• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time programmable coding metasurface antenna for multibeam switching and scanning

    2022-09-24 07:59:32JiaYuYu余佳宇QiuRongZheng鄭秋容BinZhang張斌
    Chinese Physics B 2022年9期
    關鍵詞:劉杰張斌

    Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(鄭秋容), Bin Zhang(張斌),

    Jie He(賀杰), Xiang-Ming Hu(胡湘明), and Jie Liu(劉杰)

    Information and Navigation College,Air Force Engineering University,Xi’an 710077,China

    Keywords: programmable coding metasurface,multibeam modulation,real-time control,antenna

    1. Introduction

    Metasurfaces, artificial electromagnetic (EM) metamaterials constructed in two dimensions, consist of subwavelength elements arranged periodically or nonperiodically over a surface.[1]Due to the unique and intriguing tailoring of EM wave properties, in recent decades, metasurfaces have been extensively and attractively investigated in the frequency domain,varying from acoustic to optical.[2-8]They provide new platforms and play efficient devices for achieving novelty behaviors,such as negative refraction,[4]invisibility cloaking,[6]and optical illusion,[8]that are scarcely possible to tune with natural materials. Moreover, compared to the conventional EM wave modulation method,metasurfaces enjoy low profile,mass and cost,which aids in the development of integrated and light-weight systems.

    Recently, coding metasurfaces characterized by binary numbers have evolved as a result of the pursuits in highfreedom metamaterial research. By modifying the topology structure of the unit cells, several relatively fixed coding modes are quantized from EM medium parameters. This approach offers a highly flexible mechanism and a simplified process for designing metasurface functionality.[9-13]In Ref. [12], X-shaped digital metasurfaces are used to convert the circularly polarized (CP) incident waves into bi-foci with direct spatial-power editing, adopting dual geometric phase coding. Furthermore, on the same metasurface platform, active reconfigurable metasurfaces embedded with tunable materials or active components can produce dynamic transitions of diverse EM responses.[14-20]Utilizing a field-programmable gate array (FPGA) control module, in Ref. [18], the author proposed a transmissive metasurface placing two positiveintrinsic-negative (PIN) diodes on the radiating layer, which can efficiently generate orbital angular momentum (OAM)vortex waves with multimode convergent switching. Instead of relying on cell shape modifications to acquire the desired performance,active metasurfaces can actualize versatile propagation features on uniform elements as needed,breaking the constraints of passive structures,whose EM responses are difficult to alter once the design is finalized.This dramatically expands the design freedom and system application of metasurfaces in the reflection half space and reflection-transmission full space. Consequently,such programmable active metasurfaces are paving the way for antennas,imaging,and new wireless interactive systems to be explored.

    With the advancement of wireless technology,multibeam antennas are now capable of concurrently covering multiple target areas and achieving multichannel transmission via spatial beam isolation, which promotes the frequency utilization and system communication capacity. Adopting an elaborate phase-shift network, phased array antennas can flexibly construct desired multiple beams by controlling the amplitude and phase of EM waves. However,these widely applied antennas with excellent radiation performance contain complex control circuits and bulky expensive equipment,which are rarely conducive to miniaturized design. Compared with large-scale phased array antennas, the emergence of metasurfaces provides a novel way for multibeam forming. In Ref.[21],when the metasurface patch antenna is separately fed from disparate ports,the narrow beams are shifted in different directions with a suppressed sidelobe. A broadband transmission-mode coding metasurface is also presented in Ref.[22],using frequency variation to steer twin beams in symmetrical directions with a scanning range of 30°-50.5°. Similarly, multiple beams can be guided by reflective and transmissive metasurface antennas by means of geometric partitioning, periodic sequence coding, and amplitude-phase modulation. Although no feed network is required, these passive designs of the unit cell limit the application to a restricted area because the beam direction is relatively fixed once the meta-atom configuration is defined.Driven by the increased demand, programmable metasurface antennas have garnered more attention in the dynamic beams editing. There are now limits in the upper half space of reflective metasurface antennas,[23-26]which can only be dynamically switched for a symmetric multibeam or an asymmetric dual beam,due to design flaws in active devices or differences in multibeam generating methods. Therefore,high-efficiency,low-cost,and flexible multibeam antenna design is still an unremitting pursuit in the wireless field of multichannel transmission and radar detection.

    Fig.1. Schematic diagram of the presented real-time programmable multibeam metasurface antenna.

    A programmable reflective array antenna based on active metasurface elements (AMSEs) is presented to achieve independent generation and real-time dynamic modulation of multiple beams. This single-feed antenna features radiation and phase-shift functions thanks to an array of 32×32 X-band 1-bit phase-reconfiguration metasurface elements and FPGA control modules. A schematic diagram is depicted in Fig. 1.Without massive algorithm optimization,by utilizing the aperture field superposition strategy, directive beams of different numbers and large coverage angle domains are agilely acquired in the upper half space of the metasurface. Owing to its large array size, simulations and experiments validate that the electronically reconfigurable antenna can execute multibeam scanning and state switching with good performance in directionality and simplicity. It has promising applications in multitarget radar, satellite navigation and other wireless multichannel systems.

