• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of irradiation on superconducting properties of small-grained MgB2 thin films

    2023-12-15 11:48:14LiLiu劉麗JungMinLeeYoonseokHanJaeguSongChorongKimJaekwonSukWonNamKangJieLiu劉杰SoonGilJungandTusonPark1
    Chinese Physics B 2023年12期
    關鍵詞:劉麗劉杰

    Li Liu(劉麗), Jung Min Lee, Yoonseok Han, Jaegu Song, Chorong Kim,Jaekwon Suk, Won Nam Kang,?, Jie Liu(劉杰), Soon-Gil Jung, and Tuson Park1,,?

    1Center for Quantum Materials and Superconductivity(CQMS),Sungkyunkwan University,Suwon 16419,Republic of Korea

    2Department of Physics,Sungkyunkwan University,Suwon 16419,Republic of Korea

    3Institute of Modern Physics,Chinese Academy of Sciences(CAS),Lanzhou 730000,China

    4School of Nuclear Science and Technology,University of Chinese Academy of Sciences(UCAS),Beijing 100049,China

    5Korea Multi-purpose Accelerator Complex,Korea Atomic Energy Research Institute,Gyeongju,Gyeongbuk 38180,Republic of Korea

    6Department of Physics Education,Sunchon National University,Suncheon 57922,Republic of Korea

    Keywords: MgB2 films,grain boundaries,flux pinning,low-energy ion irradiation

    1.Introduction

    MgB2has tremendous potential for practical applications owing to its excellent superconducting properties.For instance,the superconducting critical temperature(Tc)of MgB2is approximately 40 K, which makes it a promising material for use in liquid-helium-free apparatus.[1]Its high upper critical field(Hc2)makes MgB2a suitable alternative for commercial superconductors in high-field magnet applications.[2-4]Moreover, from the aspect of radioactivity, MgB2is one of the promising materials in neutron irradiation environment,such as fusion reactor,because of its shorter half-life of the induced activity than Nb-based superconducting alloys.[5]Grain boundaries (GBs) in MgB2function as a strong pinning site owing to its large coherence length (ξ).In addition, no weak link behavior across GBs is observed in MgB2, which is in contrast to the weak link behavior in high-Tccuprate superconductors.[6]Therefore,a kilometer-long MgB2superconducting wire used in real systems can be fabricated using a simple powder-in-tube technique, thus considerably reducing the manufacturing cost.[7,8]

    The high current-carrying capability for superconductors necessary for practical applications in magnetic field environment can be achieved by introducing artificial defects.[9]Particle irradiation is a suitable method for producing defects in superconducting materials and has been successfully used in roll-to-roll 80-m long YBa2Cu3O7-δcoated conductors.[10,11]The effect of irradiation on MgB2has been widely studied since it discovered in 2001.[12]Neutron has been suggested as a potential irradiating source for MgB2due to the large thermal neutron capture cross section of the10B atom(~20%in natural B), which causes defects through the10B(n,α)7Li reaction.[13]The self-shielding effect of the10B atoms induces inhomogeneous defects around the surface.However, homogeneous damage can be achieved by replacing10B with11B isotope.[14,15]

    The GBs in metals are known to act as an effective sink for irradiation-induced defects.[16]Irradiation-induced defects, such as vacancies and interstitials, including injected ions can easily migrate into the GBs because the defect diffusion barrier near GBs is considerably lower than the defect diffusion barrier within the grains.[17,18]Moreover, the process of absorbing irradiation-induced defect clusters around GBs has also been observed byin situtransmission electron microscope.[19,20]Hence,the radiation tolerance of nanocrystalline materials is larger than that of coarse-grained samples,which can be improved as the density of GBs increases.[21,22]

    Considering the metallic characteristics of MgB2superconductors,[23]it can be assumed that ion irradiation has a significant influence on grain boundary pinning of MgB2with small grain sizes.In this study, we irradiated 120-keV Mn ions on MgB2thin films with nanoscale grain sizes.The critical current density(Jc)of the pristine MgB2samples was rapidly decreased with the increase in magnetic field owing to a good inter-grain connectivity.However, the field performance ofJcof the irradiated films was significantly improved with the change of the flux pinning mechanism from weak to strong pinning.The scaling behavior of the flux pinning is consistent with the dominance of surface pinning in the irradiated films, underpinning that GBs in MgB2can act as an effective sink of irradiation-induced defects.

    2.Material and methods

    Thec-axis-oriented MgB2thin films with grain sizes of approximately 122 nm and 140 nm were fabricated using a hybrid physical-chemical vapor deposition(HPCVD)system,and the details of the fabrication condition and quality of films were described everywhere.[24-26]Thec-cut Al2O3substrate of 10 mm×10 mm in size was placed on the susceptor filled with 99.99% purity Mg pieces.The carrier gas was H2at a flow rate of 80 sccm,and the susceptor was heated to 700?C in a total pressure of 100 Torr(1 Torr=1.33322×102Pa).Subsequently,5%B2H6in H2gas(20 sccm)was introduced into the chamber to grow the MgB2thin films.The growth rate of the films was approximately 2.5 nm/s.

