• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation*

    2021-05-24 02:22:32WenSiAi艾文思JieLiu劉杰QianFeng馮倩PengFeiZhai翟鵬飛PeiPeiHu胡培培JianZeng曾健ShengXiaZhang張勝霞ZongZhenLi李宗臻LiLiu劉麗XiaoYuYan閆曉宇andYouMeiSun孫友梅
    Chinese Physics B 2021年5期
    關(guān)鍵詞:劉麗劉杰鵬飛

    Wen-Si Ai(艾文思), Jie Liu(劉杰),?, Qian Feng(馮倩), Peng-Fei Zhai(翟鵬飛), Pei-Pei Hu(胡培培),Jian Zeng(曾健), Sheng-Xia Zhang(張勝霞), Zong-Zhen Li(李宗臻), Li Liu(劉麗),Xiao-Yu Yan(閆曉宇), and You-Mei Sun(孫友梅)

    1Institute of Modern Physics,Chinese Academy of Sciences(CAS),Lanzhou 730000,China

    2School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: β-Ga2O3 Schottky barrier diode,swift heavy ions,reliability degradation,amorphous latent track

    1. Introduction

    Monoclinic Ga2O3(β-Ga2O3) is a traditional transparent conductive oxide material and β-Ga2O3based photodetectors are attracting interest as truly solar-blind deep ultraviolet photodetectors, since they exhibit cut-off wavelengths below 280 nm.[1,2]This makes β-Ga2O3attractive in the fields of new generation photoconductors, such as deep ultraviolet detectors, light-emitting diodes, and lasers. The research on β-Ga2O3has been extremely hot in the past decade because of its new application in power electronic devices. β-Ga2O3has not only excellent optical properties,but also a large bandgap of 4.7 eV–4.9 eV and a high critical electric field strength of 8 MV/cm.[3]The large bandgap and the high critical electric field strength enable β-Ga2O3based devices to operate at high temperature and high power. Furthermore, β-Ga2O3can be prepared by melting method,which is the same as Si and sapphire substrate. Compared with SiC and GaN,the cost advantage of β-Ga2O3further promotes its application in the field of high-power electronic devices.[4]

    The β-Ga2O3devices will face huge challenges used in aerospace systems despite their excellent properties. The radiation environment in outer space comprises high-energy protons,electrons,neutrons,and heavy ions.[5]Then,the different types of damages can be formed in the devices after different particle irradiations. For electrons, protons, and γ-rays irradiations, simple point defects are generally introduced in the wide band gap semiconductors.[6,7]Heavy ions and fast neutrons mainly introduce point defects or cascade displacement damages by elastic collision with target atoms.[8]β-Ga2O3is generally considered to be radiation hardness to displacement damage due to the high bond energy and large band gap.[9]According to the literature, the 4H-SiC single crystal was amorphous at fluence of 0.4 dpa(displacements per atom)for 4 MeV Xe ions irradiation,[10]but the saturate disorder state of β-Ga2O3single crystal can be reached at a higher fluence of 0.6 dpa for 700 keV Sn ions irradiation.[11]Moreover,the irradiation response of carrier concentration in β-Ga2O3Schotty barrier diode(SBD)is similar to that of GaN devices after irradiated by electrons and protons.[12]

    Different from the above traditional particles that mainly introduce damages by interaction with the target atoms, the swift heavy ions (SHIs, >1 MeV/u), one of the cosmic rays, mainly transfer energy to the target electrons through huge electronic energy deposition and target electrons further transfer the energy to the atoms through electron–phonon coupling.[13,14]When the electronic energy loss (Se) is large enough, a single swift heavy ion can cause local melting of material and introduce amorphous or recrystallized damage region during quenching. This damage region of nanometer in size is called latent track. In our previous study,it was found that amorphous latent tracks could be introduced in β-Ga2O3single crystal when Seexceeded 17 keV/nm.[15]However,the effect of latent tracks on the electrical characteristics of β-Ga2O3devices is still not studied yet. Therefore, 2096 MeV Ta ions were used to irradiate β-Ga2O3SBD devices in this work and the role of latent tracks on the reliability degradation of devices was analyzed in detail.

    2. Experimental details

    The vertical β-Ga2O3SBD devices were used in this work. The N?β-Ga2O3(001) drift layer (Sn: ~1.8×1016cm?3) of thickness 8 μm was deposited by hydride vapor phase epitaxy on 1.5 mm bulk N+substrate (Sn: ~3×1018cm?3). The metal stack of Ti/Au was deposited on the whole back of the N+substrate by E-beam evaporation and followed by the rapid thermal annealing at 500°C for 60 s under nitrogen atmosphere to form the Ohmic contact. The front side of the N?drift layer was patterned by lift-off of E-beam deposited Schottky contacts Ni/Au(45 nm/65 nm). The diameter of the Schottky contact was about 100μm. The structure of the schematic across section of β-Ga2O3SBD is shown in Fig.1(a). The β-Ga2O3SBD devices were divided into three groups and named#1,#2,and#3,respectively.