    2. Design and discussion

    2.1. Design of the AMSE

    A structural diagram of the AMSE is exhibited in Fig. 2(a), which consists of a classic three-layer metal structure adopting the resonance tuning method. On the top, a copper rectangular patch embedded with a PIN diode,is connected through two metallic via holes to the ground (GND)plate and a DC bias circuit network to switch the resonant state.Serving to fully reflect incident waves,the metal GND is situated in the middle slotted with a single hole,while the DC circuit carrying the bias voltage is printed on the bottom layer.Additionally, Taconic TLX-8(εr=2.55 and tanδ=0.0019)and FR4(εr=4.4 and tanδ=0.025)act as the drilled dielectric substrates between the three metallic layers,whose thicknesses are 1.58 mm and 0.5 mm, respectively. The other parameters of the AMSE structure arep=16 mm,lx=6.3 mm,ly=9.6 mm. In the microwave working band,the equivalent circuit of the selected PIN diode(Skyworks SMP1320)in the on state consists ofRON=0.5 Ω andLON=0.7 nH,and that in the off state consists ofLOFF=0.5 nH andCOFF=0.24 pF,both in series and with low insertion loss.

    Fig. 2. (a) Perspective view and geometric structure, (b) simulated amplitude and phase results for AMSE.

    The simulated on/off state amplitudes and phases of reflected waves for the proposed AMSE are displayed in Fig.2(b).Simulated by CST Studio Suite,the reflection losses are less than 0.9 dB and the phase difference is 180°±20°in 9.3 GHz-9.5 GHz, which are acceptable for the 1-bit phasereconfiguration requirement. Therefore, equipped with both radiation and phase-switching capabilities, the AMSE can facilely implement the binary states “0” and “1” through its reversed modes.

    2.2. Theoretical method

    In the schematic diagram of reflective planar array antenna illustrated in Fig.3(a),the spherical EM wave originating from the horn feed needs to form an equal-phase wavefront on the array plane, and the required phase compensation for each elementEmn(m,n)is

    wherek0=2π/λ0denotes the wavenumber in free space.Rfmnis the distance between the feed source phase center and each particle in the reflectarray surface, andFis the focal length.To produce multiple independent-directivity pencil beams in the far field, by exploiting the superposition of the aperture fields correlated with each beam, the distribution after phase summation should satisfy the following relationship:

    whereul=(sinθlcosφl,sinθlsinφl)refers to the unit projection vector of thel-th beam aimed at(θl,φl)on thexoyplane.Next,the addition theorem is introduced for conversion into a plane wave and to yield a multibeam,[25]in which the phase distribution on the surface can be expressed as

    Δφ,a constant,is the reference phase of the metasurface center.Consequently,once the phase coding sequence is acquired,for this metasurface antenna,the far-field multibeam radiation pattern is approximately obtained in accordance with the classical reflectarray antenna theory.[27]

    Here,θandφdenote the elevation and azimuth angles in the spherical coordinate system. The amplitude excited on each element is represented byAe(m,n), and the radiation pattern is expressed as cosqeθ,which is based on an approximate cosine mode.

    Fig. 3. Generation of a four-beam aimed at elevation and azimuth angles of (25°, 30°), (30°, 135°), (22°, 220°), and (30°, 300°). (a) Reflective planar array antenna schematics. (b)Simulated normalized 2D radiation pattern in the u-v coordinate system. (c)Quantized phase distribution. (d)Compensated phase distribution. (e)Phase distribution after aperture field superposition. (f)Phase distribution after addition.

    Assuming the predesigned four-beam is located at elevation and azimuth angles of (25°, 30°), (30°, 135°), (22°,220°), and (30°, 300°), figures 3(c)-3(f) show the phase distributions in each processing step, and the normalized twodimensional(2D)radiation pattern in theu-vcoordinate system (u=sinθcosφ, v=sinθsinφ) is depicted in Fig. 3(b),calculated on the basis of the aforementioned equations.

    2.3. Simulation and analysis

    To validate the radiation performance, a full-wave calculation is executed using CST Studio Suite with open (add space) boundary conditions, and the far-field monitor is set at 9.37 GHz. A lumped element is selected to emulate the on/off state of the diode on the element surface,i.e., 0 or 1 encoding in Eq. (4). The metasurface section of the reflectarray antenna comprises 32×32 AMSEs,occupying an area of 512 mm×512 mm. With a radiation gain of 10.7 dB and a 3-dB bandwidth of 52°, an X-band linearly polarized horn antenna is mounted 410 mm(F/D=0.8)above the plane as a focal source, making a compromise between the spillover efficiency and the illumination efficiency.[17]By altering the precalculated coding sequence,various scatter patterns will be induced in the upper half space of the two-dimensional sur-

    Fig. 4. Simulated radiation patterns of a five-beam and a four-beam: (a)five-beam settling at elevation angle θ =20°, (b) four-beam in φ =135°plane.

