• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method?

    2021-05-06 08:55:04MingleiShan單鳴雷YuYang楊雨XuemengZhao趙雪夢QingbangHan韓慶邦andChengYao姚澄
    Chinese Physics B 2021年4期
    關(guān)鍵詞:韓慶篩面塊煤

    Minglei Shan(單鳴雷), Yu Yang(楊雨), Xuemeng Zhao(趙雪夢),Qingbang Han(韓慶邦), and Cheng Yao(姚澄)

    1Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology,Hohai University,Changzhou 213022,China

    2College of Computer and Information,Hohai University,Nanjing 210000,China

    Keywords: cavitation bubble,hydrophobic concave,lattice Boltzmann model,pseudopotential model

    1. Introduction

    Cavitation is an important phenomenon accompanied by extreme physical situations, which means high velocity, high pressure, and high temperature occurring in local domain.When cavitation happens in the vicinity of solid surfaces, it can cause damage to materials,which is called cavitation erosion.However,there are some applications utilizing cavitation properties,such as material surface modifications and medical fields. Thus,some general issues can be extracted from these applications, i.e., the study of the interaction between cavitation and solid surface with different properties.

    The interaction between cavitation and solid surface has been discussed in many researches from different aspects,including the geometry of the surface, interfacial wettability,and the roughness of the surface. Li et al. studied the effect of nozzle inner surface roughness on the cavitation erosion characteristics of high-speed submerged jets through physical experiments.[1]Their finding showed that geometric characteristic of the surface has great effects on cavitation erosion intensity at standoff distances around or exceeding the optimum.Li et al.[2]investigated the effect of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. They found that the cavitation inception is determined by flow resistance, which significantly depends on the geometrical design of the Venturi tube. Additionally, Belova et al.studied the controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces.[3]They developed a selective control scheme of ultrasonic cavitation to explore the effect of wettability on cavitation. Their finding showed that the cavitation prefers to dominate on the hydrophobic surfaces due to the low nucleation barrier.The above experiments investigated the interaction between cavitation and solid surface at the macro level. However,the microcosmic mechanism of them has not been discussed in their work due to the limitations of the experiment.

    The lattice Boltzmann method (LBM) has been rapidly developed in recent years due to its convenience for multiphase and fluid–solid surface modeling.[4–7]The LBM has high potentials to simulate complex physical phenomena such as the multiphase flows in complex geometries. Moreover,the LBM fully considers the liquid–liquid and liquid–surface interactions during the phase change processes. Therefore, the LBM is favored by scholars who study the multiphase flow including heat transfer,droplet dynamics,and cavitation.[8–11]By virtue of the LBM’s high efficiency and simplicity in describing wettability,Ezzatneshan discussed the effect of wettability on cavitation.[12]It shows that the pseudopotential LBM is efficient to simulate the cavitation inception. However,their works did not involve the effect of geometry and wettability on cavitation,which is critical for the interaction between the cavitation and solid surface.

    The difficulty of simulation of the cavitation in the vicinity of the solid surface is the stability of the lattice Boltzmann (LB) model. The stability of the model can be simplified to keep the thermodynamic consistency. Many works have been made for this issue. Recently, Shan et al.[13–16]studied the effect of the wettability on collapsing cavitation bubble near solid surface by multi-relaxation-time(MRT)lattice Boltzmann model. They added the improved Li’s forcing scheme[17,18]for the thermodynamic consistency and the fluid–solid interaction into the simulation model for wettability interfaces to establish the collapsing bubble model. It demonstrated that the pseudopotential MRT-LB can successfully simulate the collapsing cavitation bubble near the solid surface with different wettabilities.But the combined effect of solid surface wettability and geometry on cavitation is still an open topic.

    In order to study the combined effect of solid surface wettability and geometry on cavitation, we set up an MRT-LB model to investigate the hydrodynamics of a single cavitating bubble near rough surface. In our scheme, the rough surface is simplified as concave corner to characterize the pits of rough surface. Moreover, the improved pseudopotential multiphase model,which is modified by Li’s forcing scheme[13,14]is adopted to simulate the whole flow field.The adhesive force of solid surface is considered to tune the wettability of surface.

    The rest of this paper is arranged as follows. Section 2 shows the fundamental theory about the pseudopotential MRTLB. Section 3 explores the effect of concave corner and the wettability on the cavitation. Section 4 is the conclusion and mechanism analysis.

    2. Pseudopotential MRT-LB model

    The pseudopotential LB model with MRT operation collision was employed in the present work.[19–21]The evolution equation can be given as

    In the pseudopotential LB model, the intermolecular interaction force is defined via a pseudopotential ψ, which depends on the local density. It is given as[22]

    According to Yuan and Schaefer,[27]the pseudopotential ψ is taken as

    and the other is ensured for chemical equilibrium

    where ρland ρvrepresent the density of liquid and vapor,respectively.