    Ion irradiation was performed at the Korea Multi-purpose Accelerator Complex (KOMAC).The prepared MgB2films were cut into several pieces for irradiation at each fluence,and each MgB2film with thicknesses of 250 nm (MB250)and 430 nm(MB430)were irradiated at room temperature using Mn ions with a beam energy of 120 keV and fluences of 1×1013(1E13),5×1013(5E13),and 1×1014(1E14)ions/cm2.The direction of the incident ions was tilted by 7?from thecaxis to minimize the channeling effect.The damage events produced in the MgB2thin films by 120-keV Mn ions were determined using the Monte Carlo simulation program, the stopping and range of ions in matter(SRIM).[27]

    The crystal phases and orientations of the prepared films were checked by x-ray diffraction (XRD), and average grain sizes of the films were evaluated by counting the number of grains in the area through the surface morphology observed by scanning electron microscopy (SEM).The zero-field-cooled(ZFC)and field-cooled(FC)dc magnetization(M)as well as magnetization hysteresis (M-B) loops were measured by using magnetic property measurement system (MPMS, Quantum Design) equipped with a 5-T superconducting magnet.The direction of the magnetic field was parallel to thec-axis direction of the film.TheJcvalue was calculated from theM-Bloops using the Bean critical-state modelJc=15?M/r,where ?Mis the width of theM-Bloops per volume(in units of emu/cm3)andris the radius corresponding to the total area(S)of the film surface,i.e.,S=πr2.[28,29]

    3.Results and discussion

    The displacements per atom(dpa)produced in the MgB2by 120-keV Mn-ion irradiation with fluences of 1E13,5E13,and 1E14 ions/cm2was simulated using the transport of ions in matter(TRIM)code in the SRIM software,[27,30]as shown in Fig.1.The inset in Fig.1 is a schematic diagram of the MgB2thin film with a thickness of 250 nm (MB250) after 120-keV Mn-ion irradiation,divided into two regions,namely irradiated and unirradiated regions.The thickness of the irradiated region(tD)was determined at the dpa=0.001 because this value has an impact on the field performance ofJcof MgB2,[31]and thetDfor 1E13,5E13,and 1E14 Mn ions/cm2were approximately 136 nm,160 nm,and 170 nm,as indicated by the arrows in Fig.1.

    Fig.1.Displacements per atom(dpa)as a function of MgB2 depth,generated by 120-keV Mn-ion irradiation with fluences of 1E13,5E13,and 1E14 ions/cm2.Inset illustrates the schematic view of irradiated and unirradiated areas in 250-nm-thick MgB2 thin film,where the depth of irradiated region(tD)is determined at 0.001 dpa,as indicated by the red solid line and arrows.

    Figure 2(a)shows XRD pattern ofθ-2θscan for pristine MB250(MB250-PRI)deposited onc-cut Al2O3substrate,indicating a highlyc-axis orientation.Figure 2(b)is the surface morphology of MB250 observed by SEM.The estimated average grain diameter of MB250 was approximately 122 nm.The magnetic field dependence of critical current density(Jc)of MB250-PRI at 5 K and 20 K is illustrated in Fig.2(c).A large self-fieldJc≈19 MA/cm2at 20 K and its rapid reduction in magnetic field indicate the high quality of the fabricated films.[32]The self-fieldJcis lower at 5 K than at 20 K due to a large flux jump at low fields,as shown in inset of Fig.2(c),which is known as a result of thermomagnetic instability.[33]The flux pinning force density (Fp) as a function of the magnetic field presented in Fig.2(d) reflects the high quality of MB250.Here,Fpwas calculated using the relationFp=Jc×B.The sharp peak ofFp(B)curves at low fields is thought to be caused by the rapid decrease inJc(B)due to the lack of effective pinning sites.[34]

    Fig.2.(a)XRD pattern of a θ-2θ scan for MB250-PRI deposited on a c-cut Al2O3 substrate.(b)SEM surface morphology of MB250-PRI where the average grain diameter is approximately 122 nm.(c)Semi-logarithmic Jc-B curves at 5 K and 20 K for MB250-PRI.Inset shows the M-B hysteresis curves at 5 K and 20 K,indicating a presence of large flux jump at 5 K.(d)Magnetic field dependence of volume flux pinning force density(Fp)at 5 K and 20 K for MB250-PRI.

    Fig.3.(a) Enlarged view of (0002) peak of MB250 before and after 120-keV Mn-ion irradiation.For the sample irradiated with a fluence of 5×1013 ions/cm2, the small broad peak near (0002) peak was related to the remaining unirradiated layer.(b) Changes in c-axis lattice constant of MB250 films as a function of ion fluence.