    The multibeam generation at identical elevation angle and different azimuths is displayed in Fig. 4(a), where the fivebeam settles at an elevation angleθ=20°with even allocation of the azimuths within 360°. From the simulated result, five distinguished main lobes formed with uniform radiation energy. The gain is approximately 21.51 dB and the half-power bandwidth(HPBW)is dispersed around 3.7°for these beams,while the sidelobe level (SLL) is less than-11 dB in each azimuth, suggesting good beamforming capability. In addition,Table 1 gives the average gain of the five equally spaced beams at different fixed elevation angles, which deteriorates with an increscent field angle,as expected. In turn,for beams of the same azimuth and diverse elevation angles, similar results can be obtained. When the directions are preset to(38°,135°),(20°,135°),(15°,315°),and(38°,315°),as in the onedimensional(1D)pattern shown in Fig.4(b),four recognizable pencil-shaped beams are observed. The two laterally symmetric beams pointing at 37.9°and 38.0°have slightly less power than the two asymmetric beams pointing at 20.9°and 15.0°in the middle. The HPBWs of this four-beam vary from 3.7°to 4.0°, which keeps the beam direction deviation within the tolerable range. The simulation indicates that this metasurface reflectarray antenna has the ability to manipulate spherical EM wave illumination into independent-direction multiple beams in both the elevation and azimuth dimensions.

    Table 1. Average gain of the five-beam at different fixed elevations.

    On the basis of fixed elevation and azimuth angles,to further illustrate the versatility of beam generation, the study is extended to the configuration and dynamic manipulation of beams with arbitrary pointing directions and various numbers.As demonstrated in Figs.5(a)and 5(b),this reconfigurable antenna is capable of producing asymmetric two-beam and threebeam with excellent radiation performance. The simulated beam directions of(11°,225°)and(33°,315°)and of(5°,0°),(20°,180°)and(30°,315°)well match the predesigned angles.More beams than these cases can also be received despite the reduction in scattering power. While the simulated six-beam pointing at(22°,0°),(10°,90°),(10°,270°),(15°,180°),(21°,135°),and(21°,225°)has unambiguous directivity,the overall performance is poorer in terms of variable main lobe magnitude or high SLL, as illustrated in Fig. 5(c). The formation of the seven-beam in Fig. 5(d), whose simulated deflections are (0°, 0°), (11°, 90°), (11°, 270°), (20°, 90°), (20°, 270°),(31°,0°),and(31°,180°),reflects a similar situation. Following that, four-beam with the same preset angles are depicted in Figs.5(e)and 5(f)using 16×16 and 32×32 reflectarrays,respectively. The former beam splits into five beams and fails to create directional pencil beams, in contrast to the distinct scattering state of the latter four-beam,illustrating that the array size has a considerable influence on the aperture field superposition. Furthermore,the coding sequence was calculated using an optimization method with precomputed angles of(0°,0°), (10°, 320°), (15°, 45°), (20°, 150°), and (25°, 240°). In comparison to the unoptimized three-dimensional(3D)pattern(Fig. 5(g)), the optimized 3D pattern (Fig. 5(h) has a smaller SLL and a modest difference in main lobe gain.

    Fig.5. Simulated 3D radiation patterns: (a)two-beam pointing at(11°,225°)and(33°,315°);(b)three-beam pointing at(5°,0°),(20°,180°),and(30°,315°);(c)six-beam pointing at(22°,0°),(10°,90°),(10°,270°),(15°,180°),(21°,135°),and(21°,225°);(d)seven-beam pointing at(0°,0°),(11°,90°),(11°,270°),(20°,90°),(20°,270°),(31°,0°),and(31°,180°). Four-beam pointing at(22,45°),(22°,135°),(16°,225°)and(16°,315°)realized with(e)a 16×16 reflectarrays and(f)a 32×32 reflectarrays. Five-beam pointing at(0°,0°),(10°,320°),(15°,45°),(20°,150°)and(25°,240°)simulated by(g)unoptimized sequence and(h)optimized sequence.

    From the preceding illustrative examples, large angular pointing and a limited number of multiple beams can be achieved by the programmable coding metasurface antenna.When the number of beams is less than 6,the required beams have comparable gains, and the radiation waveforms are independent and uniform. Meanwhile, since the deviations are all less than 1°, the pointing is acceptable compared to the HPBWs. Nevertheless, as the number of beams grows, the difference in the SLL and the main lobe amplitude shrinks due to the coupling effect between the units.In fact,the multibeam radiation performance is significantly related to the surface dimensions. On the one hand, the more units there are on the surfaces, the lower the SLL generated and the more uniform the gain and waveform of the desired beams. On the other hand, the 1-bit quantization, although facilitating the subsequent control of the physical circuit,causes phase discontinuities that have inevitable effects on the scattering properties of the antenna. Hence, in the numerical theory calculation process, the optimization algorithm is applied to procure the ideal phase distribution, which can promote the radiation energy uniformity of the preset beams in different angular domains and enhance the adaptability of the phase-only metasurface antenna to some extent.