    With the pseudopotential ψ, the pseudopotential LB model usually undergoes thermodynamic inconsistency. Subsequently, Li et al.[14]found that the thermodynamic consistency can be approximately achieved by adjusting the mechanical stability condition via an improved forcing scheme[13]

    In this paper,the lattice units for LB are adopted. The basic units of length,time,and mass are lu(lattice unit),ts(time step),and mu(mass unit),respectively. Thus,the units of velocity,pressure,and density are expressed as lu/ts,mu/(ts2·lu),and mu/lu2,respectively.

    3. Simulation and analysis

    3.1. Laplace law and the contact angle

    Laplace law is the validation of the multiphase model.For the case of the cavitation bubble,the Laplace law can be given as

    where the pinand poutare the pressures inside and outside of the bubble,respectively. R0is the radius of the bubble,γ is the surface tension. In a 700×700 lattice computational domain,the periodic boundary condition is applied in two directions of the boundary. A vapor bubble is initialized at the center of the computational domain(x0,y0)as[7]

    where W is the prescribed width of the phase interface and it is 5 in the present work. The‘tanh’is a hyperbolic tangent function. The density ratio is set as 500 in all cases in the present work with ρl=500 and ρv=1. Additionally, other parameters in the present work including ρ1,ρ2,θv,θm,and θlare set as 1.36,481.04,0.2133,?0.01333,and 0.33333,respectively.The lattice constant c and the time step δtare both set as 1.

    Figure 2 shows the linear relationship between the ?p and 1/R0. It indicates that the simulation results agree well with Laplace law and verify the pseudopotential MRT-LB model adopted.

    In this paper, the wettability of the surface is measured by the achievable contact angle. It is a general practice that the wettability is obtained by measuring the contact angle of a droplet on the solid surface. The contact angle θ >90?means the surface is hydrophobic and θ < 90?means the surface is hydrophilic. For the contact angle measurement, a 400×400 lattice system computational domain is adopted, and the open boundary condition is employed at the top boundary.[30]In our model, open boundary is applied to the flat single solid wall cavitation bubble collapse model,and its main function is to construct semi-infinite physical boundary in the single solid wall cavitation bubble collapse model. The nonslip boundary scheme[31,32]is applied at the bottom boundary as f5= f7?0.5(f1?f3)?0.25δt(Fx+Fy),f6= f8+0.5(f1?f3)+0.25δt(Fx+Fy), and f2= f4. The density field was initialized as[14]

    where (xl,yl) is the center of the droplet. The parameter Rlwhich represents the radius of the droplet is initialized as 40.

    In the simulations, the intermolecular interaction force and the fluid–solid interaction force are used at the solid surface. Consequently, a contact angle of θ =90?can be analytically achieved when Gwis 0 which represents the neutral wettability. The results of contact angles corresponding to different Gware shown in Fig.3. The obtained contact angle θ is 91.5?when Gwis set as 0. This means that the numerical result is in good agreement with the analytical solution. As is shown in the results, the contact angle is approximately proportional to the parameter Gw. In other word, the wettability of the solid surface can be adjusted by Gwin the simulation.

    安順煤礦所出產(chǎn)的原煤在地面篩分廠經(jīng)過三臺振動篩四層篩面篩選為5個粒度等級,依次為粉煤(1cm以下)、粒煤(1-3cm)、小塊煤(2-5cm)、中塊(5-8cm)、大塊煤(8cm以上)。

    3.2. Verification of the collapsing bubble in concave corner

    Using the above improved pseudopotential MRT-LB model and the fluid–solid force scheme, the collapsing cavitation bubble in concave corner model is constructed in this section. The computational domain for the collapsing bubble is established in 700×700 lattice system. As shown in Fig.4,the nonslip boundary scheme is adopted to describe the orthogonal solid wall which constructs a concave corner.R is the initial radius of cavitation bubble and is set as 70 in the follow cases. p∞and pvrepresent the external pressure and internal pressure of cavitation bubble, respectively. b1and b2represent the distance from the center of cavitation bubble to the solid wall,respectively,and b1=b2=80 in the follow cases.λ =b1/R is defined as the nondimensional position offset parameter and λ =1.14 in this case. The constant pressure difference ?p=p∞?pvis 18.334 to ensure the cavitation bubble collapse. The parameter Gwin fluid–solid interaction is 0.

