产成人精品无人区| 在线观看免费午夜福利视频| 精品久久久久久成人av| 国产熟女xx| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 精品国产乱码久久久久久男人| 国产成人一区二区三区免费视频网站| 日韩大尺度精品在线看网址 | 国产精品二区激情视频| 人成视频在线观看免费观看| 欧美色欧美亚洲另类二区 | 精品一品国产午夜福利视频| 黑丝袜美女国产一区| 人人妻人人澡人人看| 91大片在线观看| 天天一区二区日本电影三级 | 欧美色视频一区免费| 欧美一级a爱片免费观看看 | 亚洲精华国产精华精| 法律面前人人平等表现在哪些方面| 国产精品乱码一区二三区的特点 | 欧美日韩一级在线毛片| 免费观看精品视频网站| 欧美成人午夜精品| 在线观看免费视频网站a站| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 国产精品香港三级国产av潘金莲| 又大又爽又粗| svipshipincom国产片| 亚洲色图av天堂| 亚洲精品久久成人aⅴ小说| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 午夜日韩欧美国产| 男人舔女人的私密视频| 成人免费观看视频高清| 三级毛片av免费| 国产亚洲精品综合一区在线观看 | 在线观看免费午夜福利视频| 国产精品电影一区二区三区| 精品国产超薄肉色丝袜足j| 88av欧美| 欧美乱妇无乱码| 国产成人av激情在线播放| 亚洲中文字幕一区二区三区有码在线看 | 中文亚洲av片在线观看爽| 欧美老熟妇乱子伦牲交| 久久精品91无色码中文字幕| 国产激情久久老熟女| 亚洲av成人一区二区三| 此物有八面人人有两片| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 少妇粗大呻吟视频| 亚洲av熟女| 脱女人内裤的视频| 免费看a级黄色片| 搡老妇女老女人老熟妇| 国产精品 欧美亚洲| 久久精品91蜜桃| 精品久久久久久久毛片微露脸| 中文字幕色久视频| 日韩精品中文字幕看吧| 中文字幕人成人乱码亚洲影| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 日韩国内少妇激情av| 一a级毛片在线观看| av超薄肉色丝袜交足视频| 多毛熟女@视频| 午夜两性在线视频| 午夜福利,免费看| 亚洲人成电影免费在线| 亚洲在线自拍视频| 少妇粗大呻吟视频| 成人免费观看视频高清| 精品一区二区三区四区五区乱码| 成人精品一区二区免费| 亚洲全国av大片| 免费高清在线观看日韩| e午夜精品久久久久久久| 久久精品国产综合久久久| 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 久久久久久久久中文| 久久人人97超碰香蕉20202| 波多野结衣巨乳人妻| 人人妻,人人澡人人爽秒播| 亚洲九九香蕉| 亚洲国产精品久久男人天堂| 久久香蕉精品热| 日韩三级视频一区二区三区| 久99久视频精品免费| av电影中文网址| 久久亚洲精品不卡| 两性夫妻黄色片| 99久久99久久久精品蜜桃| 国产在线观看jvid| 最近最新免费中文字幕在线| 国产成人av激情在线播放| 嫩草影视91久久| 国产精品 国内视频| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| 日日干狠狠操夜夜爽| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 国产精品 国内视频| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 高清在线国产一区| 麻豆久久精品国产亚洲av| 99国产综合亚洲精品| 伦理电影免费视频| 波多野结衣高清无吗| 电影成人av| 波多野结衣巨乳人妻| 国产主播在线观看一区二区| 色精品久久人妻99蜜桃| 性少妇av在线| xxx96com| 国产午夜福利久久久久久| 国产成年人精品一区二区| 后天国语完整版免费观看| 人妻丰满熟妇av一区二区三区| 不卡一级毛片| 久久久久久久午夜电影| 免费在线观看亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 涩涩av久久男人的天堂| 国内毛片毛片毛片毛片毛片| 国产精品亚洲av一区麻豆| 欧美性长视频在线观看| 午夜福利18| 久久久久久久精品吃奶| 日本三级黄在线观看| 久久香蕉精品热| 国产精品一区二区三区四区久久 | 午夜日韩欧美国产| 波多野结衣av一区二区av| 两个人视频免费观看高清| 精品久久久久久成人av| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 真人一进一出gif抽搐免费| 美女国产高潮福利片在线看| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 后天国语完整版免费观看| 精品久久久久久久人妻蜜臀av | 国产免费男女视频| 韩国精品一区二区三区| 男女之事视频高清在线观看| 日韩欧美国产在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 