• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method*

    2016-10-18 05:36:42MingleiSHAN單鳴雷ChangpingZHU朱昌平XiZHOU周曦ChengYIN殷澄
    關(guān)鍵詞:韓慶昌平

    Ming-lei SHAN (單鳴雷), Chang-ping ZHU (朱昌平), Xi ZHOU (周曦), Cheng YIN (殷澄),

    Qing-bang HAN (韓慶邦)

    College of Internet of Things Engineering and Jiangsu Key Laboratory of Power Transmission and Distribution

    Equipment Technology, Hohai University, Changzhou 213022, China, E-mail: shanming2003@126.com

    ?

    Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method*

    Ming-lei SHAN (單鳴雷), Chang-ping ZHU (朱昌平), Xi ZHOU (周曦), Cheng YIN (殷澄),

    Qing-bang HAN (韓慶邦)

    College of Internet of Things Engineering and Jiangsu Key Laboratory of Power Transmission and Distribution

    Equipment Technology, Hohai University, Changzhou 213022, China, E-mail: shanming2003@126.com

    The dynamics of the bubble collapse near a rigid boundary is a fundamental issue for the bubble collapse application and prevention. In this paper, the bubble collapse is modeled by adopting the lattice Boltzmann method (LBM) and is verified, and then the dynamic characteristics of the collapsing bubble with the second collapse is investigated. The widely used Shan-Chen model in the LBM multiphase community is modified by coupling with the Carnahan-Starling equation of state (C-S EOS) and the exact difference method (EDM) for the forcing term treatment. The simulation results of the bubble profile evolution by the LBM are in excellent agreements with the theoretical and experimental results. From the two-dimensional pressure field evolution, the dynamic characteristics of the different parts during the bubble collapse stage are studied. The role of the second collapse in the rigid boundary damage is discussed, and the impeding effect between two collapses is demonstrated.

    cavitation mechanics, lattice Boltzmann method, bubble collapse, rigid boundary

    Introduction

    The bubble collapse near a rigid boundary may lead to a serious material damage owing to the resulted high velocities, pressures, temperature, but on the other hand, it could also be utilized in various important applications, such as for environmental protection,high-intensity ultrasonic therapy and material surface cleaning[1]. However, as too many phenomena are involved, a theoretical model is difficult to establish,and under particular boundary conditions, the analytical solution is usually impossible. Therefore, the numerical simulation becomes a powerful way to gain an understanding. The conventional numerical simulation methods for the non-spherical cavitation bubble mainly include the finite volume method (FVM), the finite element method (FEM) and the boundary element method (BEM)[2]. In the numerical simulations based on the classical partial differential equation, the methods to track or capture the interfaces are required(such as the volume of fluid (VOF) method or the level set method (LSM)[3]). In addition, the Poisson equation needs to be solved to satisfy the continuity equation, which drastically reduces the computational efficiency[4].

    During the past decades the lattice Boltzmann method (LBM) has emerged as a powerful tool for simulating multiphase flow problems[4-7]. As a powerful tool for the numerical simulations and investigations of the multiphase flows, the LBM has many advantages, including clear physical pictures, easy implementation of boundary conditions, and fully parallel algorithms[4]. Particularly, it is not required to track or capture the interfaces in the LBM models due to their mesoscopic nature. The Shan-Chen model,which is widely used in the LBM multiphase community due to its simplicity, high computational efficiency and high flexibility, has been introduced into the field of the bubble cavitation recently. The first attempt to validate the application of the Shan-Chen model in the LBM for cavitation problems was made bySukop and Or[8]. Chen et al.[9]simulated the cavitating bubble growth using a modified Shan-Chen model with a large density ratio in both quiescent and shear flows, and the results were compared with the Rayleigh-Plesset equation. The acoustic cavitation of the spherical bubble was simulated recently by Zhou et al.[10]using the original Shan-Chen pseudopotential model, and the result was compared with the Keller equation. Mishra et al.[11]introduced a model of cavitation based on the Shan-Chen multiphase model that allows for coupling between the hydrodynamics of a collapsing cavity and the supported solute chemical species. However, the pressure field evolution in the bubble collapse stage near a rigid boundary has not been extensively investigated yet, in particular, when multiple collapses exist. In addition, due to the inherent parallelism, the LBM promises to be a powerful tool for the studies of the multi-bubbles collapse and even the cavitation field.