    3. Experiment and comparison

    3.1. Experiments and results

    As an experimental verification, utilizing printed circuit board (PCB) technology, the array antenna prototype shown in Figs. 6(a) and 6(b) is machined and fabricated. It contains a metasurface reflector, a horn feed, and a polymethyl methacrylate support structure. To achieve flexible expansibility in the future, the reflective portion is assembled by four compact metasurface subarrays with a total area of 4×256 mm×256 mm.The metasurfaces cover a two-layer dielectric substrate inlaid with printed circuits, diodes, and FPGA control modules through miniaturized design. As shown in Fig. 6(c), the control modules are made up of 4×4 ALTERA Cyclones connected in parallel to receive and process the coded information from the computer, as well as control the bias circuit voltage to steer the on/off state of the PIN diodes on the 32×32 AMSEs in real time, resulting in the phase state changing once in only every 2μs.

    Fig. 6. Metasurface antenna and experiment: (a) manufactured prototype,photographs of(b)AMSEs and(c)FPGA control modules,(d)test environment.

    Therefore, the radiation and phase-shift are both integrated into the reflection plane,meaning that the scanning and state switching of the EM wave beams can be dynamically turned in real time by programming. The experiment is implemented in a standard microwave anechoic chamber shown in Fig.6(d),where the antenna prototype is placed on a turntable and a custom-made X-band horn used as the feed source is set in front of the surface geometric center with a focal length ofF=410 mm. Simultaneously,as a detector,a broadband horn antenna is used to test the far-field radiation of the reflectarray antenna. The horns are linked to the two ports of a vector network analyzer(Anritsu MS4644A),and the observation frequency point is selected at 9.37 GHz.

    On the one hand,the multibeam scanning function of the metasurface antenna is inspected. Three orthogonal beams,including a symmetric double-beam on theφ=0°plane(xozplane)and a single-beam on theφ=90°plane(yozplane),are scanned with equal gradients in the elevation direction,where the normalized patterns at 10°intervals are selectively shown in Figs. 7(a)-7(c). The simulation and test radiation results are basically in agreement,and the main lobe pointing at each elevation angle remains consistent with the calculation,which proves the accurate dynamic modulation of multibeam scanning in different orientations. Meanwhile, a decreased gain and an increased 3-dB bandwidth would be observed when the orthogonal beams are stepwise separated. The low gain at the 10°azimuth is caused by the blocking effect. On the other hand, the multibeam switching of the programmable antenna is tested. Considering the experimental conditions,the multibeam is chosen to be generated in three observation planes ofφ= 0°,φ= 45°, andφ= 135°, and the far-field patterns are shown in Figs. 7(d)-7(i). In conjunction with copolarization and cross-polarization,the measured results show that the main lobes of the beams are roughly in line with the simulation results,demonstrating the feasibility of multibeam generating and switching multiple beams of different numbers and directivity. Due to factors such as manufacturing tolerances and measurement alignment,together with edge diffraction and specular reflection, there is a certain degree of measurement discrepancies in the experiment results.

    Fig.7. Simulated and experimental results: (a)simulated 3D radiation pattern for three-beam scanning at θ =30°. Simulated and measured normalized gain for three-beam scanning in the φ =0° (b)plane and φ =90° plane(c). (d)Simulated 3D radiation pattern of a four-beam pointing at(29°,45°),(19°,135°),(29°,225°),and(19°,315°). Simulated and measured normalized gain of the four-beam in the φ =45° (e)plane and φ =135° plane(f). (g)Simulated 3D radiation pattern of a five-beam pointing at(10°,0°),(20°,180°),(30°,180°),(19°,135°),and(29°,315°). Simulated and measured normalized gain of the five-beam in the φ =0° (h)plane and φ =135° plane(i).

    For the aperture efficiency of the multibeam antenna,with reference to Ref.[23],the modification is expressed as

    whereLdenotes the number of generated main beams andArepresents the aperture area. Taking into account the tested gains of the beams, the calculated aperture efficiencies of the generated five-beam and four-beam are 28.6%and 23.7%,respectively. The main loss mainly comes from the spillover effect and element loss.

    Despite the slight effect of the DC circuit on the phase distribution, in general, the overall radiation performance of the large-size metasurface antenna is positive, and the feasibility of the electronic-controlled multibeam generation is fully verified by experiments. The superiority of the proposed reconfigurable antenna is that only programmable processing of the FPGA is needed,and both radiation and phase-control can be completed by the antenna surface itself,which is conducive to the development of metasurface integration and low-cost array antennas.

    3.2. Performance comparison

    Table 2 shows the performance comparison based on metasurface antennas that can generate multiple beams regardless of the feeding surface or radiation surface. Among them, the authors in Ref.[22]achieved a frequency-scanning of symmetric dual beams by varying the input frequency,while scanning of three symmetric fan-beam is realized by switching over multiple feed points in Ref. [28]. Employing only a single feed source, four asymmetric circularly polarized beams are generated by a Berry phase transmission array in Ref. [29], which has excellent aperture efficiency. In addition, the electronically controlled antenna based on a single chip microcomputer can switch the beam state by transforming the coding sequence.[24]The proposed programmable reflectarray antenna has the advantages of a large number of beams,a high aperture efficiency and beam scanning/switching behavior through real-time variable modulation.