    For the nonslip boundary,the unknown distribution function components of the bottom can be obtained as

    For the left wall

    The numerical results of the evolution for cavitating bubble in concave corner are compared with the experiment ones in Fig.5.In the cavitation bubble collapse,the shape of cavitation bubble is symmetric about the diagonal. First,the spherical cavitation bubble begins to collapse in the initial state,followed by the formation of collapse depression in the diagonal direction of the spherical cavitation bubble. Then the extent of the depression becomes larger, gradually forms an oblique bowl of the depression.Finally,the cavitation bubble collapses like a bowl(a ring in three dimensions)above the diagonal direction. The comparison between the physical experimental results of group (a) and the numerical simulation results of group (b) indicates that the numerical simulation results are with the experimental results.

    In addition, the bubble evolution from the initial state to collapse at different grid resolutions can be observed in Fig.6.The criterion for the interface between the bubble and liquid is that the density of the point is equal to(ρv+ρl)/2.We adopted 300×300, 500×500, and 700×700 lattice regions, respectively. According to the same proportion principle,the initial bubble radius is R0=30,50,and 70. Moreover,a dimensionless time T?is defined, which represents the time from the initial state to the first collapse. We extracted bubble profiles at 0, 0.2T?, 0.4T?, 0.6T?, 0.8T?, and T?under various grid resolutions, and normalized the acquired coordinate points in the x and y directions.

    The normalized profiles of the cavitation bubble collapse in concave corner almost coincide with one another under different grid resolutions. In order to focus on physical evolution processes in a more detail,the simulation was carried out in the 700×700 lattice region in the manuscript. The effectiveness of the collapsing cavitation bubble in concave corner model is verified.

    3.3. Density,pressure,and velocity fields result and mechanism analysis

    The effect of wettability on the collapsing cavitation bubble in concave corner may be further analyzed from the density,pressure and velocity of collapsing bubble. In the following,we investigate the effect of solid surface wettability on the collapsing cavitation bubble in terms of density,pressure,and velocity.

    As shown in Fig.7,the number of rows in the figure represents different contact angles. Each row shows the process of collapsing cavitation bubble with the same wettability. The number of columns represents the time step which is 200,400,600, and 700. Each column shows the process of collapsing cavitation bubble with different wettabilities.

    Figure 7 shows that cavitation bubble always collapses diagonally from the sphere.First,the bubble gradually collapses from the diagonal direction above the cavitation bubble, then the cavitation bubble is compressed into a bowl placed diagonally,and finally the cavitation bubble collapses.

    The evolution of cavitation bubble does not change much when the orthogonal solid surface is hydrophilic. When the contact angle of the solid surface θ≈133.32?, new bubbles gradually appear in the lower left corner, and their shape is merged from two micro-arch bridge bubble into a quarter circle bubble. With the collapse of bubble, the newly formed bubble gradually becomes larger. When the solid surface contact angle θ ≈158.84?,the new bubble in the lower left corner of the solid surface becomes more obvious. Meanwhile, the new bubble gradually squeezes the collapsing cavitation bubble,making the former cavitation bubble collapse into barbelllike bubble. At the same time step,the area of collapse bubble under the condition of hydrophobic is smaller than that under the condition of hydrophilic. In addition,the cavitation bubble under the condition of hydrophobic collapses faster than that under the condition of hydrophilic,and the bubble is squeezed harder. It is demonstrated that the hydrophobic concave surface can accelerate the cavitation bubble collapse, while the hydrophilicity has little effect. Moreover, the hydrophobic concave surface tends to generate new cavitation bubble from the concave. The expanding new cavitation bubble squeezes the collapsing cavitation bubble and accelerates its collapse.The above results indicate that the surface wettability significantly affects the characteristics of cavitation bubble collapsing.

    In order to study the effect of wettability on collapse time,the collapse time diagram of cavitation bubble with different wettabilities of concave corner is shown in Fig.8. It shows that with the strengthening of hydrophobicity, the collapsing time decreases sharply. As the cavitation bubble moves away from the solid surface,its collapsing time becomes shorter and the collapse speed becomes faster. In conclusion, as the hydrophobicity of solid surface increases,the collapsing time of cavitation bubble becomes shorter and the evolution of cavitation bubble is accelerated. Meanwhile,the farther away from the solid surface,the faster the collapse speed is.

    3.3.2. Pressure field of the first collapse

    Wettability affects not only the evolution of density field,but also the evolution of pressure field during the cavitation bubble collapse. Figure 9 shows the comparison of density and pressure fields at time of the first collapse of cavitation bubble in concave corner. The density field is at the top left and the pressure field is at the bottom right.In Fig.8,each row represents collapsing cavitation bubble diagram with different position parameters. Each column represents the collapsing cavitation bubble with different contact angles.

    As can be seen from Fig.9, when the concave surface is hydrophilic, the pressure field and density field of collapsing cavitation bubble change little with different λ. When the solid surface is hydrophobic,the high-pressure area in the upper right becomes more concentrated and the pressure becomes larger. The pressure of the low-pressure area decreases,and the low-pressure area becomes more dispersed. This phenomenon becomes more pronounced as the cavitation bubble moves away from concave corner. Moreover,in this case,the new cavitation bubble in concave corner squeezes the original cavitation bubble and accelerates the cavitation bubble collapse.