    Fig. 1. (a) The schematic across section of the vertical β-Ga2O3 SBD and(b)the distribution diagram of electronic energy loss(Se)and nuclear energy loss(Sn)of 2096 MeV Ta in β-Ga2O3 SBD.

    Heavy ion irradiation experiment was performed at the Heavy Ion Research Facility in Lanzhou (HIRFL) in the Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS). The β-Ga2O3SBD devices without electrical bias were irradiated with 2096 MeV Ta ions in the vacuum chamber. The Seand nuclear energy loss(Sn)were calculated by SRIM 2013 code[16]and the detail distribution of Seand Snin β-Ga2O3SBD was plotted in Fig. 1(b). The range of 2096 MeV Ta ions in the device is about 50μm,reaching deep inside the substrate far away from the metal–semiconductor(M–S) interface. Due to the limited number of samples, cumulative irradiation was adopted in this work. The devices were irradiated for the first time with the fluence of 5×107–5×108ions/cm2,respectively. After irradiation,the irradiated samples were removed from the vacuum chamber for electrical properties measurement. Then they were continued to be irradiated until the fluence up to 1×109–1×1010ions/cm2,respectively. The specific irradiation parameters are listed in Table 1.

    Current density–voltage (J–V) and high frequency(1 MHz)capacitance–voltage(C–V)characteristics were measured by a Keithley 4200 semiconductor parameter analyzer at room temperature.For each fluence,ten Schottky electrodes at least with almost identical electrical characteristics were analyzed.The normal behaviors of J–V and C–V are shown in the next section. The microstructure of β-Ga2O3SBD after irradiation was characterized by bright-field TEM using a Tecnai G2 F20 S-TWIN TEM(FEI,USA)at the accelerating voltage of 200 kV.

    Table 1. The irradiation fluence of the three groups of β-Ga2O3 SBD in the first irradiation experiment and the total fluence after the second cumulative irradiation experiment.

    3. Results and discussion

    Fig. 2. (a) The forward J–V characteristics and the differential onresistance Ron before and after irradiation. (b)The reverse J–V characteristics before and after irradiation. The unit of Ta ions fluence is ions/cm2.

    Figure 2(a) shows the forward J–V characteristics and the differential on-resistance Ronas a function of the voltage for β-Ga2O3SBD devices with different ion fluences.The results show that the forward current density decreases gradually with the increasing influence. At the forward bias of 2 V,the maximum current density decreases from 327 A/cm2to 83 A/cm2and the Ronincreases from 3.8 m?·cm2to 13.7 m?·cm2at the fluence of 1×109ions/cm2. When the ion fluence increases to 5×109and 1×1010ions/cm2, the β-Ga2O3SBD devices do not exhibit forward guide characteristics and the Ronvalues reach to the order of M?·cm2(see Table 2). The reverse J–V characteristic also indicates the increase of the reverse leakage current density as shown in Fig.2(b). It suggests that Ta ions irradiation can significantly affect the J–V characteristics of the β-Ga2O3SBD devices and degrade the performance.

    According to the thermionic emission theory,[17,18]the relationship between the voltage and the current density can be described as

    where Jsis the saturation current density,n is the ideality factor, k is Boltzmann’s constant, T is the absolute temperature,A*is the effective Richardson constant(41.1 A/(cm2·K2)),and ΦBis the Schottky barrier height. The parameters n and ΦBcan be estimated by fitting the linear region of the J–V curve and the detail electrical parameters of β-Ga2O3SBD devices before and after irradiation are summarized in Table 2. In order to compare the variation of electrical parameters more intuitively, the increment of each parameter (the parameter value after irradiation minus the parameter value before irradiation) is shown in Fig. 3. Since the β-Ga2O3SBD devices do not exhibit forward guide characteristics when the fluence is up to 5×109and 1×1010ions/cm2, the variations of Von,n, and ΦBin Fig. 3(a) only cover in the fluence range from 5×107ions/cm2to 1×109ions/cm2.

    Fig.3. The increments of electrical parameters(turn-on voltage Von,ideality factor n,Schottky barrier height ΦB,reverse leakage current density Jr,and on-resistance Ron)as a function of fluence before and after irradiation.

    Table 2. Comparison of experimentally calculated values of β-Ga2O3 SBD devices before and after 2096 MeV Ta ions irradiation.

