• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phoretic self-assembly of active colloidal molecules*

    2021-05-24 02:28:02LijieLei雷李杰ShuoWang王碩XinyuanZhang張昕源WenjieLai賴文杰JinyuWu吳晉宇andYongxiangGao高永祥
    Chinese Physics B 2021年5期
    關(guān)鍵詞:王碩

    Lijie Lei(雷李杰), Shuo Wang(王碩), Xinyuan Zhang(張昕源), Wenjie Lai(賴文杰),Jinyu Wu(吳晉宇), and Yongxiang Gao(高永祥),?

    1Institute for Advanced Study,Shenzhen University,Shenzhen 518060,China

    2Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China

    Keywords: Brownian dynamics,diffusiophoresis,active colloidal molecule,self-assembly

    1. Introduction

    Colloidal molecules refer to the assembly of colloidal clusters with well-defined coordination number and spatial arrangement.[1]They are often regarded as mesoscopic counterparts of molecules as colloidal particles are several orders of magnitude bigger than atoms.[2]Of particular interest are active colloidal molecules, which contain at least one species that can self-propel or swim.[3]By extracting energy from the environment and convert it into self-propelled motion, active colloidal molecules are able to perform various dynamic functions, such as translation, rotation, and in-situ assembly–disassembly with high accuracy.[4–7]Studying the self-assembly process of active molecules is not only beneficial for the design and fabrication of miniaturized machines and devices,[8,9]it also promises insights into understanding how active matter organizes into complex and robust dynamic structures,[10]including collections of motile microorganisms,[11]animal flocks,[12,13]and chemical or mechanical imitations.[14,15]

    Diffusiophoresis is known as the migration of colloidal particles in response to an externally imposed solute concentration gradient.[16,17]It is a generic strategy for the design of self-propelled active colloids[18]and nonequilibrium interactions for self-assembly of colloidal molecules.[19]For active colloids,the solute gradients are commonly generated by their catalytic surfaces. Through designing the surface with unbalanced catalytic activity,the chemical reaction will produce an asymmetric concentration field,which interacts with the particle, resulting in self-propelled motion or self-phoresis.[20–23]Asymmetric catalytic activity on colloids’ surface has been widely used to produce self-propelled Janus colloids in hydrogen peroxide[24]and other chemicals.[25–27]

    Diffusiophoretic motion fundamentally relies on two distinct physicochemical properties of the colloids. The first one is the surface activity, which refers to the colloid’s ability to generate or consume solute molecules through chemical reactions at their surface.[20]The second one is surface mobility,also termed as phoretic mobility,[16]which leads to an effective slip motion of the colloid in response to gradients in surface concentration. The collective propulsion and rotation of the colloidal molecules are intimately linked to their exact geometry.

    In this work,we simulate the self-assembly of active colloidal molecules in binary systems in which colloidal particles interact and respond via diffusiophoresis. Our aim is to investigate the influence of surface parameters and size asymmetry on the structure and dynamics of active colloidal molecules.Note that phoretic interactions between particles are not restricted to be reciprocal and are inherently nonequilibrium,which therefore may lead to self-assembled structures and dynamic functions that are unseen in colloidal self-assembly driven by thermodynamics.

    2. Model and methodology

    There are two independent parameters to characterize the properties of spherical catalytic colloids,[19]which are surface activity(α)and surface mobility(μ).Both the surface activity and surface mobility can be positive or negative(or even zero).Experimentally, these two parameters can be manipulated by modifying the surface chemistry of colloidal particles.

    Specifically, the concentration field C(r) around a catalytic particle in 3D can be obtained by solving the diffusion equation

    with a boundary condition

    where D is the diffusion coefficient of the chemicals,R is the radius of the colloidal particle,and α is the surface activity of the particle. The resulted concentration field decays as 1/r,

    Now,consider two colloidal particles with radius(R1,R2),surface activity (α1,α2), and surface mobility (μ1,μ2), respectively that are in each other’s concentration field. Here we ignore the hydrodynamic interaction between the particles and assume that the concentration field will not be disturbed by the presence of other particles. Within the far-field approximation, the drift velocity of particle 2 in the concentration field produced by particle 1 can be described as

    in which r12=r2?r1,and r1and r2are the vectors describing the positions of particles 1 and 2, respectively. Similarly, the drift velocity of particle 1 in the concentration field produced by particle 2 can be obtained as