    3.4. Jet velocity evolution

    Wettability affects the jet velocity of collapsing cavitation bubble in concave corner.To explain the impact on jet velocity better, the jet velocity of perpendicular bisector of collapsing cavitation bubble on the diagonal symmetric line is discussed separately. In Fig.10,panels(a),(b),(c),and(d)show the jet velocity diagrams with different λ. The x axis represents the axisymmetric length of the bevel angle, which is represented by Xd. The y axis is the jet velocity of perpendicular bisector of x axis in the y direction.

    As can be seen from Fig.10, the change trend of the jet velocity of perpendicular bisector of x axis in the y direction is first from around 0.1 to around 0. As the number of Xdincreases, the speed suddenly increases to an extreme value.Then the jet velocity of the perpendicular bisector of x axis in the y direction decreases slowly and becomes stable. When the solid surface is hydrophilic, its velocity change curve is not large. When the solid surface is hydrophobic,the velocity rises to the extreme value when Xdis larger, and the extreme value of the velocity increases. This phenomenon becomes more obvious as the cavitation bubble is away from the concave corner.

    3.5. Mechanism analysis of wettability and geometric effects

    When the surface is hydrophobic,the hydrophobicity increases the repulsive force between solid wall and fluid, and decreases the density(as shown in Fig.7)and the pressure(as shown in Fig.9) at the interface. As a result, the cavitation threshold is decreased,so cavitation nuclei are formed and developed more easily at hydrophobic surface. Further,because of geometric effect of concave corner,the cavitation regeneration is easier to occur in the hydrophobic concave corner than near the plane solid wall[11](as shown in Figs.7 and 9). The growth of the regenerated bubble further squeezes the original cavitation bubble and accelerates the evolution of cavitation bubble collapse. So, the collapse time is decreased with the same λ as concave surface is hydrophobic(as shown in Figs.8 and 9). Additionally,the regenerated bubble pushes the original cavitation bubble away from the concave corner and makes λ larger.

    As we know, the role of solid wall on cavitation bubble collapse is the retarding effect on fluid. Due to the nonslip effect, the closer the cavitation bubble is to the solid wall, the more obvious the retarding effect is. Because of geometric effect of concave corner, this retarding effect is exacerbated.So, the cavitation bubble collapse is significantly lengthened when λ is smaller in concave corner (as shown in Figs. 7, 8,and 9). In addition,with the surface hydrophobicity,the concave corner gets stronger capillary effect which can push the cavitation bubble away from the corner and makes λ larger.Superimposed with theλ increasing effect of the regenerated bubble in the corner,the collapse time decrease faster with increasing contact angle(as shown in Fig.8).

    Meanwhile, the jet velocity mode is affected by surface wettability. The more hydrophobic the surface is, the farther the bubble is from the concave corner. However, the effect of the distance on the growth amplitude of jet is not obvious when the initial λ is small. The reason is that a new cavitation bubble is generated at the concave corner. The growth direction of the new bubble is opposite to that of the jet(as shown in Fig.8),which reduces the growth amplitude of jet. Although a new cavitation bubble are generated when the initial λ is large,the deceleration effect of jet is weak,and the maximum velocity of jet increases significantly due to the long distance from the bubble collapsing point. In summary, the geometric effect of concave corner and surface wettability results in this jet mode together.

    4. Conclusions

    In this work, the pseudopotential MRT-LB model is adopted to model a single cavitation bubble in concave corner, and the effect of solid surface wettability and geometry on cavitation is investigated. It can be found that the wettability of concave surface has obvious effects on the evolution of cavitation bubble. When the concave surface is hydrophobic,it affects the evolution of cavitation bubble significantly on the density field,pressure field,collapse time,and jet velocity.

    With the superimposed effect of surface hydrophobicity and concave geometry, the cavitation bubble collapse is accelerated. The stronger the hydrophobicity of concave is, the more significant the acceleration effect is. It is worth noting that it is easier to generate new cavitation bubble in the hydrophobic concave, which may lead to subsequent persistent cavitation. In addition,both the hydrophobicity of surface and the concave geometry bring positive effects to λ increasing.And the λ increasing effect not only accelerates the cavitation bubble collapse, but also increases the maximum jet velocity. So, we can conclude that the hydrophobic concave can enhance the cavitation effect.

    On the other hand, we find that the mechanism for the effect of hydrophobic concave on cavitation bubble collapse can be directly and effectively analyzed and explained in the framework of the pseudopotential LBM.As a valid tool to simulate the cavitation bubble,LBM plays an important role in the study of cavitation bubble collapse mechanism.