    The evolutions of the bubble profile and the jet velocity were investigated by experiments with respect to the dynamics of the bubble collapse near rigid boundary[12-14]. As an intuitive clue to investigate the mechanism of the collapsing bubble, the pressure field evolution and the damage of the rigid boundary are more complex and diverse when multiple collapses exist. However, the direct measurement by the experimental method is difficult because all the intrusive measurements will disturb the original pressure field,and the non-intrusive methods cannot be applied unless the fluctuation of the pressure is large enough. In order to visualize the impulsive high pressure regions around the collapsing bubbles, Philipp[12]used the shadow graph method in a high-speed photograph. But the details of the pressure field cannot be obtained except by the emitted shock waves. In Ref.[15], the velocity field and the pressure distribution around the bubble in the dielectric fluid were studied numerically. By solving the Navier-Stokes equation, Liu[16]simulated the pressure distribution numerically outside a nonlinear resonance bubble in one dimension. However, the 2-D pressure distribution and the evolution of a collapsing bubble throughout the whole collapsing stage were not obtained. Since the pressure distribution can be directly obtained by solving the equation of state (EOS), the LBM is very effective to simulate the 2-D or 3-D pressure field and the evolution of a collapsing bubble near a rigid boundary.

    In the present work, an approach of bubble collapse simulation is developed based on a modified Shan-Chen model to investigate the bubble collapse near a rigid boundary, especially to investigate the 2-D pressure filed evolution around a collapsing bubble associated with twice collapses. The modified Shan-Chen model is coupled with the Carnahan-Starling equation of state (C-S EOS) and the exact difference method (EDM) in the interaction forcing term treatment, to obtain a large density ratio liquidvapor system while reducing the spurious currents and minimizing the thermodynamics inconsistency. In this work, the simulations by the LBM is verified through a comparison between the simulation results of the bubble profile evolution and the experimental results. Subsequently, the 2-D pressure field evolution around the collapsing bubble associated with twice collapses is investigated, and the role of the second collapse in the rigid boundary damage is discussed.

    1. Numerical model

    The LBM is a mesoscopic numerical simulation method based on statistical physics and can well simulate the Navier-Stokes equations at the macroscopic scale[4-6]. In the LBM, the motion of fluid is described by a set of particle distribution functions. The standard LBM with a force term based on Bhatnagar-Gross-Krook (BGK) collision term, called the LBGK, can be expressed as follows

    The equilibrium distribution function satisfying the Maxwell distribution in the D2Q9 model is expressed as

    Based on the aforementioned LBGK model, the inter-particle interaction force is introduced into the Shan-Chen model to simulate the single component multiphase flows[17]. In the D2Q9 model, the nearest neighbor interactions are expressed as

    With this method, various EOS can be substituted into Eq.(6). For the C-S EOS, which modifies the vdW EOS, we can obtain

    It is shown that the EDM leads to the relaxation time independence and a relatively wide temperature range[19]. In the EDM[20], the force term in Eq.(1) can be expressed as