    Table 2. Comparison with other multibeam metasurface antennas.

    4. Conclusion

    In this paper,we proposed a programmable coding metasurface antenna that achieves agile-independent modulation of a dynamic multibeam with a single feed. Assisted by the strategies of aperture field superposition and phase discretization, the required coding sequence for an arbitrary pointing multibeam can be instantly obtained by a computer. Under the real-time control of FPGAs,32×32 1-bit phase reconfigurable active metasurface elements form the surface to provide radiation and phase-shift functions. As experimental verification, large angular scanning of orthogonal three-beam and state switching of four- and five-beam demonstrate accurate directionality and favorable HPBW, with an acceptable SLL.Notably,the metasurface antenna enabled by tunable elements has effectiveness and feasibility of EM wave manipulation in real time,and this novel design scheme has promising potential for application in multitarget radar, satellite navigation,and reconfigurable intelligent metasurfaces.

    猜你喜歡
    劉杰張斌
    Effects of irradiation on superconducting properties of small-grained MgB2 thin films
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
    Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長安塔
    金秋(2018年12期)2018-09-17 09:33:08
    李梅梅、劉杰作品
    色综合欧美亚洲国产小说| 1024香蕉在线观看| 在线国产一区二区在线| 亚洲精品中文字幕一二三四区| 国产精品亚洲美女久久久| 大型av网站在线播放| 免费在线观看影片大全网站| 欧美一级a爱片免费观看看 | 成年免费大片在线观看| 精品久久久久久久久av| 欧美日韩综合久久久久久 | 国产麻豆成人av免费视频| 亚洲国产精品sss在线观看| 99热这里只有精品一区| 欧美性猛交黑人性爽| 人人妻,人人澡人人爽秒播| 赤兔流量卡办理| 长腿黑丝高跟| 国产单亲对白刺激| 欧美成人a在线观看| 国产伦在线观看视频一区| 免费观看的影片在线观看| 中国美白少妇内射xxxbb| 国产成人av教育| 91麻豆精品激情在线观看国产| 国产视频内射| 波多野结衣高清作品| av天堂中文字幕网| 国产蜜桃级精品一区二区三区| 国产伦一二天堂av在线观看| 免费看av在线观看网站| 国产免费一级a男人的天堂| 成熟少妇高潮喷水视频| 精品欧美国产一区二区三| 天堂√8在线中文| 日韩人妻高清精品专区| 又黄又爽又免费观看的视频| 97超级碰碰碰精品色视频在线观看| 淫秽高清视频在线观看| 亚洲电影在线观看av| 校园春色视频在线观看| 国产精品久久视频播放| 深夜精品福利| 女同久久另类99精品国产91| 欧美潮喷喷水| 夜夜爽天天搞| 色噜噜av男人的天堂激情| 变态另类成人亚洲欧美熟女| 亚洲欧美激情综合另类| 听说在线观看完整版免费高清| 身体一侧抽搐| 在线国产一区二区在线| 乱码一卡2卡4卡精品| 精品乱码久久久久久99久播| 国产视频内射| 国产私拍福利视频在线观看| 亚洲电影在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成网站高清观看| 欧美色欧美亚洲另类二区| av视频在线观看入口| 久久精品久久久久久噜噜老黄 | 久久草成人影院| 午夜影院日韩av| 国产精品国产高清国产av| 亚洲国产日韩欧美精品在线观看| 午夜福利在线观看吧| 在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 午夜日韩欧美国产| 直男gayav资源| 国产中年淑女户外野战色| 哪里可以看免费的av片| 日韩一本色道免费dvd| 久久久久久久久久成人| 久久精品国产亚洲网站| 国产黄a三级三级三级人| 老熟妇乱子伦视频在线观看| 