    In Fig. 3(a), both of the turn-on voltage Vonand ideality factor n increase with fluence increasing,while the parameter ΦBshows little changes.The increase of ideality factor n indicates that the current transport mechanism gradually deviates from the thermionic emission model. In general, the defects introduced by irradiation can lead to the increase of M–S interface state density and then other current transport mechanisms will participate in the process, such as tunneling.[19,20]The defects can also act as the capture centers of carriers,resulting in the decrease of the carrier concentration and mobility.[21]Hence,the on-resistance Ronvalue increases with the increase in fluence as shown in Fig.3(b). In general,the reverse leakage current density Jrcan reflect the blocking characteristic of SBD. In Fig. 3(b), the increase of Jrafter irradiation indicates the degradation of blocking.This is mainly related to the reduced carrier lifetime due to the increase of deep level recombination centers in the barrier region after irradiation.[22]

    Fig.4. The C–V and 1/C2–V characteristics(1 MHz)of the devices after 2096 MeV Ta ions irradiation. The unit of Ta ions fluence is ions/cm2.

    Figure 4 shows the C–V and 1/C2–V plots at a frequency of 1 MHz. The C–V relationship for a Schottky barrier is[23]

    where q is the electron charge, A is the area of the Schottky diode, ε is the dielectric constant (Ga2O3, ε =10ε0), Vbiis the built-in potential, and Nd?Nastands for the carrier concentration in the drift layer. The carrier concentration can be extracted from the slope of the 1/C2–V curve and the results are listed in Table 2. Only the carrier concentrations in the drift layer are calculated with the fluence range of 5×107–1×109ions/cm2. The corresponding variation of normalized carrier concentration is summarized in Fig.5(a).

    Fig. 5. (a) The normalized carrier concentration and (b) carrier removal rate in the drift β-Ga2O3 layer after 2096 MeV Ta ions irradiation.

    According to Fig.5(a),it is clear that the carrier concentration in the drift β-Ga2O3layer shows little changes at the fluence of 5×107ions/cm2. However, the carrier concentration decreases significantly as the fluence increases from 1×108ions/cm2to 1×109ions/cm2. At the fluence of 1×109ions/cm2,the normalized carrier concentration is only 30% that of the unirradiated samples. The acceptor-defects introduced by Ta ions result in the decrease of the carrier concentration, further cause the increase of the depletion width,and finally show that the capacitance in C–V measurement decreases with the increase of fluence. As the fluence increases further to 5×109ions/cm2and 1×1010ions/cm2,the excessively low carrier concentration is equivalent to the infinite width of the depletion layer and the Schottky barrier capacitance disappears.

    According to the carrier concentration, the carrier removal rate Rcis calculated and the results are plotted in Fig. 5(b). The carrier removal rate Rcrelates to the removal of carriers by deep traps which are introduced by the radiation. It is related to the fluence ? and the decrease value of carrier concentration Δ(Nd?Na)through the equation[6,24]

    The Rccan provide a practical guide for estimating the degree of the degradation induced in the devices or materials for a given fluence of the common type of radiation. In this work, the calculated Rcis 5×106cm?1for β-Ga2O3SBD irradiated with Ta ions to the fluence of 1×108ions/cm2and it reaches saturation the value of 1.3×107cm?1at the fluence of 5×108ions/cm2. In general, Rcis linear increasing with the fluence at the lower fluence. However,if most of the carriers are removed at a higher fluence,the excess defects will not contribute to the carrier removal effect any more. Thus, the relationship between Rcand the fluence ? will not follow the linear relationship.[6]

    The carrier removal rates of β-Ga2O3based devices irradiated by different types of ions are summarized in Fig. 6(a)(red symbols).[12,25–27]Note that the carrier removal rate is 406–728 cm?1for α particles irradiation,[27]300 cm?1for 10 MeV protons,[12]4.9 cm?1for 1.5 MeV electrons,[26]and 19–28 cm?1for 1.25 MeV neutrons[25]in β-Ga2O3SBD devices or rectifiers. However,the carrier removal rates for SHIs in this work are much higher. This indicates that the energetic Ta ions exhibit the highest carrier removal rates among these ions irradiation, and it can be explained by the damage type caused by SHIs.

    Fig. 6. (a) Carrier removal rate summary diagram in β-Ga2O3 (red symbols)[12,25–27] and other types of GaN or SiC based devices (black symbols)[6,22,28–32] with different species and energies ion-irradiation. The shadow represents the energy regions of swift heavy ions. The data of red star are from our work. (b) The cross-sectional TEM image of β-Ga2O3 SBD irradiated with 2096 MeV Ta ions to a fluence of 1×1010 ions/cm2.The irradiation direction is indicated by white arrows and the latent tracks parallel to each other are marked by red arrows.