    Fig.1 Computational domain

    2. Results and discussions

    The simulations of the bubble collapse stage near a rigid boundary are divided into two main parts. In the first part, the simulations are verified by comparing with the classic results of numerical calculations and experiments. In the second part, the pressure field evolution around a collapsing bubble is obtained in detail. In both parts, the computational domain is set as 401×401 for the bubble collapse simulation as shown in Fig.1, whereis the initial radius of bubble,is the distance from the bubble center to the rigid boundary,is thevapor pressure in bubble,is the ambient pressure. In the simulation, with the reduced temperature in the CS-EOS ,the equilibrium pressureis obtained. The pressure boundary conditions are applied in the inlet,and the initial value of the pressure is equal to the equilibrium pressure. Corresponding to the experiments in Refs.[12] and [13], an infinite medium area needs to be established in the computational domain. On account of both symmetrical and asymmetrical situations, a non-equilibrium extrapolation scheme[22]of the boundary condition is applied on both left and right sides to make an infinite area regardless of reflected waves. The bottom boundary is set as a plane rigid boundary with a bounce-back boundary condition. Under the assumptions set by Plesset and Chapman[23], the simulation can be characterized by the stand-off parameterand the constant pressure differencebetween the ambient liquid and the bubble vapor. Unless otherwise specified, the unit adopted in this paper is the lattice unit of the LBM, and the lattice spacing and the time step are equal to unity in this work.

    Fig.2 Comparison of bubble profile evolution between the LBM and the experimental results[12]

    Fig.3 Comparison of bubble surfaces evolution between the simulation of LBM () and the experimental results[13]and calculations[23]

    2.1 Bubble profile evolution

    With the modified Shan-Chen model, a large density ratio liquid-vapor system can be obtained with different temperatures and different relaxation timesThe coexisting densities of vapor and liquid,and, are determined by the phase segregation simulation with slight random perturbations in the initial density.can be varied slightly in the simulation to obtain an additional pressure difference between the inside and the outside of the bubble after the equilibrium of the fluid in the whole computational domain.

    Fig.4 Pressure field evolution around collapsing bubble near rigid boundary (,R0=80,)

    Two bubbles with same initial radii and different stand-off parameters are simulated. From the figures of the density field, the bubble profiles can be distinguished visually. In Fig.2, the bubble profile evolutions during the collapse stage are compared with experimental results of Philipp[12]. In both cases, the bubble profile evolutions are in qualitatively good agreement with the experimental results.

    With the time step matching, the time evolution of the bubble surfaces can be obtained. The liquid and vapor interface is defined as the locations with the density. For every obtained interface by post-processing is just one set of discrete points, a cubic interpolation is used to obtain a smooth interface. The results are shown in Fig.3. For the convenience, the generalized initial bubble radius is adopted. The LBM simulation results agree better with experimental results[13]than the numerical calculations[23]. In Ref.[23], Plesset and Chapman computed the time evolution of the bubble collapse stage using the boundary element method from the generalized Bernoulli equation. In the definition of the problem, Plesset and Chapman made six assumptions, such as, negligible surface tension, constant vapor pressure and ambient pressure, incompressible liquid, non-viscous flow, no permanent gas, which are difficult to be satisfied in the experiment and the LBM simulation.

    From Fig.2 and Fig.3, we can find that the initially spherical bubble starts to collapse due to the pressure difference between the outside and the inside of the bubble. Owing to the rigid wall, the radial liquid flow is retarded, and a region with lower density/pressure is formed near the rigid wall. Therefore, the collapsing bubble is deformed and the jet is originated from the upper wall to the lower one. It is obvious that different stand-off parametersand/or pressure differencewill lead to different morphologies of collapsing bubbles, which should be investigated. In order to be more intuitive, the pressure field evolution of the collapsing bubble is investigated in the next section.