    猜你喜歡
    韓慶篩面塊煤
    直線振動篩篩面顆粒運動特性分析
    煤炭工程(2023年11期)2023-11-21 12:41:52
    哈爾烏素選煤廠塊煤防破碎技術(shù)研究
    煤炭工程(2023年10期)2023-11-04 03:11:46
    Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
    基于彈性弦模型的弛張篩面運動規(guī)律研究
    煤炭工程(2022年8期)2022-08-24 07:45:22
    Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
    哈拉溝選煤廠塊煤系統(tǒng)優(yōu)化改造
    Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM?
    弛張篩面動態(tài)特性數(shù)值模擬及參數(shù)優(yōu)化
    選煤廠塊煤防破碎技術(shù)探索
    Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method*
    中文亚洲av片在线观看爽| 熟女人妻精品中文字幕| 国产v大片淫在线免费观看| 亚洲av成人av| 色播亚洲综合网| 麻豆av噜噜一区二区三区| 亚洲天堂国产精品一区在线| 夜夜看夜夜爽夜夜摸| 波多野结衣高清无吗| 国产成人一区二区在线| 亚洲五月天丁香| 久久这里只有精品中国| 亚洲人成网站在线播放欧美日韩| kizo精华| 十八禁国产超污无遮挡网站| 国模一区二区三区四区视频| 亚洲欧洲国产日韩| 欧美三级亚洲精品| 熟女电影av网| 国产三级中文精品| 精品久久国产蜜桃| 嫩草影院新地址| 亚洲第一区二区三区不卡| 一本精品99久久精品77| 亚洲人与动物交配视频| 丝袜美腿在线中文| 青春草国产在线视频 | 美女脱内裤让男人舔精品视频 | av天堂中文字幕网| 又黄又爽又刺激的免费视频.| 国产亚洲av嫩草精品影院| 国产视频首页在线观看| 精品国产三级普通话版| 欧美xxxx黑人xx丫x性爽| 免费观看的影片在线观看| 一个人观看的视频www高清免费观看| 99九九线精品视频在线观看视频| 中文字幕av成人在线电影| 国产白丝娇喘喷水9色精品| 久久久a久久爽久久v久久| 久久99热6这里只有精品| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 亚洲精品日韩av片在线观看| 欧美激情国产日韩精品一区| 别揉我奶头 嗯啊视频| 又爽又黄无遮挡网站| 久久久国产成人免费| 国产69精品久久久久777片| 色5月婷婷丁香| 国产免费一级a男人的天堂| 国内精品美女久久久久久| 中文字幕制服av| 长腿黑丝高跟| 亚洲欧美精品专区久久| 变态另类成人亚洲欧美熟女| 国产一区二区三区av在线 | 精品久久久久久久人妻蜜臀av| 亚洲欧美精品自产自拍| 此物有八面人人有两片| 又粗又爽又猛毛片免费看| 卡戴珊不雅视频在线播放| 中文字幕av成人在线电影| 国产伦精品一区二区三区四那| 久久亚洲国产成人精品v| 亚洲一区二区三区色噜噜| 日本黄色视频三级网站网址| 国产一级毛片在线| 亚洲高清免费不卡视频| 热99在线观看视频| 欧美+亚洲+日韩+国产| 成人毛片60女人毛片免费| 亚洲av免费在线观看| 午夜免费激情av| 国产在线精品亚洲第一网站| 中文字幕av成人在线电影| 久久久久久大精品| 女的被弄到高潮叫床怎么办| 免费人成在线观看视频色| 尤物成人国产欧美一区二区三区| 少妇猛男粗大的猛烈进出视频 | 91久久精品电影网| 欧美激情国产日韩精品一区| 免费看光身美女| 久久国产乱子免费精品| 六月丁香七月| 国产日韩欧美在线精品| 国产精品久久久久久亚洲av鲁大| 我要搜黄色片| 中文字幕制服av| .国产精品久久| 国产伦精品一区二区三区视频9| 美女内射精品一级片tv| 联通29元200g的流量卡| 最好的美女福利视频网| 成人午夜高清在线视频| 晚上一个人看的免费电影| 日本熟妇午夜| 黄片无遮挡物在线观看| 亚洲精品日韩av片在线观看| 中国美白少妇内射xxxbb| 国产综合懂色| 中国美女看黄片| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 免费av毛片视频| 午夜福利视频1000在线观看| 97超碰精品成人国产| 国产三级中文精品| 一个人观看的视频www高清免费观看| 欧美高清性xxxxhd video| 插逼视频在线观看| 成人特级av手机在线观看| 人妻系列 视频| 亚洲精华国产精华液的使用体验 | 如何舔出高潮| 三级经典国产精品| 神马国产精品三级电影在线观看| 欧美一级a爱片免费观看看| 国产亚洲欧美98| 青青草视频在线视频观看| 欧美一区二区亚洲| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3| 免费av不卡在线播放| 国产一级毛片七仙女欲春2| 中文在线观看免费www的网站| 亚洲人与动物交配视频| 亚洲欧洲日产国产| 