    We should note that V1/=?V2in general because α1μ2/=α2μ1even when the two particles are of equal size, R1=R2. This implies a broken action-reaction symmetry for interspecies interactions. The fact that the action-reaction symmetry is broken indicates that the whole pair moves with a velocity

    2.1. Binary system composed of colloidal particles of equal size

    As pointed out by Soto and Golestanian,[19]the effective interaction between phoretic colloids is similar to the unscreened electrostatic interaction between charged colloids in a fluid. The sign of the interaction, being repulsive or attractive, depends only on the signs of the surface parameters(α,μ),which are summarized in Table 1. The first term and the second term in the table refer to the interaction applied to particle 1 induced by particle 2 and the interaction applied to particle 2 induced by particle 1, respectively. It becomes obvious that when the product of α1μ2is less than zero, particle 2 will be attracted by particle 1. On the contrary, when the product of α1μ2is greater than zero,the particle 2 will be repelled by particle 1. α2μ1describes the interaction of particle 1 induced by particle 2 in the same way. Table 1 highlights the richness in the pair interactions of binary systems based on the current diffusiophoresis model,which can be tuned by adjusting the surface parameters to realize a wealth of selfassembled structures and dynamic functions. If the interaction is attractive for two particles,it is possible to form a most basic colloidal molecule,i.e.,a dimer. The whole pair will move with a velocity proportional to α1μ2?α2μ1,while the two colloids attract each other with a relative velocity proportional to α1μ2+α2μ1.[19]

    Table 1. Interaction pattern between active colloids(R:repulsive,A:attractive).

    2.2. Binary system composed of colloidal particles of different size

    A mixture of colloidal particles with the same surface parameters but different size will break the geometry symmetry,which will lead to the formation of moving colloidal molecule or even flocking. Consider a dimer composed of two particles with the same surface activity α1=α2=α*and surface mobility μ1=μ2=μ*but different radii R0and R. The whole pair velocity is proportional to the sum of each particle analogous to Eq.(6),so we can have

    As can be seen,when R=R0,the two particles have the same radius,the velocity of the pair will be zero,due to the actionreaction symmetry. When R/=R0, the symmetry is broken,resulting in self-propelled motion of the dimer.

    2.3. Equation of motion

    The equation of motion governing the behaviors of colloidal particles based on the current model have been described previously,[19]which is the following stochastic equation:

    In general,colloidal particles in experiments cannot overlap. In our simulation, to impose the exclude volume effect,two particles are reflected by the same overlapping distance if they start to overlap. The procedure is repeated until there are no remaining overlaps. Periodic boundary conditions are used,and the interactions are treated using the minimal image convention.[28,29]As most of the experiments are confined to 2D, we confine the colloidal particles to a quasi-3D domain by limiting the center of the particle to move within half of the particle’s radius without considering real plates to avoid additional complexity. When the particles reach this imaginary boundary, they are bounced forward to the domain. This allows us to apply the formulas derived for three-dimensional systems to this quasi-3D condition.

    3. Results and discussion

    In the current system, the area fraction φ is defined as φ=Nπσ2/4L2,where N is the total number of colloidal particles used in the simulation,and L is the length of our squared domain. The overall velocity scale used in the current systems is V0=100.0 and the white noise magnitude Dc=1.0. The system is advanced in a time step of δt =0.001σ/V0. The diffusiophoresis interaction is truncated at r =20R, beyond which the concentration gradient has decayed low enough to be overlooked.

    3.1. Binary systems with colloidal particles of equal size

    We first simulate the behaviors of binary system composed of equal-size colloidal particles (species A and B)with different surface activity (αA,αB) and surface mobility (μA,μB), respectively. The simulation is performed with N =20 and L=20 with mono-dispersed colloidal particle’s radius R=0.5, resulting in an area fraction φ =0.98%. Initially the colloidal particles were randomly distributed in the box. The simulation runs up to 1 million steps to allow the colloids to form colloidal molecules and achieve active behaviors. Because of the nonequilibrium property of the current system, it is possible to manipulate the surface parameters to obtain stable colloidal molecules with different configurations and dynamic functions.

    Fig.1. Configurations of active colloidal molecules ABn with translational dynamic functions. n varies from 1 to 4 in (a)–(d). Colloid A is red and colloid B is blue,with ?αA=1.0, ?μA=0.0, ?αB=0.0, ?μB=?1.0.