    The changes inc-axis lattice parameter before and after irradiation was characterized by XRD.After irradiation, the(000l) peaks of MB250 shift toward lower angle.For the sake of clarity, an enlarged view of (0002) peak is shown in Fig.3(a).The existence of a broad peak in the sample irradiated at a fluence of 5×1013ions/cm2is due to the unirradiated layer, as shown in schematic diagram of Fig.1.Thec-axis parameter calculated from (0002) peak of MB250 increases monotonically with increasing ion fluence,as shown in Fig.3(b),reaching the increment of about 1.53%compared to the pristine sample at a maximum fluence of 1×1014ions/cm2.

    The superconducting transition temperature (Tc) of MB250 was gradually decreased by increasing the amount of irradiated Mn ions.Figure 4 shows the zero-field-cooled(ZFC)and field-cooled(FC)dc magnetization(M)at 5 Oe as a function of temperature for MB250 before and after 120-keV Mn-ion irradiation with fluences of 1E13, 5E13, and 1E14 ions/cm2.The MB250-PRI shows aTcof 38.7 K(corresponding to the transition of 10%in ZFCM(T)curve)with a sharp transition width ?Tc=1.8 K determined using the transition of 90%to 10%of the superconducting diamagnetic signal in the ZFCM(T) curve, as presented in Fig.4.TheTcgradually decreased whereas ?Tcincreased as the fluence level increases,and at the highest fluence level of 1E14 ions/cm2,Tcand ?Tcwere 28.2 K and 6.9 K,respectively.

    The reduction ofTcby low-energy ion irradiations can be understood due to the formation of point defects and lattice distortions in MgB2.[35,36]The irradiation-induced disorder can act as impurity scattering centers, thus enhancing inter-band scattering and suppressingTc.[15,37,38]In addition,a decrease in the electron-phonon coupling constant with increasing dpa leads to a suppression ofTc.[39,40]

    The magnetic field dependence ofJcat 5 K and 20 K for MB250 before and after 120-keV Mn-ion irradiation is shown in Figs.5(a) and 5(b), respectively.TheJcat low fields is decreased gradually with increasing fluence, associated with a suppression ofTc, and at both temperatures, the magnitude of the self-fieldJcwas suppressed by approximately a factor of 10 at the highest fluence of 1E14 Mn ions/cm2.However,the field performance ofJcwas significantly improved after irradiation.For MB250 irradiated with 1E13 Mn ions/cm2,theJcvalue increased more than 10-fold from approximately 0.02 for the pristine sample to 0.26 MA/cm2at 5 K and 2.4 T.Figures 5(c) and 5(d) plot the flux pinning force density (Fp)as a function of the magnetic field, calculated from theJc(B)curves in Figs.5(a)and 5(b),respectively.For the sample irradiated with 1E13 Mn ions/cm2,Fpat 5 K and 20 K obviously increased at high fields larger thanB>1 T,indicating that the number of effective pinning sites for high fields was increased by irradiation.The significantly decreasedFpat low fields was caused by the decrease inJcwith the suppression ofTcafter irradiation.

    Fig.4.Temperature dependence of ZFC and FC M at 5 Oe for pristine(PRI)and 120-keV Mn-ion irradiated MB250,where the M(T)values were normalized by the absolute ZFC M value at 5 K for comparisons.Superconducting transition width (?Tc) was defined as the difference between the 10% and 90% transitions of the diamagnetic signal from the normal state and denoted by the arrows with a red color.

    Fig.5.Semi-logarithmic Jc-B curves at(a)5 K and(b)20 K for MB250 before and after irradiation.The field performance of Jc is improved by Mn ion irradiation, while the Jc at low fields decreases gradually as the fluence level increases.Magnetic field dependence of Fp is plotted at(c)5 K and(d)20 K.

    The scaling behavior of the normalized flux pinning force density(fp=Fp/Fp,max)with respect to the reduced magnetic field (b=B/Birr) for irradiated MB250 was studied, whereFp,maxis the maximumFpandBirris the irreversible magnetic field.Since theJcandFpvalues of type-II superconductors approach zero when the magnetic field is equal toBirr, if theBirrvalue is not close toBc2,Birris more suitable for describing thebvalue to investigate the scaling behavior of flux pinning force.[41,42]TheBirrvalue of the pristine and irradiated MB250 was estimated using the Kramer plot ofJc0.5B0.25∝(Birr-B),[43,44]as described in Figs.6(a)and 6(b).Figures 6(c) and 6(d) show thefpversus bcurve for MB250 at 5 K and 20 K,respectively.