少妇的逼好多水| 亚洲精品影视一区二区三区av| 99热6这里只有精品| 午夜老司机福利剧场| 国产国拍精品亚洲av在线观看| 午夜福利在线在线| 国产爱豆传媒在线观看| 日产精品乱码卡一卡2卡三| 亚洲av中文av极速乱| 国产高清激情床上av| 一本久久精品| 国产伦一二天堂av在线观看| 自拍偷自拍亚洲精品老妇| 久久这里只有精品中国| 亚洲人成网站在线播放欧美日韩| 国产精品一区二区在线观看99 | 变态另类成人亚洲欧美熟女| 久久精品综合一区二区三区| 亚洲不卡免费看| 国产午夜福利久久久久久| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 久久久久久久久久久免费av| 有码 亚洲区| 欧美丝袜亚洲另类| 波野结衣二区三区在线| 国产高清视频在线观看网站| 日韩欧美精品免费久久| 好男人视频免费观看在线| 色播亚洲综合网| 亚洲七黄色美女视频| 欧美日韩乱码在线| 性色avwww在线观看| 日本黄色片子视频| 免费看日本二区| 麻豆国产av国片精品| 又粗又硬又长又爽又黄的视频 | 国产精品99久久久久久久久| www日本黄色视频网| 18禁裸乳无遮挡免费网站照片| 欧美最黄视频在线播放免费| 哪个播放器可以免费观看大片| 午夜老司机福利剧场| 国产伦精品一区二区三区四那| 91av网一区二区| 国产成人影院久久av| 精品久久久久久久人妻蜜臀av| 精品少妇黑人巨大在线播放 | 性插视频无遮挡在线免费观看| 国产色爽女视频免费观看| 亚洲精品自拍成人| 最近手机中文字幕大全| 欧美高清成人免费视频www| 男人舔女人下体高潮全视频| 少妇熟女欧美另类| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 国产久久久一区二区三区| 在线观看66精品国产| 国产精品福利在线免费观看| 久久99精品国语久久久| 熟妇人妻久久中文字幕3abv| 日韩一区二区视频免费看| 97超碰精品成人国产| 在线播放无遮挡| 永久网站在线| 免费观看人在逋| 丝袜喷水一区| avwww免费| 国产片特级美女逼逼视频| 搞女人的毛片| 床上黄色一级片| 特大巨黑吊av在线直播| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频 | 99九九线精品视频在线观看视频| 欧美最黄视频在线播放免费| 亚洲乱码一区二区免费版| 深爱激情五月婷婷| 国产国拍精品亚洲av在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久久久免| 午夜精品一区二区三区免费看| 99精品在免费线老司机午夜| 精品久久久久久久久亚洲| 国产精品嫩草影院av在线观看| 国产激情偷乱视频一区二区| 波多野结衣高清无吗| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 亚洲精品乱码久久久v下载方式| 性欧美人与动物交配| 午夜精品国产一区二区电影 | 国产一级毛片七仙女欲春2| 午夜亚洲福利在线播放| 国产精品野战在线观看| 欧美bdsm另类| a级毛色黄片| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 九九爱精品视频在线观看| 一级黄色大片毛片| 国产黄片美女视频| 亚洲成a人片在线一区二区| 亚洲欧美精品综合久久99| 中文字幕免费在线视频6| 中文字幕久久专区| 亚洲一区二区三区色噜噜| 精品免费久久久久久久清纯| 中出人妻视频一区二区| 国产精品乱码一区二三区的特点| 成人高潮视频无遮挡免费网站| 国产精品99久久久久久久久| 麻豆成人av视频| 少妇高潮的动态图| 91aial.com中文字幕在线观看| av卡一久久| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 亚洲国产色片| 国产成人精品一,二区 | 成人特级av手机在线观看| 精品人妻熟女av久视频| 亚洲成a人片在线一区二区| 亚洲第一电影网av| 午夜福利成人在线免费观看| 亚洲av中文字字幕乱码综合| 日日啪夜夜撸| 变态另类丝袜制服| 久久久色成人| 联通29元200g的流量卡| 久久中文看片网| 晚上一个人看的免费电影| 中文字幕av成人在线电影| 午夜老司机福利剧场| 不卡视频在线观看欧美| 欧美性感艳星| 国产精品不卡视频一区二区| 国产精品日韩av在线免费观看| 嘟嘟电影网在线观看| 亚洲欧美日韩东京热| 国产精品综合久久久久久久免费| 日韩欧美精品v在线| 亚洲国产欧美在线一区| 日本免费a在线| 国产精品一区www在线观看| 精品国内亚洲2022精品成人| 精品一区二区免费观看| 久久99热6这里只有精品| 两个人的视频大全免费| av视频在线观看入口| 国产成人影院久久av| 插阴视频在线观看视频| 国产中年淑女户外野战色| 99热这里只有精品一区| 亚洲成av人片在线播放无| 成人三级黄色视频| 夜夜爽天天搞| 国产大屁股一区二区在线视频| 九九爱精品视频在线观看| 99热这里只有是精品50| 日日摸夜夜添夜夜添av毛片| 日产精品乱码卡一卡2卡三| 深爱激情五月婷婷| 