    In Fig. 2, we present configurations of several colloidal molecules that display dynamic functions of rotation, see movies S2, S3, and S4. Since ?αi?μi>0 and ?αi?μj|i/=j<0, colloidal particles with the same surface parameters repel each other while the different species of particles attract each other.At the same time, the red particles attract blue particles with a stronger phoretic interaction than the attraction of blue colloids to red colloids since ?αA?μB>?αB?μA. These arrangements break the action-reaction symmetry and lead to the rotation of the colloidal molecules.

    Fig. 2. Configurations of active colloidal molecules with rotational dynamic functions. All the colloidal molecules rotate in clock-wise direction. (a) ?αA=1.0, ?μA=3.0, ?αB=?1.0, ?μB=?1.0;(b)and(c) ?αA=2.0,?μA=1.0, ?αB=?1.0, ?μB=?1.0.

    In Fig.3,we present configurations of self-assembled active colloidal molecules that remain rest due to their symmetric structures(the dynamic process of forming these colloidal molecules are shown in movies S5 and S6). Even though Fig. 3(a) has the same configuration with Fig. 1(a), however,the pair velocity parameter ?αA?μB??αB?μA=0.0 in Fig. 3(a),which results in a rest configuration. Moreover, the interaction between the same species of particles are repulsive in Figs. 3(a), 3(b), 3(f)since ?αi?μi=1 >0 while the interaction between particles 1 and 2 is attractive since ?αA?μB= ?αB?μA=?1.0. Note that the magnitude of the attraction is equal to the repulsion in this case. The ABAB chain is formed because among the same species of particles they have a repulsive interaction, leading to the fact that they cannot approach a particle from the same species. On the other hand, there is an attractive interaction between colloidal particles from different species, resulting a configuration A–B–A–B. The interaction modes of colloids in Figs.3(c)–3(e)are similar. However,the magnitudes of attraction and repulsion between the colloids are different. Specifically, the attraction applied on the blue colloids is larger than the repulsion between blue colloids|?αA?μB|>|?αB?μB|, which allows the blue colloids attached to the red colloids, overcoming the repulsion among blue colloids to some extent.

    Fig. 3. Configurations of stationary active colloidal molecules of (a) AB,(b)AB2,(c)AB3,(d)AB4;(e)A2B5,and(f)A2B3. For(a),(b),(f) ?αA=1.0,?μA =1.0, ?αB =?1.0, ?μB =?1.0; for (c), (d), (e) ?αA =2.0, ?μA =1.0,?αB=?1.0, ?μB=?1.0.

    3.2. Binary systems with colloidal particles of different size

    Then we simulate colloidal particles that have the same surface activity and surface mobility with different radii. The previous results have shown that the colloidal particles with the same radius, but different surface parameters may form different colloidal molecules and some of them may move together, which is due to the break of action-reaction symmetry. First the configurations of active colloidal particles with different radii are investigated with a radius ratio R/R0=0.5.Figure 5 shows the configurations of colloidal particle formed by colloids with different radius but the same surface parameters,see in movie S7. As analyzed in Eq.(7),different radii of the colloids break the symmetry of geometry, resulting in the translational active colloidal molecules shown in Fig. 4.Since the interactions between all these colloids are attractive only, these colloidal molecules will keep growing when they approach each other. In addition, Fig. 5 presents some other basic configurations of active colloidal molecules formed by colloids with different radii and surface parameters, including one dimer(AB),two types of trimers(AB2and A2B),one type of A3B molecule,one type of AB3and one type of A2B4molecules, see movies S8, S9, and S11. Some of the configurations, i.e., (a), (b), and (d), are the same with the colloidal molecules in Fig. 4, but the moving directions are different. In Fig. 4, all the colloidal molecules move with the red colloid leading while in Figs. 5(a) and 5(b) these colloidal molecules move with the blue colloid leading. Compared with the monodispersed cases, there are more spaces for the small colloids to assemble around the big colloids,allowing more compact configurations. Since the colloidal molecules are moving, these molecules will keep growing by attracting nearby colloids,gradually either forming a symmetry molecule or flocking.

    Fig. 4. Colloidal molecules formed by colloids with the same surface parameters but different radius(?αA=1.0, ?μA=?1.0, ?αB=1.0, ?μB=?1.0).

    Fig.5. Basic configurations of active colloidal molecules with different surface parameters(colloid A is the big red particles and colloid B is the blue particles). For the AB,A2B,and A3B molecules in(a),(b),and(c) ?αA=0.0,?μA =?1.0, ?αB =1.0, ?μB =0.0; for the AB2 molecule in (d) ?αA =1.0,?μA =0.0, ?αB =0.0, ?μB =?1.0; for the AB3 molecule in (e) ?αA =1.0,?μA=0.0, ?αB=?1.0, ?μB=?1.0,and for the A2B3 molecule in(f) ?αA=1.0,?μA=0.0, ?αB=?1.0, ?μB=?1.0.