亚洲人成网站高清观看| 国产v大片淫在线免费观看| a级毛片免费高清观看在线播放| 成人三级黄色视频| 国产女主播在线喷水免费视频网站 | 十八禁网站免费在线| 亚洲国产精品sss在线观看| 在线天堂最新版资源| 欧美人与善性xxx| 女人被狂操c到高潮| 日韩 亚洲 欧美在线| a级毛片a级免费在线| av天堂在线播放| 日韩精品中文字幕看吧| a级一级毛片免费在线观看| 村上凉子中文字幕在线| 成人一区二区视频在线观看| 久99久视频精品免费| 亚洲性夜色夜夜综合| 麻豆成人av在线观看| 中文字幕久久专区| 亚洲三级黄色毛片| 国产精品嫩草影院av在线观看 | 日本 av在线| 免费观看精品视频网站| 亚洲精品456在线播放app | 啦啦啦观看免费观看视频高清| 此物有八面人人有两片| 身体一侧抽搐| 久久久久免费精品人妻一区二区| 久久久久久久久久成人| 欧美3d第一页| 免费观看的影片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲真实伦在线观看| 婷婷精品国产亚洲av在线| 人妻夜夜爽99麻豆av| 亚洲三级黄色毛片| 亚洲欧美日韩卡通动漫| 黄色女人牲交| 一级a爱片免费观看的视频| 精品久久久久久久久久久久久| 日本 欧美在线| 一区二区三区四区激情视频 | 久久久久精品国产欧美久久久| 午夜激情福利司机影院| 久久久久国内视频| 深爱激情五月婷婷| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩无卡精品| 12—13女人毛片做爰片一| 一区二区三区激情视频| 亚洲av五月六月丁香网| 大又大粗又爽又黄少妇毛片口| 又爽又黄无遮挡网站| 午夜激情欧美在线| 国产国拍精品亚洲av在线观看| 国产精品一区二区性色av| 全区人妻精品视频| 国产高清不卡午夜福利| 亚洲在线观看片| 老女人水多毛片| 国内久久婷婷六月综合欲色啪| 校园春色视频在线观看| 99热这里只有精品一区| 午夜福利视频1000在线观看| 欧美一区二区亚洲| 久久精品影院6| 哪里可以看免费的av片| 黄片wwwwww| 国产精品99久久久久久久久| 美女高潮的动态| 哪里可以看免费的av片| 国产精品福利在线免费观看| 搡女人真爽免费视频火全软件 | 精品久久久久久久久久久久久| 国产又黄又爽又无遮挡在线| 久久久久久久久中文| 日韩欧美国产在线观看| 特大巨黑吊av在线直播| 国内久久婷婷六月综合欲色啪| 精品一区二区三区av网在线观看| 国产视频内射| 国产一区二区三区在线臀色熟女| 午夜福利欧美成人| 18禁黄网站禁片免费观看直播| 久久精品国产自在天天线| 成人国产一区最新在线观看| 欧美绝顶高潮抽搐喷水| av在线亚洲专区| 国内精品一区二区在线观看| 欧美日韩综合久久久久久 | 99久久久亚洲精品蜜臀av| 变态另类成人亚洲欧美熟女| 国产伦一二天堂av在线观看| 麻豆成人av在线观看| 亚洲午夜理论影院| 国内精品久久久久精免费| 成人综合一区亚洲| 亚洲在线自拍视频| 老师上课跳d突然被开到最大视频| 国产 一区 欧美 日韩| 国内精品久久久久精免费| 99久久精品一区二区三区| 国产在线男女| netflix在线观看网站| 国产伦在线观看视频一区| 亚洲国产精品合色在线| 波野结衣二区三区在线| 小说图片视频综合网站| 国产午夜福利久久久久久| 国产免费一级a男人的天堂| 一进一出抽搐gif免费好疼| 成人国产一区最新在线观看| 日本与韩国留学比较| 成人国产一区最新在线观看| 亚洲精品亚洲一区二区| 此物有八面人人有两片| 免费av毛片视频| 欧美黑人欧美精品刺激| 亚洲乱码一区二区免费版| 悠悠久久av| 国产精品福利在线免费观看| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女| a在线观看视频网站| 欧美色视频一区免费| 51国产日韩欧美| x7x7x7水蜜桃| 99久国产av精品| 欧美另类亚洲清纯唯美| 国产69精品久久久久777片| 美女 人体艺术 gogo| 成人二区视频| 男女那种视频在线观看| 国产成人一区二区在线| 日本黄大片高清| 精品久久久久久,| 国产一区二区三区av在线 | 丰满人妻一区二区三区视频av| www.色视频.com| 欧美日韩中文字幕国产精品一区二区三区| 久久亚洲真实| 午夜福利视频1000在线观看| 免费高清视频大片| 国产一区二区激情短视频| 在线观看美女被高潮喷水网站| 亚洲四区av| 日韩欧美精品免费久久| 99在线视频只有这里精品首页| 夜夜夜夜夜久久久久| 亚洲男人的天堂狠狠| 国产色爽女视频免费观看| 中文字幕av在线有码专区| 伦理电影大哥的女人| 中文亚洲av片在线观看爽| 成人毛片a级毛片在线播放| 日韩在线高清观看一区二区三区 | 精品日产1卡2卡| 老司机午夜福利在线观看视频| 中文在线观看免费www的网站| 国产成人a区在线观看| 成人一区二区视频在线观看| 国产精品99久久久久久久久| 欧美区成人在线视频| 99国产极品粉嫩在线观看| 男女做爰动态图高潮gif福利片| 免费电影在线观看免费观看| 亚洲18禁久久av| 哪里可以看免费的av片| 日本爱情动作片www.