麻豆成人午夜福利视频| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 一区二区三区免费毛片| 波野结衣二区三区在线| 欧美成人a在线观看| 内射极品少妇av片p| 亚洲精品国产成人久久av| 日韩欧美国产在线观看| 日韩欧美 国产精品| 久久久久久伊人网av| 亚洲精品粉嫩美女一区| 亚洲精品影视一区二区三区av| 春色校园在线视频观看| 一级av片app| 九草在线视频观看| 国产成人91sexporn| 秋霞在线观看毛片| 亚洲成av人片在线播放无| 精品一区二区三区人妻视频| 22中文网久久字幕| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性xxxx在线观看| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线 | 国产蜜桃级精品一区二区三区| 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 日本黄大片高清| 男插女下体视频免费在线播放| 婷婷亚洲欧美| 97在线视频观看| 中文字幕制服av| 欧美一级a爱片免费观看看| 一级毛片aaaaaa免费看小| 婷婷亚洲欧美| 美女脱内裤让男人舔精品视频 | 久久这里只有精品中国| 国产中年淑女户外野战色| av在线蜜桃| 亚洲精品国产av成人精品| 精品少妇黑人巨大在线播放 | 免费在线观看成人毛片| 99国产极品粉嫩在线观看| 亚洲婷婷狠狠爱综合网| av黄色大香蕉| 国产欧美日韩精品一区二区| 女同久久另类99精品国产91| av天堂中文字幕网| 少妇人妻一区二区三区视频| 男女边吃奶边做爰视频| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看| 亚洲最大成人av| 丝袜喷水一区| 亚洲av成人av| 国产伦精品一区二区三区四那| 国产黄a三级三级三级人| 精品久久久久久久久久久久久| 12—13女人毛片做爰片一| 亚洲国产欧美在线一区| 精品久久国产蜜桃| 美女xxoo啪啪120秒动态图| 最近手机中文字幕大全| 久久99热6这里只有精品| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 97在线视频观看| 中文字幕久久专区| 搡女人真爽免费视频火全软件| 最近2019中文字幕mv第一页| 亚洲成a人片在线一区二区| 直男gayav资源| av专区在线播放| 波野结衣二区三区在线| 亚洲精品乱码久久久久久按摩| 听说在线观看完整版免费高清| 久久久精品大字幕| 天堂√8在线中文| 欧美潮喷喷水| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 永久网站在线| 日韩成人av中文字幕在线观看| 真实男女啪啪啪动态图| 国产一级毛片七仙女欲春2| 99热网站在线观看| 国产精品一区二区三区四区免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久久久免| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 女的被弄到高潮叫床怎么办| 国产爱豆传媒在线观看| 国产精品人妻久久久影院| 亚洲自偷自拍三级| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 成人亚洲欧美一区二区av| 成人漫画全彩无遮挡| 成人美女网站在线观看视频| 国产精品三级大全| av在线亚洲专区| 一夜夜www| 99久久九九国产精品国产免费| 毛片一级片免费看久久久久| 在线a可以看的网站| 日韩高清综合在线| 日韩欧美 国产精品| 午夜激情欧美在线| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 久久久久久久久久黄片| 国产伦精品一区二区三区四那| 一边亲一边摸免费视频| 成熟少妇高潮喷水视频| 精品人妻偷拍中文字幕| 高清日韩中文字幕在线| 欧美成人一区二区免费高清观看| 性欧美人与动物交配| 国产亚洲精品av在线| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 97超碰精品成人国产| 超碰av人人做人人爽久久| 久久久久免费精品人妻一区二区| 亚洲一区高清亚洲精品| 免费av观看视频| 免费观看人在逋| 国产精品乱码一区二三区的特点| 亚洲婷婷狠狠爱综合网| av.