    Fig.6. Self-assembly of active colloidal molecules with coordination numbers and bond angles controlled by the surface activity of the small colloid. For(a)the radius ratio is 0.5 and the surface parameters are =1.0, =0.0, =0.0, =?1.0; for(b)the radius ratios are 0.5,0.6,0.65,0.85,1.0,1.5,2.0 from left to right and the surface parameters are ?αA=1.0,=0.0, ?αB=0.0, =?1.0;for(c)the radius ratio is 0.5 and the surface parameters are =1.0, ?μA=0.0, ?αB=?0.5, =?1.0;for(d)the radius ratio is 0.5 and the surface parameters are ?αA =1.0, ?μA =0.0, =?1.0,?μB=?1.0.

    4. Conclusion and perspectives

    Using Brownian dynamics simulations of model active colloidal particles, we have elucidated a variety of dynamical structures induced by diffusiopheresis interaction of active colloids. To capture the basic features of the self-assembled colloidal molecules, only the far-field approximation of the diffusiophoresis interaction is considered, which decays as 1/r. From our simulation, colloidal molecules of three different dynamic functions are realized, including translation,rotation, and rest. Moreover, we show that colloidal particles with the same surface parameters can form dynamical structures with dynamic functions via breaking their size symmetry.The product of surface activity and surface mobility(αμ)is a key factor which affects the propelling velocity of the active colloidal molecules.

    For colloidal particles with equal radius, active colloidal molecules can be formed with different surface parameters,including translational,rotational,and stationary molecules. For some configurations,i.e.,AB molecule,they can either be stationary or translational depending on their specific surface parameters,which provides a possible way to control the mobility of colloidal molecules by altering their surface parameters.

    Colloidal particles with different radii can break the symmetry of geometry, forming some self-propelled molecules and resting colloidal molecules. Typically, ABnare formed with monodispersed colloids. Altering the surface parameters of the small colloids can easily change the bond angle. Specifically,in the current study,increasing the repulsion among the small colloids will increase the bond angle.

    The current model captures the basic self-assembly and active behavior of active colloidal molecules in a small domain and a small number of particles quite well. More simulations,with even more colloidal particles and perhaps more species of surface parameters,may be required to explore whether the current diffusionpheresis model can be extended to study and predict more complex situation of colloidal particles. In this area, computationally efficient models and schemes such as the one we adopted in the current paper may provide a pragmatic tool and some qualitative results for real active colloids systems.

    Acknowledgment

    We would like to thank Professor Scott A.Edwards from Shenzhen University for stimulating discussion.