    2.2 Pressure field evolution

    The simulated pressure field at typical moments are shown in Fig.4. From 4(a) to 4(c) in Fig.4, the bubble deforms from a spherical bubble to an elonga-ted one in the direction normal to the rigid boundary due to the lower pressure region formed near the rigid boundary. The rebound effect of the liquid and the relatively higher speed motion of the upper portion of the bubble cause the forming of a conical high pressure region just above the bubble, which plays a crucial role in the second deformation part, as shown in 4(d)and 4(e). The first collapse, the formation of a circular bubble and the second collapse are illustrated in 4(f),4(g), 4(h), respectively. After the second collapse, the visible bubble surface disappears completely. The circular negative-pressure region formed after the second collapse, as shown from 4(i) to 4(m), is a non-negligible cause of the next collapse or the high frequency oscillation. The interactions between pressure waves lead to a complex sound field in the liquid domain and twice damages of the rigid boundary (as shown in 4(k)and 4(m)).

    Making a comprehensive survey throughout the pressure field evolution, the whole process of evolution can be divided into the following typical parts: the first deformation part, the second deformation part,the first collapse, the circular bubble formation part,the second collapse and the post-collapse part. The collapse mechanism aforementioned can be confirmed by the experiment of Philipp[12], and more details of the post-collapse part are shown in our simulation.

    Fig.5 Collapse time

    3. Discussions

    For a spherical collapsing bubble, the collapse time, i.e., the time duration between the initial stage and the first collapse, can be estimated by the Rayleigh collapse time

    Fig.6 Intervals between first and second collapses

    As compared with the pressure field in the case of a single collapse, the pressure field in the case of two collapses is more complex, and the process of the damage of the rigid boundary caused by the collapsing bubble is much varied. In Fig.6, the interval between the first and second collapses,, under variable conditions, is determined for a given. With a highdecreases with the increase of. But for a lower, the interval curve will have an extreme point, which shifts to the right with the decrease of. To better understand this phenomenon, the images of the pressure field evolution corresponding to the case of a lowin Fig.6 are displayed in Fig.7. Essentially,is related with the velocity of the deformation of the collapsing bubble in the second deformation part, and bothandaffect the deformation velocity of the collapsing bubble. Whenis very low, the velocity of collapsing is low. So when the first collapse occurs, a smaller circular bubble is formed (as shown in Fig.7(a)). Due to the low collapsing velocity, the smaller circular bubble can last for a considerable time. However, if theis small enough in this state, the retarding effect of the rigid wall would make the circular bubble further reduce its size, and then shorten the time. For a higherin Fig.7(b), a greater pressure gradient cause a higher deformation velocity of the bubble and then a larger circular bubble, which can last for a longer time. But a very high deformation velocity will, instead, lead to a decrease ofas in the highercases shown in Fig.6. Ifis small enough as shown in Fig.7(b), the pressure wave created by the first collapse and its echo from the rigid wall will accelerate the collapse and then shorten the time

    Fig.7 Pressure field at first and second collapses for lowercases in Fig.6

    Fig.8 Time sequences ofandon the rigid boundary with different

    The crucial role of the pressure and the jet velocity on the wall damage is shown by the comparison in Fig.8 visualizing the time sequences of two parameters,and, which are the pressure and the normal jet velocity against the rigid boundary, respectively. With the decrease of, the distinction between the first collapse and the second one, according toand, is more and more blurred. The maximums ofandvary oppositely to that of the distance between the bubble and the rigid boundary. But, when, both ofandare reduced more than when. Therefore, it can be speculated that there exists an impeding effect between the two collapses at a certain

    4. Conclusions

    In this paper, the modified Shan-Chen model of the LBM is adopted to simulate the bubble collapse near a rigid boundary. The simulated bubble profile evolution and the bubble surface evolution are in excellent agreements with the theoretical and experimental results. The pressure field evolutions give clear physical pictures for understanding the mechanism of the bubble collapse near a rigid boundary. In particular, the pressure field evolution provides more details after the second collapse. It is shown that the number of parts during the collapse stage and the time intervals among different parts can be adjusted by some parameters, such as.The second collapse makes the pressure field more complex and the process of the damage of the rigid boundary more varied. Additionally, the impeding effect between two collapses at certainis found. It is demonstrated that the LBM is a powerful tool for the study of cavitation under sophisticated boundary conditions and with a large scale cavitation field. Moreover, the investigation of the different parts during the bubble collapse stage and the role of the second collapse provide some insights for the engineering bubble collapse applications or preventions.