    The cross-sectional TEM of the β-Ga2O3SBD irradiated by 2096 MeV Ta ions to a fluence of 1×1010ions/cm2is shown in Fig.6(b).It can be seen that the interface between Ni and N?β-Ga2O3layer is sharp and there is little inter-mixting at the highest fluence of 1×1010ions/cm2. However,we find indication of latent tracks parallel to each other in the N?β-Ga2O3layer. In our previous work,[15]TEM results proved that one single 2096 MeV Ta ion introduced the amorphous latent track with a size of ~8 nm in β-Ga2O3single crystal. Considering the range of 2096 MeV Ta ions in β-Ga2O3SBD devices, the latent tracks can be introduced not only in the 8μm N?layer,but also within the range of 40μm in the N+layer. For a single swift heavy ion irradiation, the latent track along the ion trajectory is a nanometer-size amorphous region. For a single proton or α particle irradiation,the introduced damage is isolated atomic-size point defects. Hence Ta ions exhibit the highest carrier removal rate.

    Figure 6(a) also summarizes the carrier removal rates of GaN or SiC based devices including SBD devices and high electron mobility transistors(HEMTs).[6,22,28–32]It can be extracted from Fig.6(a)that under the irradiation environment of high-energy electrons,protons,and heavy ions,which mainly introduce displacement damages by elastic collision with the target atoms, the Rcvalues of β-Ga2O3SBD or rectifier are similar to those of GaN or SiC based devices, indicating the excellent radiation hardness of β-Ga2O3devices. This can be attributed to the higher formation energy of vacancy defects in β-Ga2O3.[33–35]However,the degradation of β-Ga2O3SBD is more serious than that of SiC or GaN devices under the SHIs irradiation as the shadow shown in Fig. 6(a).In addition, β-Ga2O3SBD devices in our work are completely damaged under 2096 MeV Ta ions irradiation with fluence of 5×109ions/cm2. However, the GaN HEMTs reported by Hu et al.[36]were still functional after swift heavy Bi ions irradiation with energy of 1500 MeV to the fluence of 1.7×1011ions/cm2.

    Based on the thermal spike model,[37]the latent track is formed through the material melting and quenching rapidly along the path of SHIs. Hence, thermodynamic properties and recrystallization ability of the target material are the main factors affecting the latent track formation.[38]The poor thermal conductivity and recrystallization ability of β-Ga2O3make the Sethreshold of latent track formation in β-Ga2O3(17 keV/nm)lower than that of SiC(>34 keV/nm)and GaN(23–28 keV/nm).[15]Therefore, the damage introduced by SHIs in the whole β-Ga2O3matrix has a greater impact on the degradation of β-Ga2O3SBD devices than the damage in M–S interface.

    4. Conclusion

    We studied the degradation and the structure damages of β-Ga2O3SBD devices after 2096 MeV Ta ions irradiation with the fluence range from 5×107ions/cm2to 1×1010ions/cm2. Both the conducting and blocking characteristics were sensitive to the ion irradiation. A strong reduction of the carrier was observed and the carrier removal rates were 5×106–1.3×107cm?1. Furthermore, the amorphous latent tracks along the ions trajectories cross the whole area of the drift layer were responsible for the decrease in carrier concentration and mobility, and resulted in the deterioration of the β-Ga2O3SBD devices. In addition,the damage introduced by SHIs in the whole β-Ga2O3matrix had a greater impact on the degradation of β-Ga2O3SBD devices than the damage in M–S interface. The serious degradation of β-Ga2O3SBD indicates the worse radiation hardness of β-Ga2O3based device to SHIs compared with SiC and GaN devices.