    猜你喜歡
    王碩
    Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
    定性學(xué)生,謹(jǐn)防先入為主
    ——例談尊重與正確歸因在建立和諧師生關(guān)系中的重要價(jià)值
    Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
    Quantitative simulations of ratchet potential in a dusty plasma ratchet
    淺秋遐思
    平凡生活中的老兵革命精神
    The challenge of Internet finance to traditional finance
    《編號(hào)001》
    都市生活(2019年6期)2019-08-07 10:02:12
    結(jié)婚前夕自殺的姑娘,你到底經(jīng)歷了什么?
    王碩作品
    青春草亚洲视频在线观看| 中文字幕色久视频| 国产99久久九九免费精品| 午夜91福利影院| 国产亚洲av高清不卡| 久久久久久久国产电影| 深夜精品福利| 最新的欧美精品一区二区| 大码成人一级视频| 午夜福利影视在线免费观看| 亚洲全国av大片| 久久毛片免费看一区二区三区| 91成年电影在线观看| 久久性视频一级片| 搡老乐熟女国产| 美国免费a级毛片| 在线亚洲精品国产二区图片欧美| 啦啦啦 在线观看视频| cao死你这个sao货| www.精华液| 大片免费播放器 马上看| 色老头精品视频在线观看| 国产在线一区二区三区精| 欧美黑人欧美精品刺激| 国产色视频综合| 国产精品欧美亚洲77777| 又黄又粗又硬又大视频| 欧美精品高潮呻吟av久久| 亚洲精品粉嫩美女一区| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看视频国产中文字幕亚洲 | 午夜影院在线不卡| 欧美激情 高清一区二区三区| 亚洲国产精品一区二区三区在线| 日韩中文字幕视频在线看片| 老司机影院成人| 热re99久久精品国产66热6| 久久久久久久大尺度免费视频| 免费久久久久久久精品成人欧美视频| 各种免费的搞黄视频| 熟女少妇亚洲综合色aaa.| 国产高清videossex| 国产一区二区 视频在线| 日日夜夜操网爽| 人人妻人人添人人爽欧美一区卜| 久久99热这里只频精品6学生| 亚洲 欧美一区二区三区| 亚洲色图综合在线观看| 少妇猛男粗大的猛烈进出视频| 91九色精品人成在线观看| 在线 av 中文字幕| 亚洲欧美清纯卡通| 亚洲一区中文字幕在线| www日本在线高清视频| 欧美日韩精品网址| 麻豆乱淫一区二区| 不卡一级毛片| 嫩草影视91久久| 成年动漫av网址| 久久影院123| 老司机午夜十八禁免费视频| 亚洲精品粉嫩美女一区| kizo精华| 91精品三级在线观看| 美女中出高潮动态图| 久久久久久人人人人人| 国产亚洲av高清不卡| 欧美精品啪啪一区二区三区 | 美女福利国产在线| 亚洲欧美日韩高清在线视频 | 男女高潮啪啪啪动态图| 国产高清国产精品国产三级| 欧美中文综合在线视频| 麻豆av在线久日| 亚洲精品日韩在线中文字幕| 美女大奶头黄色视频| 一区在线观看完整版| 中文字幕色久视频| 亚洲成国产人片在线观看| 久久久久国产一级毛片高清牌| 法律面前人人平等表现在哪些方面 | av又黄又爽大尺度在线免费看| 免费av中文字幕在线| 成年女人毛片免费观看观看9 | 啦啦啦在线免费观看视频4| 久久综合国产亚洲精品| 成人三级做爰电影| 久久久久国产一级毛片高清牌| 爱豆传媒免费全集在线观看| 欧美人与性动交α欧美精品济南到| 亚洲色图 男人天堂 中文字幕| 18在线观看网站| 亚洲精品日韩在线中文字幕| 日韩欧美免费精品| 亚洲七黄色美女视频| 最黄视频免费看| 男女国产视频网站| netflix在线观看网站| 无限看片的www在线观看| 精品国产超薄肉色丝袜足j| 99久久人妻综合| 国产一卡二卡三卡精品| 91成年电影在线观看| 亚洲一区二区三区欧美精品| 免费高清在线观看视频在线观看| 免费人妻精品一区二区三区视频| 丝袜美腿诱惑在线| 大香蕉久久网| 久久国产精品大桥未久av| 99国产综合亚洲精品| 久久久国产精品麻豆| 黑丝袜美女国产一区| 亚洲性夜色夜夜综合| 亚洲av欧美aⅴ国产| 免费看十八禁软件| 男女边摸边吃奶| 欧美日韩福利视频一区二区| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 搡老岳熟女国产| 一区福利在线观看| 五月开心婷婷网| 亚洲一区二区三区欧美精品| 热99re8久久精品国产| 大片电影免费在线观看免费| 黄色a级毛片大全视频| 高清欧美精品videossex| 色婷婷久久久亚洲欧美| 一区二区三区乱码不卡18| 午夜福利视频精品| 欧美精品av麻豆av| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区av在线| 