    Acknowledgments

    This work was supported by the Fundamental Research Funds for the Central Universities of Hohai University (Grant No. 2013B08814).

    References

    [1] FRANC J. P., MICHEL J. M. Fundamentals of cavitation[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004, 5-6.

    [2] LINDS. J., PHILLIPST. N.The effect of viscoelasticity on the dynamics of two gas bubbles near a rigid boundary[J]. IMA Journal of Applied Mathematics, 2012,77(5): 652-677.

    [3] SAMIEI E., SHAMS M. and EBRAHIMI R. A novel numerical scheme for the investigation of surface tension effects on growth and collapse stages of cavitation bubbles[J]. European Journal of Mechanics-B/Fluids, 2011, 30(1): 41-50.

    [4]SUKOP M. C., THORNE D. T. Lattice Boltzmann modeling: An introduction for geoscientists and engineers[M]. New York, USA: Springer-Verlag, 2006, 1-4.

    [5] CHEN L., KANG Q. and MU Y. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76(6): 210-236.

    [6] XU Ai-guo, ZHANG Guang-cai and LI Ying-jun et al. Modeling and simulation of nonequilibrium and multiphase complex system-lattice Boltzmann kinetic theory and application[J]. Progress in Physics, 2014, 34(3): 136-167(in Chinese).

    [7] DIAO Wei, CHENG Yong-guang and ZHANG Chun-ze et al. Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation[J]. Journal of Hydrodynamics, 2015, 27(2): 248-256.

    [8] SUKOP M., OR D. Lattice Boltzmann method for homogeneous and heterogeneous cavitation[J].Physical Review E, 2005, 71(4): 046703.

    [9] CHEN X. P., ZHONG C. W. and YUAN X. L. Lattice Boltzmann simulation of cavitating bubble growth with large density ratio[J]. Computers and Mathematics with Applications, 2011, 61(12): 3577-3584.

    [10] ZHOU X., SHAN M. and ZHU C. et al. Simulation of acoustic cavitation bubble motion by lattice Boltzmann method[C]. 4th International Conference on Civil Engineering, Architecture and Building Materials. Wuhan,China, 2014, 3098-3105.

    [11] MISHRA S. K., DEYMIER P. A. and MURALIDHARAN K. et al. Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity[J]. Ultrasonics Sonochemistry, 2010, 17(1): 258-265.

    [12] PHILIPP A., LAUTERBORN W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75-116.

    [13] LAUTERBORN W., BOLLE H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1975,72(2): 391-399.

    [14] WANG Q. X., YANG Y. X. and TAN D. S. et al. Nonspherical multi-oscillations of a bubble in a compressible liquid[J]. Journal of Hydrodynamics, 2015, 26(6): 848-855.

    [15] SHERVANI-TABAR M. T., MOBADERSANY N. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM[J]. Ultrasonics, 2013, 53(5): 943-955.

    [16] LIU Hai-jun. Pressure distribution outside a single cavitation bubble[J]. Acta Physica Sinica, 2004, 53(5): 1406- 1412(in Chinese).

    [17]SHAN X., CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E, 1993, 47(3): 1815-1819.

    [18] YUAN P., SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101.

    [19] LI Q., LUO K. H. and LI X. J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J].Physical Review E , 20 12, 8 6(1): 016709.

    [20] KUPERSHTOKHA.L.,MEDVEDEVD.A.and KARPOV D. I. On equations of state in a lattice Boltzmann method[J]. Computers and Mathematics with Applications, 2009, 58(5): 965-974.

    [21] KLASEBOER E., KHOO B. C. and HUNG K. C. Dynamics of an oscillating bubble near a floating structure[J]. Journal of Fluids and Structures, 2005, 21(4): 395-412.