    In the scaling law of flux pinning force,fp(b)∝bp(1-b)q, the peak position offp(b) together with parameterspandqis dependent on the characteristics of the dominant pinning source of superconducting samples.[44-46]According to Dew-Hughes(DH)model,thefp(b)peak is located atb=0.2(p=0.5 andq=2) for surface pinning andb=0.33 (p=1 andq=2)for normal point pinning,as shown in Fig.6(c).[46]Thefp(b)curves for MB250-PRI cannot be explained by any pinning models, to the best of our knowledge, because of the low density of effective pinning centers, as discussed in Fig.2(d).However, the flux pinning mechanism of the irradiated MB250 samples showed the predominance of surface pinning.In contrast,since low-energy ion irradiation primarily produces homogeneously distributed point defects caused by nuclear stopping of energetic ions, as depicted in the inset of Fig.6(d),[47]in general,single-crystalline MgB2films showed the dominance of normal point pinning after low-energy ion irradiation.[48,49]

    The effect of GBs on the irradiation-induced defects in the relatively thicker MgB2films with a thickness of 430 nm(MB430) was additionally studied in comparison with the thickness of the irradiated regions.The XRD results of the MB430 are shown in Fig.7(a).The(0002)peak clearly splitting into two peaks for the fluence level>1×1013ions/cm2due to the presence of thicker unirradiated layer compared to MB250.Thec-axis lattice parameter corresponding to the 2nd peak (irradiated layer) increases with increasing fluence,whereas that of the 1st peak(unirradiated layer)in MB430 is hardly changed, as shown in Fig.7(b).Figures 7(c) and 7(d)show the magnetic field dependence ofJcfor MB430 at 5 K and 20 K,respectively,and the inset in Fig.7(d)is a top SEM view of MB430, indicating small grains with an average size of approximately 140 nm.The improvement in the field performance ofJcfor the irradiated MB430 showed similar feature to that in case of the irradiated MB250, whereas the decrease inJcat low fields was comparatively small.The small decrease in low-fieldJcfor irradiated MB430 can be thought to be due to the giant proximity effect between the irradiated and unirradiated layers.[50,51]

    Fig.6.Kramer plots for pristine and 120-keV Mn-ion-irradiated MB250 at(a)5 K and(b)20 K to evaluate irreversible field(Birr)indicated by arrows.Normalized flux pinning force density(fp)with respect to reduced magnetic field(b)at(c)5 K and(d)20 K for pristine and 120-keV Mn-ion-irradiated MB250.The red solid line and the red dashed line represent the fitting curves for surface pinning and normal point pinning,respectively.Inset of Fig.5(d)illustrates the schematic view of the distribution of irradiation-induced defects in single crystals and the films with small grains.

    Fig.7.(a) XRD patterns of MB430 around the (0002) peak of MgB2.(b) Variation of c-axis lattice constant of MB430 with fluence.(c)-(d)Magnetic field dependence of critical current density(Jc)at(c)5 K and(d)20 K for 430-nm-thick MgB2 films(MB430)before and after 120-keV Mn-ion irradiation.The inset in(d)is the top SEM view for MB430 with an average grain diameter of approximately 140 nm.

    The Kramer plots for MB430 at 5 K and 20 K are shown in Figs.8(a)and 8(b),respectively,and theBirrfor each sample was indicated by arrows.Figures 8(c) and 8(d) show normalized flux pinning force as a function of the reduced magnetic field for MB430 at 5 K and 20 K,respectively.Thefp(b)at high fields forb>0.2 and at 5 K overlapped accurately with surface pinning.Although thefp(b)curve exhibits a slight deviation at 20 K,the flux pinning by GBs is still effective even when the thickness of MgB2films is relatively larger than that of the irradiated layertD.These results further support the improvement of the flux pinning effect by GBs in MgB2thin films after irradiation.The sharp peak in thefp(b)curve at low fields was almost suppressed in the irradiated MB250,as shown in Fig.6,indicating that the residual sharp peak offp(b)at low fields in the irradiated MB430 is associated with the unirradiated region.Our findings can provide useful information for designing radiation resistant MgB2because grain boundaries in metallic MgB2superconductors can be acted as an effective sink of irradiation-induced defects,thus irradiation tolerance of MgB2can be enhanced by decreasing grain size.

    Fig.8.Kramer plots for pristine and 120-keV Mn-ion-irradiated MB430 at (a) 5 K and (b) 20 K.Here, Birr is indicated by arrows.Scaling behavior of the flux pinning force for MB430 at(c)5 K and(d)20 K indicates that the effect of surface pinning is enhanced significantly after ion irradiation.

    4.Conclusions

    In summary, we observed that the pinning effect by GBs in MgB2thin films can be improved by ion irradiation.The MgB2thin films with nanoscale grains of approximately 122 nm and 140 nm were irradiated with 120-keV Mn ions leading to a significant increase in the field performance ofJcfor all films as compared with that ofJcfor pristine films.Although the GBs of pristine films were not effective for flux pinning,the scaling behavior of the flux pinning force showed that the surface pinning,i.e.,grain boundary pinning,became dominant after ion irradiation.These findings underpin that MgB2superconductors with small grains can be a good candidate for application in irradiation environments,such as nuclear fusion reactor.