    猜你喜歡
    劉麗劉杰鵬飛
    Effects of irradiation on superconducting properties of small-grained MgB2 thin films
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    李梅梅、劉杰作品
    DIGITIZING THE OROQEN
    DIGITIZING THE OROQEN
    漢語世界(2017年5期)2017-09-21 07:44:39
    開啟密碼鎖
    過程
    小說月刊(2008年10期)2008-11-04 02:54:00
    美女 人体艺术 gogo| 91麻豆av在线| 麻豆av在线久日| 成人午夜高清在线视频| 麻豆国产97在线/欧美| 国产精品九九99| 19禁男女啪啪无遮挡网站| 丰满的人妻完整版| av天堂在线播放| 精品一区二区三区视频在线观看免费| 757午夜福利合集在线观看| 亚洲国产欧美网| 少妇的逼水好多| 国产成人av激情在线播放| 99热这里只有是精品50| 91麻豆av在线| 久久久久久久久免费视频了| 天堂网av新在线| 欧美国产日韩亚洲一区| 国产97色在线日韩免费| 亚洲精品中文字幕一二三四区| 亚洲国产精品成人综合色| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 91老司机精品| 老司机福利观看| 久久人妻av系列| 欧美日本视频| 日韩国内少妇激情av| 一区二区三区激情视频| 久久久久久九九精品二区国产| ponron亚洲| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区视频9 | 成在线人永久免费视频| 露出奶头的视频| 欧美黑人欧美精品刺激| 国产精品一及| 欧美+亚洲+日韩+国产| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩精品网址| 国产伦在线观看视频一区| 99热这里只有是精品50| 日本一本二区三区精品| 成年女人毛片免费观看观看9| 男人和女人高潮做爰伦理| 久久精品91无色码中文字幕| 亚洲av熟女| 欧美在线一区亚洲| 免费人成视频x8x8入口观看| 欧美日韩乱码在线| 国产精品日韩av在线免费观看| 国产成年人精品一区二区| avwww免费| 亚洲国产精品999在线| 在线视频色国产色| 此物有八面人人有两片| 久久精品91蜜桃| 黄色日韩在线| 欧美精品啪啪一区二区三区| 国产亚洲欧美在线一区二区| 2021天堂中文幕一二区在线观| 欧美日韩黄片免| av在线蜜桃| 身体一侧抽搐| 悠悠久久av| 亚洲中文字幕日韩| 亚洲 欧美 日韩 在线 免费| 小说图片视频综合网站| 又黄又粗又硬又大视频| 国产精品野战在线观看| 99久久99久久久精品蜜桃| 欧美日韩瑟瑟在线播放| av福利片在线观看| 老汉色∧v一级毛片| 国产精品综合久久久久久久免费| 免费在线观看影片大全网站| 成人av一区二区三区在线看| 久久欧美精品欧美久久欧美| 美女免费视频网站| 宅男免费午夜| 亚洲国产欧美人成| 欧美日韩乱码在线| 亚洲黑人精品在线| 欧美zozozo另类| 日本一二三区视频观看| 久久天躁狠狠躁夜夜2o2o| 波多野结衣高清作品| 村上凉子中文字幕在线| 又黄又粗又硬又大视频| 亚洲一区高清亚洲精品| 国产精品 国内视频| 亚洲av免费在线观看| 日韩精品青青久久久久久| 欧美日韩精品网址| 制服人妻中文乱码| 日韩高清综合在线| 久久久久久大精品| 男人舔女人下体高潮全视频| 在线观看免费视频日本深夜| 国产成人av激情在线播放| 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 久久精品国产99精品国产亚洲性色| 一夜夜www| 欧美黄色片欧美黄色片| 2021天堂中文幕一二区在线观| 97人妻精品一区二区三区麻豆| 深夜精品福利| 欧美性猛交╳xxx乱大交人| 成年女人永久免费观看视频| 曰老女人黄片| 黑人欧美特级aaaaaa片| 啦啦啦观看免费观看视频高清| 亚洲色图 男人天堂 中文字幕| 欧美色欧美亚洲另类二区| 国产精品久久电影中文字幕| 国产精品电影一区二区三区| 国产毛片a区久久久久| 国产99白浆流出| 日韩欧美精品v在线| 婷婷六月久久综合丁香| 国产精品九九99| 老鸭窝网址在线观看| av女优亚洲男人天堂 | 悠悠久久av| 国产不卡一卡二| 国产av不卡久久| 日日干狠狠操夜夜爽| 别揉我奶头~嗯~啊~动态视频| 少妇的丰满在线观看| 亚洲欧洲精品一区二区精品久久久| 中文资源天堂在线| 亚洲欧美精品综合一区二区三区| 国内少妇人妻偷人精品xxx网站 | 非洲黑人性xxxx精品又粗又长| 99久久综合精品五月天人人| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费 | 国产精品99久久99久久久不卡| 不卡一级毛片| 午夜福利在线在线| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美成人性av电影在线观看| 午夜福利视频1000在线观看| 在线看三级毛片| 观看免费一级毛片| 香蕉久久夜色| 日韩中文字幕欧美一区二区| 女人高潮潮喷娇喘18禁视频| 久久婷婷人人爽人人干人人爱| 99热只有精品国产| 香蕉丝袜av| 老鸭窝网址在线观看| 久久久久国内视频| 最近最新中文字幕大全免费视频| 亚洲成人久久爱视频| 级片在线观看| 欧美日本视频| 国产一区二区三区视频了| 欧美日本亚洲视频在线播放| 久久婷婷人人爽人人干人人爱| 欧美日韩中文字幕国产精品一区二区三区| 最近最新免费中文字幕在线| 免费在线观看亚洲国产| 午夜成年电影在线免费观看| 99热这里只有是精品50| 天天一区二区日本电影三级| 一区二区三区激情视频| 色在线成人网| 国产精品一区二区三区四区久久| 亚洲av熟女| 操出白浆在线播放| 国产成人啪精品午夜网站| 亚洲中文日韩欧美视频| 国产精品一区二区精品视频观看| 国内少妇人妻偷人精品xxx网站 | 久久久久国产一级毛片高清牌| 伦理电影免费视频| 91在线观看av| 色哟哟哟哟哟哟| 亚洲美女视频黄频| or卡值多少钱| a级毛片在线看网站| 欧美丝袜亚洲另类 | 窝窝影院91人妻| av天堂中文字幕网| 国产精品久久久av美女十八| 九色成人免费人妻av| 嫩草影院入口| 国产成人av教育| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 999精品在线视频| 久久天堂一区二区三区四区| 少妇裸体淫交视频免费看高清| 香蕉国产在线看| 99热这里只有精品一区 | 久久精品人妻少妇| 午夜a级毛片| 免费大片18禁| 国产淫片久久久久久久久 | 久久久久久人人人人人| 国产不卡一卡二| 久久精品综合一区二区三区| a级毛片在线看网站| 精品午夜福利视频在线观看一区| 精品久久久久久久人妻蜜臀av| 黄色成人免费大全| www日本黄色视频网| 国产精品爽爽va在线观看网站| 18禁黄网站禁片午夜丰满| 啦啦啦观看免费观看视频高清| 久久精品91蜜桃| 在线永久观看黄色视频| 51午夜福利影视在线观看| 一进一出抽搐动态| 精品一区二区三区av网在线观看| 色老头精品视频在线观看| 成人国产一区最新在线观看| 99在线人妻在线中文字幕| 俺也久久电影网| 国产精品永久免费网站| 中文字幕久久专区| 黑人巨大精品欧美一区二区mp4| 亚洲美女视频黄频| 欧美zozozo另类| 免费看日本二区| 亚洲一区二区三区不卡视频| 97碰自拍视频| 久久久久久久午夜电影| 欧美色视频一区免费| 日韩欧美国产在线观看| 国产精品98久久久久久宅男小说| 午夜福利在线观看免费完整高清在 | 日韩欧美在线乱码| 一级黄色大片毛片| 精品国产亚洲在线| 日本黄色视频三级网站网址| 日本成人三级电影网站| 在线观看免费视频日本深夜| 日韩中文字幕欧美一区二区| 日韩欧美 国产精品| 黄色 视频免费看| 亚洲精品在线观看二区| 久久久国产欧美日韩av| 美女免费视频网站| 草草在线视频免费看| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲精品不卡| 男女床上黄色一级片免费看| 欧美日韩中文字幕国产精品一区二区三区| 男女视频在线观看网站免费| 色综合欧美亚洲国产小说| 国产伦在线观看视频一区| 国产野战对白在线观看| 久久久精品欧美日韩精品| 亚洲人与动物交配视频| 一区二区三区国产精品乱码| 精品电影一区二区在线| 欧美一区二区国产精品久久精品| 99视频精品全部免费 在线 | bbb黄色大片| 窝窝影院91人妻| 久久久久久人人人人人| or卡值多少钱| 国产单亲对白刺激| 熟妇人妻久久中文字幕3abv| 国产男靠女视频免费网站| 一区福利在线观看| 免费看a级黄色片| 免费看日本二区| 啦啦啦韩国在线观看视频| 99热这里只有是精品50| 亚洲美女黄片视频| 久久精品国产亚洲av香蕉五月| 天天添夜夜摸| 亚洲成a人片在线一区二区| 香蕉久久夜色| 亚洲自拍偷在线| 51午夜福利影视在线观看| 亚洲av电影不卡..