高清黄色对白视频在线免费看| 欧美xxⅹ黑人| 肉色欧美久久久久久久蜜桃| 美女脱内裤让男人舔精品视频| 国产一区二区激情短视频 | 精品人妻熟女毛片av久久网站| 精品视频人人做人人爽| www.999成人在线观看| 亚洲人成77777在线视频| 中国美女看黄片| 国产欧美日韩一区二区精品| 久久久国产一区二区| 亚洲精品av麻豆狂野| 亚洲一区中文字幕在线| 丝瓜视频免费看黄片| 日韩 欧美 亚洲 中文字幕| 亚洲精品粉嫩美女一区| 一级,二级,三级黄色视频| 国产片内射在线| 麻豆乱淫一区二区| 女人久久www免费人成看片| 精品熟女少妇八av免费久了| 不卡av一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲精品自拍成人| 一区二区三区四区激情视频| 亚洲成人免费av在线播放| 肉色欧美久久久久久久蜜桃| 丝袜人妻中文字幕| 亚洲精品国产一区二区精华液| 天天添夜夜摸| 欧美成狂野欧美在线观看| 国产高清videossex| 建设人人有责人人尽责人人享有的| 深夜精品福利| 欧美成狂野欧美在线观看| 我的亚洲天堂| 日韩一区二区三区影片| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产av成人精品| 国产在线一区二区三区精| 丝袜美腿诱惑在线| 免费av中文字幕在线| 激情视频va一区二区三区| 国产伦理片在线播放av一区| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 日本五十路高清| 99re6热这里在线精品视频| 一区二区三区激情视频| 亚洲专区中文字幕在线| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| 国产亚洲av高清不卡| 宅男免费午夜| 国产精品偷伦视频观看了| 国产成人av激情在线播放| 久久久久久久国产电影| 日韩,欧美,国产一区二区三区| 亚洲天堂av无毛| 午夜免费鲁丝| 999久久久国产精品视频| 免费在线观看完整版高清| 中文字幕人妻丝袜制服| 午夜福利免费观看在线| 久久狼人影院| 日韩,欧美,国产一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲精品自拍成人| 日本一区二区免费在线视频| 国产精品 欧美亚洲| 少妇猛男粗大的猛烈进出视频| 亚洲欧美精品综合一区二区三区| 丝袜脚勾引网站| 咕卡用的链子| 99国产精品一区二区三区| 亚洲中文日韩欧美视频| 大片免费播放器 马上看| 国产精品熟女久久久久浪| 午夜免费成人在线视频| 久久精品aⅴ一区二区三区四区| 老汉色av国产亚洲站长工具| 性色av乱码一区二区三区2| 亚洲黑人精品在线| 亚洲人成电影观看| 18禁黄网站禁片午夜丰满| 成人国语在线视频| 国产亚洲午夜精品一区二区久久| 欧美中文综合在线视频| 久久热在线av| 日日爽夜夜爽网站| 我的亚洲天堂| 少妇猛男粗大的猛烈进出视频| 国产成人免费观看mmmm| 国产日韩一区二区三区精品不卡| 色播在线永久视频| 亚洲精品一卡2卡三卡4卡5卡 | 波多野结衣一区麻豆| 亚洲欧洲日产国产| 国产1区2区3区精品| 国产视频一区二区在线看| 少妇精品久久久久久久| 亚洲成av片中文字幕在线观看| 51午夜福利影视在线观看| 国产色视频综合| 欧美中文综合在线视频| 亚洲精品国产区一区二| 色精品久久人妻99蜜桃| 亚洲欧洲精品一区二区精品久久久| 色老头精品视频在线观看| 久久精品熟女亚洲av麻豆精品| 日韩人妻精品一区2区三区| 日韩中文字幕视频在线看片| a 毛片基地| avwww免费| 亚洲七黄色美女视频| 大片电影免费在线观看免费| 丰满饥渴人妻一区二区三| 久久中文看片网| 大香蕉久久网| 久久久精品94久久精品| 欧美日韩国产mv在线观看视频| 丝袜美足系列| 亚洲免费av在线视频| 久久ye,这里只有精品| 男男h啪啪无遮挡| 国产精品久久久久成人av| 久久久久久久久免费视频了| 国产精品一区二区免费欧美 | 欧美日韩视频精品一区| 久久久国产成人免费| 人妻 亚洲 视频| 午夜福利乱码中文字幕| 在线天堂中文资源库| 满18在线观看网站| 国产av又大| 在线av久久热| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品高潮呻吟av久久| 午夜福利视频在线观看免费| 黄片小视频在线播放| 永久免费av网站大全| 久久久国产精品麻豆| 色精品久久人妻99蜜桃| 日本vs欧美在线观看视频| 久久久久久久精品精品| 日日摸夜夜添夜夜添小说| 少妇 在线观看| 久热这里只有精品99| 国产一区二区激情短视频 | 欧美激情高清一区二区三区| a级毛片在线看网站| 一区二区av电影网| 日韩中文字幕视频在线看片| 制服人妻中文乱码| av在线播放精品| 高潮久久久久久久久久久不卡| 大片免费播放器 马上看| 国产精品1区2区在线观看. | 91精品伊人久久大香线蕉| 亚洲精品国产av成人精品| 