天天添夜夜摸| 欧美另类亚洲清纯唯美| 悠悠久久av| 免费观看人在逋| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 国产成+人综合+亚洲专区| 他把我摸到了高潮在线观看| 日本一区二区免费在线视频| 欧美激情久久久久久爽电影 | www国产在线视频色| 亚洲 欧美 日韩 在线 免费| 久久精品人人爽人人爽视色| 久久精品国产亚洲av香蕉五月| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 神马国产精品三级电影在线观看 | 国产亚洲精品av在线| 国产免费av片在线观看野外av| 女警被强在线播放| 亚洲色图av天堂| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区精品91| 咕卡用的链子| 亚洲第一青青草原| 国产成人欧美在线观看| 色哟哟哟哟哟哟| 久久亚洲真实| 精品卡一卡二卡四卡免费| 国产精品久久久久久精品电影 | 中文字幕人妻熟女乱码| 老熟妇乱子伦视频在线观看| 黄色视频不卡| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 91国产中文字幕| 曰老女人黄片| 午夜福利免费观看在线| 最新美女视频免费是黄的| 国产片内射在线| 国产精品影院久久| 丝袜人妻中文字幕| 一本大道久久a久久精品| 一二三四社区在线视频社区8| 精品久久久久久成人av| 亚洲精品在线观看二区| 91国产中文字幕| www日本在线高清视频| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 亚洲精品中文字幕在线视频| cao死你这个sao货| 看黄色毛片网站| 88av欧美| 亚洲国产精品久久男人天堂| 涩涩av久久男人的天堂| 欧美日韩一级在线毛片| 欧美性长视频在线观看| 宅男免费午夜| 国产精品 欧美亚洲| 悠悠久久av| 搡老妇女老女人老熟妇| 亚洲国产欧美网| 亚洲男人天堂网一区| 国产精品久久电影中文字幕| 女人高潮潮喷娇喘18禁视频| 99在线视频只有这里精品首页| av免费在线观看网站| 狠狠狠狠99中文字幕| 国产成+人综合+亚洲专区| 国产精品九九99| 中文字幕久久专区| 国产成年人精品一区二区| svipshipincom国产片| 免费少妇av软件| av片东京热男人的天堂| 久久久久久人人人人人| 亚洲精华国产精华精| 亚洲一区中文字幕在线| 亚洲av电影在线进入| 黄色毛片三级朝国网站| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| 男女下面进入的视频免费午夜 | 一区二区日韩欧美中文字幕| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 男人操女人黄网站| 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 757午夜福利合集在线观看| 俄罗斯特黄特色一大片| 日日爽夜夜爽网站| 国产成年人精品一区二区| av天堂久久9| 国产主播在线观看一区二区| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 久久亚洲真实| 欧美国产精品va在线观看不卡| 亚洲性夜色夜夜综合| 久久 成人 亚洲| 久久香蕉国产精品| 我的亚洲天堂| 99热只有精品国产| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 性少妇av在线| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 韩国精品一区二区三区| 99久久国产精品久久久| 亚洲国产欧美日韩在线播放| 久久久久九九精品影院| 国产乱人伦免费视频| 男女下面插进去视频免费观看| 欧美不卡视频在线免费观看 | 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 免费久久久久久久精品成人欧美视频| 美女免费视频网站| 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 国产欧美日韩综合在线一区二区| 国产欧美日韩一区二区三区在线| 久99久视频精品免费| 18禁观看日本| x7x7x7水蜜桃| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 嫩草影视91久久| 99在线视频只有这里精品首页| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 久久国产精品影院| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区mp4| 黄片大片在线免费观看| 一区二区三区激情视频| 一本久久中文字幕| 久久精品91蜜桃| 99香蕉大伊视频| ponron亚洲| 男人操女人黄网站| 国产成人欧美| 久久九九热精品免费| 亚洲熟女毛片儿| 成年人黄色毛片网站| 色哟哟哟哟哟哟| 日本一区二区免费在线视频| 国产av在哪里看| 亚洲成a人片在线一区二区| 国产三级在线视频| 最新在线观看一区二区三区|