在线观看| 天天一区二区日本电影三级| 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 久久久久国产一级毛片高清牌| 手机成人av网站| 男人舔女人下体高潮全视频| 亚洲国产欧美一区二区综合| 国产精品久久电影中文字幕| 免费av不卡在线播放| 久久精品国产清高在天天线| www.999成人在线观看| 中文字幕熟女人妻在线| 一个人观看的视频www高清免费观看 | 无遮挡黄片免费观看| 男女做爰动态图高潮gif福利片| 亚洲18禁久久av| 观看美女的网站| 在线观看午夜福利视频| 成人av在线播放网站| 欧美3d第一页| 国产在线精品亚洲第一网站| 真人做人爱边吃奶动态| 又黄又爽又免费观看的视频| 亚洲人成网站在线播放欧美日韩| 三级国产精品欧美在线观看 | 亚洲av日韩精品久久久久久密| 亚洲欧美一区二区三区黑人| 嫁个100分男人电影在线观看| 亚洲人与动物交配视频| 狂野欧美激情性xxxx| 国产成人啪精品午夜网站| 高潮久久久久久久久久久不卡| 国产欧美日韩精品一区二区| 99久久精品一区二区三区| 亚洲成av人片在线播放无| 老司机在亚洲福利影院| 国产一区二区在线观看日韩 | 亚洲av成人不卡在线观看播放网| 亚洲精品国产精品久久久不卡| 精品一区二区三区四区五区乱码| 一本综合久久免费| 成人国产一区最新在线观看| 舔av片在线| 成人三级做爰电影| 国产精品一区二区精品视频观看| 少妇丰满av| 18美女黄网站色大片免费观看| 午夜久久久久精精品| 精品国产超薄肉色丝袜足j| АⅤ资源中文在线天堂| 国产成人一区二区三区免费视频网站| 一本综合久久免费| 午夜福利18| 日韩av在线大香蕉| www.熟女人妻精品国产| 国内精品一区二区在线观看| 精品国产美女av久久久久小说| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 91av网站免费观看| 亚洲avbb在线观看| 手机成人av网站| 日韩欧美三级三区| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 97碰自拍视频| 国产精品爽爽va在线观看网站| 欧美日韩一级在线毛片| 中文字幕久久专区| 免费看a级黄色片| cao死你这个sao货| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 97超视频在线观看视频| 一级作爱视频免费观看| 亚洲国产欧美网| 午夜福利18| 夜夜爽天天搞| 啦啦啦韩国在线观看视频| 亚洲专区中文字幕在线| 免费大片18禁| 99久久成人亚洲精品观看| 亚洲电影在线观看av| 天堂√8在线中文| 婷婷丁香在线五月| 免费无遮挡裸体视频| 欧美午夜高清在线| 后天国语完整版免费观看| 色综合婷婷激情| 99re在线观看精品视频| 久久久久国内视频| 一级毛片精品| 久久人人精品亚洲av| cao死你这个sao货| 亚洲欧美日韩高清在线视频| 精品电影一区二区在线| 精品久久久久久久毛片微露脸| 亚洲美女视频黄频| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| www日本黄色视频网| 久久久久国内视频| 丁香六月欧美| 日本与韩国留学比较| 这个男人来自地球电影免费观看| 精品一区二区三区av网在线观看| 亚洲av成人不卡在线观看播放网| 欧美激情在线99| 亚洲av成人精品一区久久| 伊人久久大香线蕉亚洲五| 久久久久久久精品吃奶| 久久久精品大字幕| 一区二区三区高清视频在线| 国产蜜桃级精品一区二区三区| 观看美女的网站| x7x7x7水蜜桃| 怎么达到女性高潮| 在线a可以看的网站| 少妇人妻一区二区三区视频| 国产午夜精品久久久久久| 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| 成人精品一区二区免费| 精品一区二区三区视频在线观看免费| 国产一区在线观看成人免费| 国产三级黄色录像| 后天国语完整版免费观看| 国产69精品久久久久777片 | av在线蜜桃| 日本精品一区二区三区蜜桃| 男插女下体视频免费在线播放| 成年女人毛片免费观看观看9| 色综合婷婷激情| 国产精品综合久久久久久久免费| 免费电影在线观看免费观看| 成人av在线播放网站| 特级一级黄色大片| 丰满的人妻完整版| 在线免费观看不下载黄p国产 | 18禁观看日本| 制服丝袜大香蕉在线| 中文字幕最新亚洲高清| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| 天堂av国产一区二区熟女人妻| 在线视频色国产色| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 亚洲黑人精品在线| 国产探花在线观看一区二区| 国产一区在线观看成人免费| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 亚洲国产欧洲综合997久久,| 成人三级做爰电影| 一进一出抽搐gif免费好疼| 啪啪无遮挡十八禁网站| 欧美日本视频| 日本精品一区二区三区蜜桃| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站 | 日韩精品中文字幕看吧| 国产午夜精品久久久久久| 欧美另类亚洲清纯唯美| 男人舔奶头视频| 欧美乱妇无乱码| 国产免费男女视频| 老汉色av国产亚洲站长工具| 首页视频小说图片口味搜索| 