在线天堂| 人妻少妇偷人精品九色| 久久99精品国语久久久| 免费黄网站久久成人精品| av免费在线看不卡| 亚洲国产精品国产精品| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| 婷婷精品国产亚洲av| 丰满乱子伦码专区| 欧美高清性xxxxhd video| 久久精品91蜜桃| 一级毛片久久久久久久久女| 丝袜喷水一区| 亚洲精品久久久久久婷婷小说 | 我的女老师完整版在线观看| 99热精品在线国产| 少妇裸体淫交视频免费看高清| 看十八女毛片水多多多| 欧美成人a在线观看| 日韩国内少妇激情av| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 人妻夜夜爽99麻豆av| 观看美女的网站| 免费人成在线观看视频色| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 国产午夜精品论理片| 在线免费观看的www视频| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 亚洲国产精品久久男人天堂| 国产精品久久久久久久电影| 亚洲国产欧洲综合997久久,| 嫩草影院入口| 成人一区二区视频在线观看| 1000部很黄的大片| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 国产精品福利在线免费观看| 色尼玛亚洲综合影院| 哪里可以看免费的av片| 熟妇人妻久久中文字幕3abv| 国产成人影院久久av| 久久精品人妻少妇| 欧美成人精品欧美一级黄| 成人国产麻豆网| 性欧美人与动物交配| 久久99精品国语久久久| 国产av不卡久久| 午夜福利视频1000在线观看| 国产午夜精品一二区理论片| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清| 欧美日本视频| 亚洲国产精品成人综合色| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕av成人在线电影| 国产片特级美女逼逼视频| 三级经典国产精品| 淫秽高清视频在线观看| 99久久人妻综合| 日韩av不卡免费在线播放| 日日干狠狠操夜夜爽| 非洲黑人性xxxx精品又粗又长| 波野结衣二区三区在线| 偷拍熟女少妇极品色| 美女被艹到高潮喷水动态| 亚洲国产欧美人成| 老熟妇乱子伦视频在线观看| 精品欧美国产一区二区三| 国产精品无大码| 观看免费一级毛片| 国产精品,欧美在线| 九九爱精品视频在线观看| av国产免费在线观看| 麻豆乱淫一区二区| 国产精品综合久久久久久久免费| 日韩亚洲欧美综合| 在线a可以看的网站| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 一本久久中文字幕| 夫妻性生交免费视频一级片| 亚洲欧美日韩卡通动漫| 人妻制服诱惑在线中文字幕| 最近手机中文字幕大全| 国产精品无大码| 嘟嘟电影网在线观看| 波多野结衣高清无吗| 久久精品夜色国产| 日产精品乱码卡一卡2卡三| 成人鲁丝片一二三区免费| 最好的美女福利视频网| 欧美丝袜亚洲另类| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 又粗又爽又猛毛片免费看| 亚洲va在线va天堂va国产| 亚洲av二区三区四区| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 99久久精品一区二区三区| 长腿黑丝高跟| 成人一区二区视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 99久久精品热视频| 99热这里只有是精品50| 色哟哟·www| 国产午夜精品论理片| 日韩高清综合在线| 欧美日韩在线观看h| 午夜精品国产一区二区电影 | 尾随美女入室| 国产av不卡久久| 十八禁国产超污无遮挡网站| 国产精品一及| 国产成人a区在线观看| 在线免费观看的www视频| 黄色欧美视频在线观看| 欧美一区二区国产精品久久精品| 中文资源天堂在线| 69av精品久久久久久| 99久久九九国产精品国产免费| 能在线免费看毛片的网站| 国产女主播在线喷水免费视频网站 | 亚洲第一电影网av| 99久久精品热视频| 国内久久婷婷六月综合欲色啪| 丰满的人妻完整版| 乱码一卡2卡4卡精品| 日韩欧美三级三区| 日韩视频在线欧美| 一边亲一边摸免费视频| 国产欧美日韩精品一区二区| or卡值多少钱| 不卡视频在线观看欧美| 久久韩国三级中文字幕| 午夜福利高清视频| 天堂影院成人在线观看| 日本爱情动作片www.在线观看| 欧美精品一区二区大全| 国产视频内射| 欧美bdsm另类| 又爽又黄a免费视频| 亚洲av免费在线观看| 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 99久久成人亚洲精品观看| 国产精品一及| 中文字幕久久专区| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看| 精品免费久久久久久久清纯| 国产精品.久久久| 99国产精品一区二区蜜桃av| 成人亚洲欧美一区二区av| 午夜激情欧美在线| 久久久久久久久久黄片| 精品熟女少妇av免费看| 欧美成人免费av一区二区三区| 国产一区二区在线av高清观看| 欧美区成人在线视频| 如何舔出高潮| 国产男人的电影天堂91| av在线亚洲专区| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 久久国内精品自在自线图片| 午夜福利高清视频| 亚洲成a人片在线一区二区| 国产女主播在线喷水免费视频网站 | 在现免费观看毛片|