    [22] GUO Zhao-li, ZHENG Chu-guang. Theory and applications of lattice Boltzmann method[M]. Beijing, China: Science Press, 2008, 65-67(in Chinese).

    [23] PLESSET M. S., CHAPMAN R. B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47: 283-290.

    November 11, 2014, Revised January 19, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092, 11274091 and 1140040119), the Natural Science Foundation of Jiangsu Province (Grant No. SBK2014043338).

    Biography: Ming-lei SHAN (1977-), Male,

    Ph. D. Candidate, Lecturer

    猜你喜歡
    韓慶昌平
    Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
    “丹麥小馬達(dá)”環(huán)球航線:愛(ài)跟上奮斗的節(jié)奏
    昌平濱河森林公園健身綠道系統(tǒng)建設(shè)
    Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
    窗外的迷你世界
    俄羅斯套娃
    Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM?
    韓慶芳:我站立的地方, 就是我的陣地
    昌平博物館升級(jí)改造古代昌平文物展開(kāi)展
    Time difference based measurement of ultrasonic cavitations in wastewater treatment①
    亚洲午夜理论影院| 十八禁网站免费在线| 日韩欧美免费精品| 成年免费大片在线观看| 伦精品一区二区三区| 色哟哟哟哟哟哟| 一a级毛片在线观看| 亚洲最大成人av| 麻豆成人午夜福利视频| 日日夜夜操网爽| 999久久久精品免费观看国产| www.色视频.com| 一个人免费在线观看电影| 精品无人区乱码1区二区| 中文字幕久久专区| 日韩欧美 国产精品| 亚洲av美国av| 国产真实乱freesex| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 一个人免费在线观看电影| 麻豆av噜噜一区二区三区| 赤兔流量卡办理| 成人毛片a级毛片在线播放| 亚洲av免费在线观看| 亚洲精品久久国产高清桃花| 亚洲av成人精品一区久久| 全区人妻精品视频| 亚洲熟妇中文字幕五十中出| 真人一进一出gif抽搐免费| 中文在线观看免费www的网站| 99久久九九国产精品国产免费| 亚洲精品日韩av片在线观看| 91久久精品国产一区二区成人| 国产精品伦人一区二区| 精品福利观看| 亚洲综合色惰| 毛片女人毛片| 日日摸夜夜添夜夜添小说| 国产女主播在线喷水免费视频网站 | av天堂中文字幕网| www.色视频.com| 国产精品久久视频播放| 男女那种视频在线观看| 91久久精品电影网| 成年女人永久免费观看视频| 两人在一起打扑克的视频| 精品久久久久久久久av| 免费电影在线观看免费观看| 日本a在线网址| 国产成人aa在线观看| 国产在线精品亚洲第一网站| 伦理电影大哥的女人| 午夜免费成人在线视频| АⅤ资源中文在线天堂| 春色校园在线视频观看| 精品99又大又爽又粗少妇毛片 | 国产av不卡久久| 天天躁日日操中文字幕| 国产成人av教育| 国产aⅴ精品一区二区三区波| 少妇高潮的动态图| 搡老岳熟女国产| 色噜噜av男人的天堂激情| 欧美性猛交黑人性爽| 一区二区三区免费毛片| 麻豆av噜噜一区二区三区| 国产激情偷乱视频一区二区| 成人国产综合亚洲| 精品人妻视频免费看| 哪里可以看免费的av片| 亚洲精品久久国产高清桃花| 久久久久性生活片| 黄色欧美视频在线观看| 