在线观看 | 欧美zozozo另类| 亚洲四区av| 成人二区视频| 天堂网av新在线| 老熟妇乱子伦视频在线观看| 黄色日韩在线| 亚洲精品亚洲一区二区| 久久久成人免费电影| 国产精品女同一区二区软件 | 久久人妻av系列| 欧美高清成人免费视频www| 变态另类成人亚洲欧美熟女| 日韩一本色道免费dvd| 国产成年人精品一区二区| 最近最新免费中文字幕在线| 成年女人毛片免费观看观看9| 蜜桃久久精品国产亚洲av| 久久久精品大字幕| 少妇高潮的动态图| 亚洲成人精品中文字幕电影| 乱人视频在线观看| 中国美女看黄片| 黄色视频,在线免费观看| 乱人视频在线观看| 午夜老司机福利剧场| 欧美中文日本在线观看视频| 日韩在线高清观看一区二区三区 | 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 久久精品综合一区二区三区| 我要搜黄色片| 日韩亚洲欧美综合| 精品人妻一区二区三区麻豆 | 夜夜夜夜夜久久久久| 国产又黄又爽又无遮挡在线| 国产探花在线观看一区二区| 欧美日韩国产亚洲二区| 国产精品久久久久久久电影| 一进一出好大好爽视频| 夜夜爽天天搞| 1024手机看黄色片| 精品午夜福利视频在线观看一区| 国产伦精品一区二区三区四那| av.在线天堂| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区三区| 一本久久中文字幕| 国产精品久久久久久久久免| 可以在线观看毛片的网站| 两性午夜刺激爽爽歪歪视频在线观看| 999久久久精品免费观看国产| 精品乱码久久久久久99久播| 亚洲七黄色美女视频| 一进一出抽搐动态| 久久国产精品人妻蜜桃| 亚洲无线观看免费| 999久久久精品免费观看国产| avwww免费| 我要搜黄色片| 一进一出抽搐动态| 中文在线观看免费www的网站| 国产精品乱码一区二三区的特点| 成人av一区二区三区在线看| 久久久久久久久大av| 一个人免费在线观看电影| 亚洲国产色片| 国产 一区 欧美 日韩| 国产毛片a区久久久久| 日本与韩国留学比较| 亚洲国产欧美人成| 亚洲最大成人手机在线| 日本三级黄在线观看| 免费看光身美女| 久久精品人妻少妇| 在线免费观看的www视频| 亚洲国产精品成人综合色| 日韩在线高清观看一区二区三区 | 欧美一区二区精品小视频在线| 国产不卡一卡二| 色综合站精品国产| 成人性生交大片免费视频hd| 久久久久久久久中文| 男女啪啪激烈高潮av片| 色噜噜av男人的天堂激情| 中文字幕熟女人妻在线| 午夜爱爱视频在线播放| 国产综合懂色| 日韩中文字幕欧美一区二区| 国产精品,欧美在线| 最近最新免费中文字幕在线| 男人狂女人下面高潮的视频| 日韩欧美在线乱码| 久久人人精品亚洲av| 我要看日韩黄色一级片| 久久99热6这里只有精品| 联通29元200g的流量卡| 日本-黄色视频高清免费观看| 成人三级黄色视频| 国产伦人伦偷精品视频| 国产美女午夜福利| 一本精品99久久精品77| 国产高清视频在线播放一区| 有码 亚洲区| 国产日本99.免费观看| 欧美最黄视频在线播放免费| 三级国产精品欧美在线观看| 亚洲内射少妇av| 日韩 亚洲 欧美在线| 99精品在免费线老司机午夜| 日韩一本色道免费dvd| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 欧美潮喷喷水| 99久久九九国产精品国产免费| 欧美又色又爽又黄视频| 中文字幕熟女人妻在线| 91麻豆av在线| 日韩在线高清观看一区二区三区 | 日日啪夜夜撸| 国产av不卡久久| 99热这里只有是精品在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产清高在天天线| 最近最新免费中文字幕在线| 在线播放国产精品三级| 亚洲人成网站在线播放欧美日韩| 久久久久久久久大av| 久久国内精品自在自线图片| 99热精品在线国产| 亚洲av中文av极速乱 | 天堂网av新在线| 麻豆久久精品国产亚洲av| 国产成人福利小说| 国产成人aa在线观看| 欧美日本视频| 亚洲成人精品中文字幕电影| 制服丝袜大香蕉在线| 日韩 亚洲 欧美在线| 美女被艹到高潮喷水动态| 大型黄色视频在线免费观看| 欧美性猛交黑人性爽| 国产日本99.免费观看| 欧美日韩国产亚洲二区| 亚洲成人中文字幕在线播放| 亚洲七黄色美女视频| 亚洲avbb在线观看| 波野结衣二区三区在线| 国产精品,欧美在线| 在现免费观看毛片| 国产激情偷乱视频一区二区| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 婷婷丁香在线五月| 波野结衣二区三区在线| 久久久久久久久久黄片| 亚洲成人久久爱视频| 中国美白少妇内射xxxbb| 91av网一区二区| 日本 欧美在线| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| 国产一区二区亚洲精品在线观看| 少妇人妻精品综合一区二区 | 身体一侧抽搐| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 国产精品乱码一区二三区的特点| 国产成年人精品一区二区| 国产美女午夜福利| 亚洲最大成人中文| 男女做爰动态图高潮gif福利片| 亚洲欧美清纯卡通| 亚洲av中文字字幕乱码综合| 亚洲精品一区av在线观看| 夜夜爽天天搞| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 午夜老司机福利剧场| 欧美最黄视频在线播放免费| 国产三级在线视频| 日韩欧美免费精品| av在线老鸭窝| 精品人妻1区二区| 丝袜美腿在线中文| 99热精品在线国产| 91av网一区二区| 在线观看午夜福利视频| 十八禁国产超污无遮挡网站| 