一本综合久久免费| 一边摸一边做爽爽视频免费| 国产野战对白在线观看| 另类亚洲欧美激情| 69精品国产乱码久久久| 亚洲av成人一区二区三| 精品一区二区三卡| 成年人黄色毛片网站| 一区二区av电影网| 午夜视频精品福利| 亚洲人成77777在线视频| 国产成人av教育| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 侵犯人妻中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 91成人精品电影| 久久毛片免费看一区二区三区| 在线精品无人区一区二区三| 国产欧美日韩精品亚洲av| 91成年电影在线观看| www.av在线官网国产| 狠狠婷婷综合久久久久久88av| 国产精品成人在线| 免费不卡黄色视频| 国产欧美日韩一区二区精品| 色综合欧美亚洲国产小说| 日本wwww免费看| 精品国产一区二区久久| 性少妇av在线| 十分钟在线观看高清视频www| 黄片大片在线免费观看| 一区二区三区精品91| 久久精品久久久久久噜噜老黄| 女警被强在线播放| 国产一区二区三区av在线| 久久人妻福利社区极品人妻图片| 国产精品久久久久久人妻精品电影 | 亚洲欧美一区二区三区久久| 欧美精品啪啪一区二区三区 | avwww免费| 精品久久久久久久毛片微露脸 | 国产成人精品在线电影| 久久精品亚洲av国产电影网| 熟女少妇亚洲综合色aaa.| 国产精品一区二区免费欧美 | 999久久久国产精品视频| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 亚洲精品在线美女| 久久久久久免费高清国产稀缺| 一个人免费看片子| 国产免费av片在线观看野外av| 天天添夜夜摸| 久久人妻熟女aⅴ| 日韩有码中文字幕| 麻豆av在线久日| 老司机午夜十八禁免费视频| 99热网站在线观看| 2018国产大陆天天弄谢| 精品久久久久久电影网| 桃红色精品国产亚洲av| 久久香蕉激情| 亚洲免费av在线视频| 日本av手机在线免费观看| 欧美久久黑人一区二区| 啦啦啦视频在线资源免费观看| 真人做人爱边吃奶动态| 无限看片的www在线观看| 999久久久国产精品视频| 亚洲男人天堂网一区| 人人妻人人澡人人爽人人夜夜| 99精国产麻豆久久婷婷| 国产色视频综合| 亚洲avbb在线观看| 国产人伦9x9x在线观看| 女性被躁到高潮视频| a 毛片基地| 午夜免费成人在线视频| 久久久久精品人妻al黑| 久久精品人人爽人人爽视色| 欧美xxⅹ黑人| av福利片在线| 中国国产av一级| 在线观看免费高清a一片| 99国产精品99久久久久| 亚洲欧美一区二区三区久久| 热99国产精品久久久久久7| 手机成人av网站| 国产精品一区二区精品视频观看| 精品国产国语对白av| 岛国在线观看网站| 亚洲精品中文字幕在线视频| 一区二区三区激情视频| 久久久久久久大尺度免费视频| 国产深夜福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲九九香蕉| 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 香蕉丝袜av| 国产麻豆69| 老司机深夜福利视频在线观看 | 美女国产高潮福利片在线看| 伊人久久大香线蕉亚洲五| 国产成人欧美| av天堂久久9| 国产高清国产精品国产三级| 国产欧美日韩综合在线一区二区| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 视频在线观看一区二区三区| 精品第一国产精品| 男女午夜视频在线观看| 肉色欧美久久久久久久蜜桃| 桃花免费在线播放| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 成年人黄色毛片网站| 热re99久久国产66热| 少妇精品久久久久久久| 一级片免费观看大全| 久久ye,这里只有精品| 中文字幕制服av| 久久毛片免费看一区二区三区| 后天国语完整版免费观看| 亚洲国产av新网站| 女性被躁到高潮视频| 1024香蕉在线观看| 一区二区三区精品91| 午夜免费鲁丝| 久久青草综合色| 国产欧美日韩一区二区三区在线| 亚洲 欧美一区二区三区| 精品高清国产在线一区| 999精品在线视频| 亚洲精品国产精品久久久不卡| a在线观看视频网站| 黑人猛操日本美女一级片| 91九色精品人成在线观看| 女性被躁到高潮视频| 亚洲国产看品久久| 91麻豆精品激情在线观看国产 | 一区在线观看完整版| 日本vs欧美在线观看视频| 伦理电影免费视频| 国产免费视频播放在线视频| 中文字幕精品免费在线观看视频| 国产精品一区二区精品视频观看| 精品国产一区二区三区四区第35| 久久人妻熟女aⅴ| 成年女人毛片免费观看观看9 | 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 一本色道久久久久久精品综合| 日本wwww免费看| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 