    Acknowledgements

    We wish to acknowledge the support of the accelerator group and operators of KOMAC (KAERI (C.K., J.S.)).Project supported by the National Research Foundation(NRF)of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T.P., Y.H., J.S.)); the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284(J.M.L.,W.N.K.)and NRF-2021R1I1A1A01043885 (S.G.J., Y.H.)), the National Natural Science Foundation of China (Grant Nos.12035019 (J.L.)).Moreover,L.L.would like to acknowledge the Chinese Scholarship Council(CSC)for fellowship support.

    猜你喜歡
    劉麗劉杰
    Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
    Real-time programmable coding metasurface antenna for multibeam switching and scanning
    Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
    劉麗作品
    李梅梅、劉杰作品
    DIGITIZING THE OROQEN
    DIGITIZING THE OROQEN
    漢語世界(2017年5期)2017-09-21 07:44:39
    開啟密碼鎖
    去郊游
    親情讓愛走開
    青春(2009年3期)2009-04-01 02:58:04
    欧美区成人在线视频| 亚洲丝袜综合中文字幕| 亚洲成人一二三区av| 最后的刺客免费高清国语| 国产美女午夜福利| 欧美3d第一页| 成年女人在线观看亚洲视频| 插逼视频在线观看| av免费观看日本| xxx大片免费视频| 日韩强制内射视频| 午夜91福利影院| 日韩制服骚丝袜av| 美女脱内裤让男人舔精品视频| h日本视频在线播放| 日韩成人伦理影院| 美女中出高潮动态图| 欧美 日韩 精品 国产| 欧美xxxx性猛交bbbb| 国产高清国产精品国产三级| 午夜激情久久久久久久| 桃花免费在线播放| 日韩制服骚丝袜av| 免费播放大片免费观看视频在线观看| freevideosex欧美| 91午夜精品亚洲一区二区三区| 中文字幕人妻丝袜制服| 亚洲中文av在线| 大香蕉久久网| 国产在线免费精品| 内射极品少妇av片p| 97在线人人人人妻| 香蕉精品网在线| 热re99久久精品国产66热6| 精品人妻熟女av久视频| 国产精品嫩草影院av在线观看| 热99国产精品久久久久久7| 日本欧美国产在线视频| 日日摸夜夜添夜夜爱| 丰满迷人的少妇在线观看| 亚洲天堂av无毛| 免费看光身美女| 欧美老熟妇乱子伦牲交| 国产午夜精品一二区理论片| 国产欧美日韩精品一区二区| 夜夜爽夜夜爽视频| 国产91av在线免费观看| 午夜精品国产一区二区电影| 丰满饥渴人妻一区二区三| 麻豆精品久久久久久蜜桃| 亚洲精品成人av观看孕妇| 国产 精品1| 亚洲欧美中文字幕日韩二区| 免费看av在线观看网站| 一级黄片播放器| 亚洲精品成人av观看孕妇| 韩国高清视频一区二区三区| av线在线观看网站| 国产精品伦人一区二区| 超碰97精品在线观看| 久久精品久久久久久久性| 亚洲综合精品二区| 国产免费一区二区三区四区乱码| 99九九在线精品视频 | 十八禁网站网址无遮挡 | 亚洲欧美日韩卡通动漫| 春色校园在线视频观看| 啦啦啦啦在线视频资源| 国产淫片久久久久久久久| 另类精品久久| 91成人精品电影| 国产av一区二区精品久久| 久久久久国产网址| 亚洲第一区二区三区不卡| 亚洲精品,欧美精品| 99久久中文字幕三级久久日本| 丰满乱子伦码专区| 日本av手机在线免费观看| 精品久久久精品久久久| 亚洲人与动物交配视频| 免费黄网站久久成人精品| 久久国产精品男人的天堂亚洲 | 精品人妻熟女av久视频| 欧美日韩亚洲高清精品| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 色94色欧美一区二区| 你懂的网址亚洲精品在线观看| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久| 在线观看三级黄色| 91在线精品国自产拍蜜月| 欧美日韩av久久| 亚洲图色成人| 国产探花极品一区二区| 精品国产露脸久久av麻豆| 丝袜在线中文字幕| 99久久人妻综合| 大又大粗又爽又黄少妇毛片口| 一个人看视频在线观看www免费| 边亲边吃奶的免费视频| 亚洲怡红院男人天堂| 精品国产国语对白av| 