一级黄色大片毛片| 日韩中字成人| 我要看日韩黄色一级片| 亚洲最大成人手机在线| 免费看av在线观看网站| 中文在线观看免费www的网站| 伦精品一区二区三区| 精品一区二区三区视频在线观看免费| 国产精品无大码| 亚洲18禁久久av| 99国产精品一区二区蜜桃av| 乱系列少妇在线播放| 欧美高清性xxxxhd video| 赤兔流量卡办理| 亚洲人成网站在线播放欧美日韩| 亚洲真实伦在线观看| 国产精品免费一区二区三区在线| 日本免费a在线| 99精品久久久久人妻精品| 免费大片18禁| 日本一二三区视频观看| 非洲黑人性xxxx精品又粗又长| 精品久久久久久成人av| 日本色播在线视频| 日本色播在线视频| 成年女人永久免费观看视频| 在线观看午夜福利视频| 桃色一区二区三区在线观看| 精品久久久久久久久久免费视频| 欧美激情国产日韩精品一区| 国内少妇人妻偷人精品xxx网站| 99久久精品热视频| 深爱激情五月婷婷| 热99re8久久精品国产| 国产成人a区在线观看| 亚洲国产高清在线一区二区三| 精品一区二区免费观看| 国产真实乱freesex| 18+在线观看网站| 国产精品福利在线免费观看| videossex国产| 久久人妻av系列| av在线蜜桃| 亚洲无线在线观看| 国产69精品久久久久777片| 国内精品一区二区在线观看| www.色视频.com| 给我免费播放毛片高清在线观看| netflix在线观看网站| 美女大奶头视频| 少妇猛男粗大的猛烈进出视频 | 能在线免费观看的黄片| 伦理电影大哥的女人| 日日撸夜夜添| aaaaa片日本免费| 伊人久久精品亚洲午夜| 免费av毛片视频| 国产亚洲精品久久久com| 国产精品电影一区二区三区| 欧美日韩精品成人综合77777| av在线亚洲专区| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 天堂网av新在线| 成人国产一区最新在线观看| 天天躁日日操中文字幕| 亚洲中文日韩欧美视频| 免费av毛片视频| 99精品久久久久人妻精品| 91狼人影院| 最新中文字幕久久久久| 国产美女午夜福利| 欧美最新免费一区二区三区| 91久久精品国产一区二区三区| 老司机午夜福利在线观看视频| 黄色日韩在线| 亚洲最大成人av| 女的被弄到高潮叫床怎么办 | 国产成人aa在线观看| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 成年女人毛片免费观看观看9| 欧美日韩综合久久久久久 | 久久国产精品人妻蜜桃| 村上凉子中文字幕在线| 精品欧美国产一区二区三| 亚洲中文日韩欧美视频| 久久久成人免费电影| av女优亚洲男人天堂| 亚洲无线观看免费| 精品午夜福利在线看| 久久久久性生活片| 日本-黄色视频高清免费观看| 亚洲精品国产成人久久av| 人妻久久中文字幕网| 欧美三级亚洲精品| 日本爱情动作片www.在线观看 | 国产亚洲精品久久久久久毛片| 有码 亚洲区| 国产精品伦人一区二区| 欧美一区二区精品小视频在线| 我要搜黄色片| 日日夜夜操网爽| 亚洲成人中文字幕在线播放| 亚洲国产色片| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 久久久久精品国产欧美久久久| 国产爱豆传媒在线观看| 中国美女看黄片| 亚洲中文日韩欧美视频| 99热只有精品国产| 麻豆av噜噜一区二区三区| 欧美区成人在线视频| 欧美性猛交黑人性爽| 欧洲精品卡2卡3卡4卡5卡区| 亚洲真实伦在线观看| 在线观看午夜福利视频| 日韩国内少妇激情av| 亚洲av免费在线观看| 桃色一区二区三区在线观看| 国产精品一区二区性色av| 国产伦人伦偷精品视频| a级一级毛片免费在线观看| 在线观看一区二区三区| x7x7x7水蜜桃| 亚洲中文字幕一区二区三区有码在线看| 国产精品自产拍在线观看55亚洲| 国产成人a区在线观看| 国产一区二区三区av在线 | 久久亚洲真实| 亚洲男人的天堂狠狠| 亚洲性久久影院| 成人毛片a级毛片在线播放| 91av网一区二区| 欧美日韩乱码在线| 99热这里只有是精品在线观看| 成人精品一区二区免费| 亚洲专区中文字幕在线| 久久久久久久午夜电影| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 日韩欧美 国产精品| 亚洲国产欧美人成| 亚洲人与动物交配视频| 午夜视频国产福利| 日本黄大片高清| 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| 麻豆国产av国片精品| 亚洲在线自拍视频| av.