激情视频va一区二区三区| 99精品欧美一区二区三区四区| 美女高潮到喷水免费观看| 人妻一区二区av| 亚洲精品自拍成人| 亚洲欧洲日产国产| 欧美性长视频在线观看| 男女午夜视频在线观看| 少妇被粗大的猛进出69影院| 在线精品无人区一区二区三| 国产av又大| 99国产精品99久久久久| 伊人久久大香线蕉亚洲五| 90打野战视频偷拍视频| 一级片免费观看大全| 两个人看的免费小视频| 动漫黄色视频在线观看| 人人妻人人爽人人添夜夜欢视频| 最近最新免费中文字幕在线| 欧美另类亚洲清纯唯美| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 国产欧美日韩一区二区精品| 咕卡用的链子| 妹子高潮喷水视频| 99国产精品免费福利视频| 亚洲av国产av综合av卡| 久久国产精品大桥未久av| 美女大奶头黄色视频| 制服人妻中文乱码| 999精品在线视频| 大陆偷拍与自拍| 一级片'在线观看视频| 丝袜脚勾引网站| 在线精品无人区一区二区三| 免费观看a级毛片全部| 少妇的丰满在线观看| 久久久久网色| 宅男免费午夜| 欧美日韩一级在线毛片| 色播在线永久视频| 天天影视国产精品| 电影成人av| 夫妻午夜视频| 乱人伦中国视频| 人成视频在线观看免费观看| 国产精品久久久久久精品古装| a级毛片在线看网站| www日本在线高清视频| 99国产综合亚洲精品| 99久久99久久久精品蜜桃| 国产在线免费精品| 丝袜脚勾引网站| 国产免费福利视频在线观看| 美国免费a级毛片| 国产成人精品在线电影| 午夜日韩欧美国产| 人妻一区二区av| 国产精品 欧美亚洲| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 99热网站在线观看| 首页视频小说图片口味搜索| 国精品久久久久久国模美| 三上悠亚av全集在线观看| www.999成人在线观看| 亚洲色图 男人天堂 中文字幕| 午夜福利影视在线免费观看| 人人妻,人人澡人人爽秒播| 黑丝袜美女国产一区| 国产麻豆69| 欧美另类一区| av免费在线观看网站| 亚洲成人国产一区在线观看| 日韩熟女老妇一区二区性免费视频| 色综合欧美亚洲国产小说| 男人爽女人下面视频在线观看| 人妻 亚洲 视频| 国产精品av久久久久免费| 国产成+人综合+亚洲专区| 12—13女人毛片做爰片一| 亚洲av电影在线进入| 性少妇av在线| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| a级毛片黄视频| 久久久国产欧美日韩av| 精品久久久久久久毛片微露脸 | 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 免费看十八禁软件| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 欧美一级毛片孕妇| 国产成+人综合+亚洲专区| 日韩中文字幕欧美一区二区| 亚洲精品美女久久久久99蜜臀| 18禁黄网站禁片午夜丰满| 欧美一级毛片孕妇| www日本在线高清视频| 日韩中文字幕欧美一区二区| 亚洲成av片中文字幕在线观看| 亚洲国产av新网站| 黄色视频在线播放观看不卡| 国产又色又爽无遮挡免| 女警被强在线播放| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 女警被强在线播放| 国产精品一区二区精品视频观看| 精品视频人人做人人爽| 久久这里只有精品19| 亚洲中文字幕日韩| 亚洲精品中文字幕一二三四区 | 国产亚洲精品久久久久5区| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 亚洲国产精品一区二区三区在线| 黄色视频在线播放观看不卡| 国产一区二区三区av在线| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 韩国精品一区二区三区| 久久香蕉激情| 国精品久久久久久国模美| h视频一区二区三区| 欧美日韩视频精品一区| 岛国在线观看网站| 精品乱码久久久久久99久播| 国产区一区二久久| 不卡一级毛片| 人成视频在线观看免费观看| 精品国产国语对白av| 国产高清视频在线播放一区 | 亚洲黑人精品在线| 国产成人免费无遮挡视频| 成年av动漫网址| 国产成人精品无人区| 在线观看免费高清a一片| 中文字幕制服av| 电影成人av| 在线 av 中文字幕| 国产精品 国内视频| 久久久精品区二区三区| 在线观看免费午夜福利视频| 在线十欧美十亚洲十日本专区| 精品乱码久久久久久99久播| 中国国产av一级| 又紧又爽又黄一区二区| tocl精华| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| 老司机福利观看| 在线观看人妻少妇| 国产1区2区3区精品| 中文字幕另类日韩欧美亚洲嫩草| 黑人操中国人逼视频| 91麻豆精品激情在线观看国产 |