欧美日韩国产亚洲二区| 免费在线观看影片大全网站| 18禁美女被吸乳视频| 亚洲在线自拍视频| 一a级毛片在线观看| 99久久国产精品久久久| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 一本精品99久久精品77| 欧美av亚洲av综合av国产av| 欧美成狂野欧美在线观看| 亚洲自偷自拍图片 自拍| 色综合站精品国产| 女人被狂操c到高潮| 不卡一级毛片| 18美女黄网站色大片免费观看| 日韩欧美在线乱码| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 欧美日韩黄片免| 亚洲欧美日韩卡通动漫| 精品久久久久久久人妻蜜臀av| 久久精品国产清高在天天线| e午夜精品久久久久久久| 身体一侧抽搐| 亚洲国产欧美一区二区综合| 中文资源天堂在线| 国产欧美日韩精品亚洲av| 精品久久久久久久久久久久久| 国产三级在线视频| 国产淫片久久久久久久久 | 国产精品一及| 99久国产av精品| 大型黄色视频在线免费观看| 亚洲五月婷婷丁香| 又黄又爽又免费观看的视频| 亚洲国产欧美人成| 亚洲在线自拍视频| 1024香蕉在线观看| 亚洲精品乱码久久久v下载方式 | 国产男靠女视频免费网站| 成人性生交大片免费视频hd| 午夜两性在线视频| 免费人成视频x8x8入口观看| 国产成+人综合+亚洲专区| 国产三级黄色录像| 久久久久久久久免费视频了| 国产伦精品一区二区三区视频9 | 黄频高清免费视频| 看黄色毛片网站| 欧美性猛交黑人性爽| 精品一区二区三区av网在线观看| 国产不卡一卡二| 成人三级做爰电影| 国产男靠女视频免费网站| 午夜激情欧美在线| 国产高潮美女av| 两性夫妻黄色片| 午夜两性在线视频| 国模一区二区三区四区视频 | 黄频高清免费视频| 亚洲av成人一区二区三| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 亚洲人成伊人成综合网2020| 日本免费一区二区三区高清不卡| 免费大片18禁| 国产伦在线观看视频一区| 久久久久久大精品| 看片在线看免费视频| 麻豆国产97在线/欧美| 欧美最黄视频在线播放免费| 日本精品一区二区三区蜜桃| 久久人妻av系列| 久久99热这里只有精品18| 特大巨黑吊av在线直播| 一a级毛片在线观看| 99精品久久久久人妻精品| 香蕉久久夜色| 免费大片18禁| 淫妇啪啪啪对白视频| 午夜影院日韩av| 亚洲人与动物交配视频| 99久久久亚洲精品蜜臀av| 精品熟女少妇八av免费久了| 午夜两性在线视频| 两性夫妻黄色片| 夜夜看夜夜爽夜夜摸| 午夜福利视频1000在线观看| 国语自产精品视频在线第100页| 男女之事视频高清在线观看| 99国产精品一区二区三区| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 看片在线看免费视频| 岛国视频午夜一区免费看| 九色国产91popny在线| 亚洲av免费在线观看| 国产精品一区二区免费欧美| 亚洲国产欧洲综合997久久,| 亚洲av成人精品一区久久| 久久精品影院6| 日日摸夜夜添夜夜添小说| 成人特级av手机在线观看| 中文字幕av在线有码专区| 极品教师在线免费播放| 好看av亚洲va欧美ⅴa在| 免费观看人在逋| 欧美国产日韩亚洲一区| 亚洲国产看品久久| 欧美另类亚洲清纯唯美| av欧美777| 99久久综合精品五月天人人| 少妇丰满av| 日本在线视频免费播放| 久久99热这里只有精品18| 国产av一区在线观看免费| 久久中文看片网| 久久国产精品人妻蜜桃| 亚洲av美国av| 免费在线观看日本一区| 久久久国产精品麻豆| 麻豆一二三区av精品| 久久香蕉国产精品| 91在线观看av| 91av网站免费观看| 中文资源天堂在线| 欧美日韩乱码在线| 欧美激情久久久久久爽电影| 亚洲七黄色美女视频| 国产精品1区2区在线观看.| 性色avwww在线观看| 欧美日韩黄片免| 亚洲成人久久爱视频| 此物有八面人人有两片| 成人鲁丝片一二三区免费| 亚洲国产精品999在线| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 日本在线视频免费播放| 午夜免费观看网址| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 一级毛片女人18水好多| 色综合站精品国产| 91九色精品人成在线观看| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 99久久无色码亚洲精品果冻| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 免费观看的影片在线观看| 日本黄色视频三级网站网址| 国产欧美日韩一区二区精品| 精品电影一区二区在线| 免费在线观看亚洲国产|