老女人水多毛片| 亚洲av日韩在线播放| 色哟哟·www| 一级黄片播放器| 内射极品少妇av片p| 日韩精品有码人妻一区| 国产老妇伦熟女老妇高清| 成人午夜精彩视频在线观看| 国产永久视频网站| 欧美少妇被猛烈插入视频| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 多毛熟女@视频| 美女cb高潮喷水在线观看| 六月丁香七月| 一本大道久久a久久精品| 欧美成人午夜免费资源| 黄色欧美视频在线观看| 深夜a级毛片| 日本猛色少妇xxxxx猛交久久| 欧美性感艳星| 观看美女的网站| 嫩草影院入口| 天美传媒精品一区二区| 久久精品久久精品一区二区三区| √禁漫天堂资源中文www| 嫩草影院新地址| 国产成人a∨麻豆精品| 能在线免费看毛片的网站| 久久久久网色| 一级毛片 在线播放| 日韩av不卡免费在线播放| 国产精品不卡视频一区二区| 国产探花极品一区二区| 亚洲精品视频女| 哪个播放器可以免费观看大片| 99久久精品热视频| 国产成人精品婷婷| 91久久精品国产一区二区三区| 亚洲精品国产色婷婷电影| 日本wwww免费看| 大片电影免费在线观看免费| 亚洲av电影在线观看一区二区三区| 校园人妻丝袜中文字幕| 精品久久久精品久久久| 在现免费观看毛片| 秋霞在线观看毛片| 纯流量卡能插随身wifi吗| 91成人精品电影| 国产av一区二区精品久久| 伊人久久精品亚洲午夜| 少妇丰满av| 久久97久久精品| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 色吧在线观看| 成人二区视频| 波野结衣二区三区在线| 午夜激情久久久久久久| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| 91精品一卡2卡3卡4卡| 91aial.com中文字幕在线观看| 日韩强制内射视频| 建设人人有责人人尽责人人享有的| 午夜福利,免费看| 日本黄大片高清| 日本猛色少妇xxxxx猛交久久| 欧美精品亚洲一区二区| 亚洲精品一二三| av播播在线观看一区| 观看美女的网站| 久久国内精品自在自线图片| 99re6热这里在线精品视频| 欧美日韩精品成人综合77777| 日日摸夜夜添夜夜爱| 超碰97精品在线观看| 青春草视频在线免费观看| 国产欧美日韩精品一区二区| 观看免费一级毛片| 黄色欧美视频在线观看| 亚洲欧美日韩东京热| 久久人妻熟女aⅴ| 亚洲精品日韩av片在线观看| 日韩av免费高清视频| 人妻人人澡人人爽人人| 日本91视频免费播放| 久久久亚洲精品成人影院| 国产日韩一区二区三区精品不卡 | 午夜91福利影院| 十八禁高潮呻吟视频 | a 毛片基地| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| 亚洲色图综合在线观看| 熟妇人妻不卡中文字幕| 在线看a的网站| 亚洲精品久久午夜乱码| 91成人精品电影| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 在线观看www视频免费| 欧美激情极品国产一区二区三区 | 麻豆成人av视频| 寂寞人妻少妇视频99o| 我要看日韩黄色一级片| 十八禁高潮呻吟视频 | 国产成人a∨麻豆精品| 在线观看免费视频网站a站| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 亚洲丝袜综合中文字幕| 色94色欧美一区二区| 久久久久久久久久久久大奶| 69精品国产乱码久久久| 亚洲内射少妇av| 99久久综合免费| 女性被躁到高潮视频| 婷婷色av中文字幕| 成年女人在线观看亚洲视频| 大陆偷拍与自拍| 国产午夜精品久久久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 久久久久久久精品精品| 国产淫片久久久久久久久| 丝瓜视频免费看黄片| 亚洲欧美成人精品一区二区| 国产免费一级a男人的天堂| 搡女人真爽免费视频火全软件| 亚洲精品国产色婷婷电影| av不卡在线播放| 香蕉精品网在线| 国产精品国产av在线观看| 九九在线视频观看精品| 如日韩欧美国产精品一区二区三区 | 国产伦精品一区二区三区视频9| 亚洲精品久久午夜乱码| 国内精品宾馆在线| 一级av片app| 国产欧美日韩精品一区二区| av天堂中文字幕网| 最后的刺客免费高清国语| 精品人妻熟女av久视频| 涩涩av久久男人的天堂| 黄色一级大片看看| 69精品国产乱码久久久| 视频中文字幕在线观看| 国产精品99久久99久久久不卡 | 国产一区二区在线观看日韩| 中文精品一卡2卡3卡4更新| av不卡在线播放| 2022亚洲国产成人精品| 亚洲精品,欧美精品| 色婷婷av一区二区三区视频| 91久久精品国产一区二区三区| 插阴视频在线观看视频| 少妇熟女欧美另类| 精品视频人人做人人爽| 尾随美女入室| 精品国产一区二区三区久久久樱花| 成人黄色视频免费在线看| 精品国产国语对白av| av专区在线播放| 日本与韩国留学比较| 国产免费一区二区三区四区乱码| 人人妻人人爽人人添夜夜欢视频 | 大香蕉久久网| 黑人高潮一二区| 国产美女午夜福利| 老司机影院毛片| 一级片'在线观看视频| 99热这里只有是精品在线观看| 女人久久www免费人成看片| 777米奇影视久久| 免费在线观看成人毛片| .