人妻夜夜爽99麻豆av| 国内毛片毛片毛片毛片毛片| 亚洲图色成人| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 人人妻人人看人人澡| 在线免费观看的www视频| 国产中年淑女户外野战色| netflix在线观看网站| 久久精品久久久久久噜噜老黄 | 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式| 国内少妇人妻偷人精品xxx网站| 亚洲黑人精品在线| 成人精品一区二区免费| 国产色婷婷99| 免费av观看视频| 日韩精品有码人妻一区| 久久久色成人| 国产伦一二天堂av在线观看| 精品一区二区免费观看| 一进一出抽搐动态| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 美女高潮的动态| 国产精品久久久久久久电影| 乱人视频在线观看| 高清在线国产一区| 97碰自拍视频| 色精品久久人妻99蜜桃| 少妇的逼水好多| 久久婷婷人人爽人人干人人爱| 国产美女午夜福利| 看十八女毛片水多多多| 精品久久久久久久久av| 免费黄网站久久成人精品| 成人毛片a级毛片在线播放| 日本a在线网址| 看黄色毛片网站| 色哟哟·www| 日本在线视频免费播放| 97人妻精品一区二区三区麻豆| 国产精品嫩草影院av在线观看 | 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片| 欧美精品啪啪一区二区三区| 亚洲一级一片aⅴ在线观看| 国产中年淑女户外野战色| 国产精品亚洲一级av第二区| 最近视频中文字幕2019在线8| 精品日产1卡2卡| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 国产免费av片在线观看野外av| 可以在线观看的亚洲视频| 伦精品一区二区三区| 99在线人妻在线中文字幕| 一本精品99久久精品77| 日韩中字成人| 成人二区视频| 日本五十路高清| 精品人妻熟女av久视频| 婷婷亚洲欧美| 九九热线精品视视频播放| 亚洲第一电影网av| av天堂在线播放| 久久久久国内视频| 日日摸夜夜添夜夜添av毛片 | 91麻豆av在线| 国产男靠女视频免费网站| 国产人妻一区二区三区在| 99视频精品全部免费 在线| 偷拍熟女少妇极品色| 国产激情偷乱视频一区二区| 亚州av有码| 精品人妻一区二区三区麻豆 | 色综合婷婷激情| 色吧在线观看| 日本在线视频免费播放| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 日本与韩国留学比较| 很黄的视频免费| 亚洲第一区二区三区不卡| 欧美一区二区亚洲| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 12—13女人毛片做爰片一| 性色avwww在线观看| h日本视频在线播放| 欧美在线一区亚洲| 麻豆一二三区av精品| 一进一出好大好爽视频| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 韩国av在线不卡| 国产爱豆传媒在线观看| 亚洲av免费高清在线观看| 女同久久另类99精品国产91| 亚洲黑人精品在线| 亚洲欧美日韩东京热| 一级毛片久久久久久久久女| 欧美高清成人免费视频www| 少妇的逼好多水| 十八禁国产超污无遮挡网站| 亚洲国产精品sss在线观看| 日韩 亚洲 欧美在线| 午夜福利高清视频| 成人性生交大片免费视频hd| 国内精品美女久久久久久| 天天躁日日操中文字幕| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 99热这里只有是精品50| 香蕉av资源在线| 成人亚洲精品av一区二区| 精品久久久久久,| 久久久久性生活片| 大型黄色视频在线免费观看| 精品欧美国产一区二区三| 国产精品久久久久久久电影| 一区二区三区免费毛片| 成年版毛片免费区| 一区二区三区四区激情视频 | 国产欧美日韩精品亚洲av| 乱码一卡2卡4卡精品| 日本 av在线| 亚洲人成网站在线播| eeuss影院久久| 精品午夜福利视频在线观看一区| 久久人人精品亚洲av| 亚洲欧美激情综合另类| 亚洲av中文av极速乱 | h日本视频在线播放| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱 | 99热精品在线国产| 久久中文看片网| 老师上课跳d突然被开到最大视频| 一进一出好大好爽视频| 久久久久久久亚洲中文字幕| 免费电影在线观看免费观看| 又黄又爽又刺激的免费视频.| 亚洲18禁久久av| 日本三级黄在线观看| 午夜a级毛片| 蜜桃久久精品国产亚洲av| 午夜a级毛片| 亚洲图色成人| 搡女人真爽免费视频火全软件 | 日韩中文字幕欧美一区二区| 一本久久中文字幕| 色哟哟哟哟哟哟| 久9热在线精品视频| 在线观看免费视频日本深夜| 午夜老司机福利剧场| 女同久久另类99精品国产91| 亚洲欧美清纯卡通| 亚洲一区二区三区色噜噜| 可以在线观看的亚洲视频| 精品人妻1区二区| 如何舔出高潮| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 精品久久久噜噜| 国产精品三级大全| 久久久久久久久中文| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添av毛片 |