国产精品久久| 国产亚洲91精品色在线| 建设人人有责人人尽责人人享有的| .国产精品久久| 国产视频首页在线观看| 精品亚洲乱码少妇综合久久| 久久久午夜欧美精品| 99久久综合免费| 99久久精品一区二区三区| 五月伊人婷婷丁香| 久久久久国产精品人妻一区二区| 一级毛片黄色毛片免费观看视频| 美女xxoo啪啪120秒动态图| 欧美成人午夜免费资源| 欧美亚洲 丝袜 人妻 在线| 大码成人一级视频| 少妇的逼好多水| 亚洲熟女精品中文字幕| 男人舔奶头视频| 国产精品免费大片| 午夜激情福利司机影院| 国产伦理片在线播放av一区| 精品久久久久久久久亚洲| 最后的刺客免费高清国语| 国产伦精品一区二区三区四那| 蜜臀久久99精品久久宅男| 久久6这里有精品| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 精品少妇久久久久久888优播| 国产日韩欧美亚洲二区| 国内少妇人妻偷人精品xxx网站| 精品一区在线观看国产| 妹子高潮喷水视频| 大香蕉久久网| 一本—道久久a久久精品蜜桃钙片| 国产老妇伦熟女老妇高清| 久热这里只有精品99| 国产极品天堂在线| 亚洲,一卡二卡三卡| 亚洲综合精品二区| 亚洲av成人精品一区久久| 久久国产精品大桥未久av | 一级毛片久久久久久久久女| 韩国av在线不卡| 少妇的逼水好多| 亚洲精品亚洲一区二区| 亚洲国产精品一区三区| 韩国av在线不卡| 免费看不卡的av| 国内少妇人妻偷人精品xxx网站| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| videos熟女内射| 少妇裸体淫交视频免费看高清| 日韩一区二区视频免费看| 国产精品成人在线| 中国国产av一级| 老司机影院成人| 国产色爽女视频免费观看| 高清午夜精品一区二区三区| 日韩三级伦理在线观看| 在现免费观看毛片| 国产淫语在线视频| 制服丝袜香蕉在线| 啦啦啦在线观看免费高清www| 在现免费观看毛片| 亚洲国产毛片av蜜桃av| 国产白丝娇喘喷水9色精品| 少妇人妻 视频| 一区二区三区免费毛片| 乱码一卡2卡4卡精品| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 精品亚洲乱码少妇综合久久| 精品人妻熟女毛片av久久网站| 欧美日韩在线观看h| 国产黄片视频在线免费观看| 18禁动态无遮挡网站| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜爱| 男人狂女人下面高潮的视频| 亚洲在久久综合| 婷婷色麻豆天堂久久| 久久午夜综合久久蜜桃| 搡老乐熟女国产| 老司机影院成人| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品| 9色porny在线观看| 国产精品蜜桃在线观看| 日韩熟女老妇一区二区性免费视频| 草草在线视频免费看| 免费av中文字幕在线| a 毛片基地| 日韩视频在线欧美| 波野结衣二区三区在线| 一区二区av电影网| 一本久久精品| 精品一品国产午夜福利视频| 日韩av在线免费看完整版不卡| 18禁在线播放成人免费| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 国产欧美另类精品又又久久亚洲欧美| 久久久久精品性色| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 亚洲成人一二三区av| 内射极品少妇av片p| 成人国产麻豆网| 国产精品女同一区二区软件| 国产视频内射| 亚洲国产精品999| 亚洲精品乱码久久久久久按摩| 9色porny在线观看| 午夜精品国产一区二区电影| 波野结衣二区三区在线| 久久久久视频综合| 最近2019中文字幕mv第一页| 午夜影院在线不卡| 欧美xxⅹ黑人| 欧美另类一区| 日韩一区二区三区影片| 欧美日本中文国产一区发布| 26uuu在线亚洲综合色| 毛片一级片免费看久久久久| 美女视频免费永久观看网站| 亚洲中文av在线| 大码成人一级视频| 精品99又大又爽又粗少妇毛片| av天堂中文字幕网| 午夜激情久久久久久久| 久久国内精品自在自线图片| av专区在线播放| 欧美日韩在线观看h| 在线观看免费高清a一片| 亚洲av成人精品一区久久| 国产精品国产三级专区第一集| 日韩成人av中文字幕在线观看| 成年av动漫网址| 最近中文字幕2019免费版| 大码成人一级视频| 中文乱码字字幕精品一区二区三区| 久久婷婷青草| 亚洲熟女精品中文字幕| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 69精品国产乱码久久久| 午夜91福利影院| av视频免费观看在线观看| 日韩精品有码人妻一区| 欧美性感艳星| 美女视频免费永久观看网站| 国产av精品麻豆| 多毛熟女@视频| 丝袜在线中文字幕| 国产av码专区亚洲av| 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频 | 久久久久国产网址| 亚洲av.av天堂| 水蜜桃什么品种好| 中国美白少妇内射xxxbb| 国产精品秋霞免费鲁丝片| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 极品人妻少妇av视频| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 看非洲黑人一级黄片| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 久久久久久久久大av| 国产黄色视频一区二区在线观看| 麻豆成人av视频| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 老司机影院毛片| 成人影院久久| 久久精品国产鲁丝片午夜精品| 日韩一本色道免费dvd| 亚洲色图综合在线观看| tube8黄色片| 熟女电影av网| 美女中出高潮动态图| 国产极品天堂在线| 欧美成人午夜免费资源| 少妇的逼好多水| 中文资源天堂在线| 18禁在线无遮挡免费观看视频| 亚洲av日韩在线播放| 三级国产精品片| 国产一区二区在线观看日韩| 成人美女网站在线观看视频| 美女xxoo啪啪120秒动态图| 黄色日韩在线| 下体分泌物呈黄色| 哪个播放器可以免费观看大片| av在线app专区| 男女边吃奶边做爰视频| 免费大片黄手机在线观看| 一级毛片我不卡| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久久免| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看| 日日爽夜夜爽网站| 高清黄色对白视频在线免费看 | 美女主播在线视频| 国产成人精品一,二区| 青春草亚洲视频在线观看| 亚洲经典国产精华液单| 简卡轻食公司| 99热国产这里只有精品6| 日本欧美视频一区| 天美传媒精品一区二区| 成年美女黄网站色视频大全免费 | 麻豆成人av视频| 午夜91福利影院| 男女边摸边吃奶| 午夜精品国产一区二区电影| 国产国拍精品亚洲av在线观看| 内射极品少妇av片p| 婷婷色综合www| 亚洲真实伦在线观看| 亚洲精品一区蜜桃| 欧美国产精品一级二级三级 | 国产老妇伦熟女老妇高清| 亚洲美女黄色视频免费看| 精品亚洲成国产av| 美女xxoo啪啪120秒动态图| 国产av精品麻豆| 国产中年淑女户外野战色| 亚洲欧美成人综合另类久久久| 亚洲丝袜综合中文字幕| 久久 成人 亚洲| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 高清欧美精品videossex| 亚洲真实伦在线观看| 涩涩av久久男人的天堂| 国产日韩一区二区三区精品不卡 | 男人舔奶头视频| 久久精品国产亚洲av天美| √禁漫天堂资源中文www| 国产成人精品福利久久| 亚洲四区av| 亚洲欧美精品专区久久| 丁香六月天网| 欧美性感艳星| 天堂中文最新版在线下载| 成人二区视频| 国产亚洲91精品色在线| 九草在线视频观看| 精品人妻熟女av久视频| 草草在线视频免费看| 国产午夜精品一二区理论片| videossex国产| 日产精品乱码卡一卡2卡三| 久久精品国产鲁丝片午夜精品| 国产高清国产精品国产三级| 插逼视频在线观看| 热re99久久精品国产66热6| 各种免费的搞黄视频| 国产精品99久久久久久久久| 老司机影院成人| 看非洲黑人一级黄片| a级一级毛片免费在线观看| 精品少妇内射三级| 亚洲激情五月婷婷啪啪| av在线app专区| 免费大片18禁| 精品熟女少妇av免费看| 国产精品蜜桃在线观看| 国国产精品蜜臀av免费| 国产av精品麻豆| 热re99久久精品国产66热6| 亚洲av福利一区| 成年人免费黄色播放视频 | 九九在线视频观看精品| 超碰97精品在线观看| 中文精品一卡2卡3卡4更新| 国产在线免费精品| 免费黄色在线免费观看| 最近最新中文字幕免费大全7| 人人妻人人爽人人添夜夜欢视频 | 成人亚洲欧美一区二区av| 一级黄片播放器| 国产精品国产三级国产av玫瑰| 国产伦在线观看视频一区| 老司机影院成人| 亚洲欧洲国产日韩| kizo精华| 热99国产精品久久久久久7| 少妇被粗大猛烈的视频| a级一级毛片免费在线观看| 亚洲国产最新在线播放| 国产午夜精品久久久久久一区二区三区| 免费少妇av软件| 在线观看免费高清a一片| 亚洲精品久久久久久婷婷小说| tube8黄色片| 日日爽夜夜爽网站| 午夜日本视频在线| 国产一区有黄有色的免费视频| 亚洲,一卡二卡三卡| 午夜日本视频在线| 亚洲av成人精品一区久久| 91久久精品国产一区二区成人| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| 国精品久久久久久国模美| 午夜日本视频在线| 亚洲av成人精品一区久久| 啦啦啦视频在线资源免费观看| 这个男人来自地球电影免费观看 | 天天操日日干夜夜撸| 国产在线一区二区三区精| 在线观看美女被高潮喷水网站| 成人毛片a级毛片在线播放| 丝瓜视频免费看黄片| 久久综合国产亚洲精品| 交换朋友夫妻互换小说| 精品人妻一区二区三区麻豆| 最近中文字幕高清免费大全6| 亚洲精品亚洲一区二区| 亚洲av成人精品一区久久| 男男h啪啪无遮挡|