在线天堂| 国产男人的电影天堂91| 一进一出抽搐动态| 色综合婷婷激情| 午夜免费成人在线视频| 我要搜黄色片| 如何舔出高潮| 免费无遮挡裸体视频| 男女做爰动态图高潮gif福利片| 夜夜爽天天搞| 天堂影院成人在线观看| 亚洲第一区二区三区不卡| 国产一区二区激情短视频| 国产日本99.免费观看| 国产探花极品一区二区| 国产不卡一卡二| 高清毛片免费观看视频网站| 色综合色国产| 天美传媒精品一区二区| 在线观看舔阴道视频| 亚洲18禁久久av| 欧美另类亚洲清纯唯美| 91av网一区二区| 麻豆成人午夜福利视频| 动漫黄色视频在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩欧美精品在线观看| 亚洲av成人av| 乱码一卡2卡4卡精品| 日本色播在线视频| 亚洲一区高清亚洲精品| 精品人妻1区二区| 亚洲最大成人手机在线| 九九在线视频观看精品| 色播亚洲综合网| 人人妻人人看人人澡| 免费电影在线观看免费观看| 精品午夜福利视频在线观看一区| 国产精品无大码| 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 亚洲av免费在线观看| 亚洲avbb在线观看| 91av网一区二区| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| 最近中文字幕高清免费大全6 | 色吧在线观看| 国产av一区在线观看免费| 深夜a级毛片| 无人区码免费观看不卡| 日本免费一区二区三区高清不卡| 18禁裸乳无遮挡免费网站照片| 看免费成人av毛片| 亚洲七黄色美女视频| 麻豆一二三区av精品| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| av.在线天堂| 免费高清视频大片| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看| 亚洲aⅴ乱码一区二区在线播放| 免费av观看视频| 免费电影在线观看免费观看| 韩国av在线不卡| 欧美日韩国产亚洲二区| 九九久久精品国产亚洲av麻豆| 给我免费播放毛片高清在线观看| 精品国内亚洲2022精品成人| 精品久久久久久,| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 1000部很黄的大片| 乱人视频在线观看| 精品久久久久久成人av| 亚洲第一区二区三区不卡| 色综合站精品国产| 成人鲁丝片一二三区免费| 波野结衣二区三区在线| 亚洲国产欧洲综合997久久,| 在线看三级毛片| 国产毛片a区久久久久| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 日本熟妇午夜| 五月玫瑰六月丁香| 久久精品国产99精品国产亚洲性色| 国产高清不卡午夜福利| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费| 亚洲av成人av| 久久久久久久亚洲中文字幕| 在线免费观看的www视频| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 韩国av在线不卡| 日本免费一区二区三区高清不卡| 国产美女午夜福利| 日韩精品青青久久久久久| 亚洲国产色片| 精品人妻偷拍中文字幕| 国产成人av教育| 91久久精品电影网| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 国产亚洲精品久久久com| 国产精品亚洲一级av第二区| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡免费网站照片| 亚洲av二区三区四区| 亚洲av第一区精品v没综合| 搡老熟女国产l中国老女人| 中文字幕熟女人妻在线| 国产亚洲精品av在线| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 丰满乱子伦码专区| 国产激情偷乱视频一区二区| or卡值多少钱| 国产精品99久久久久久久久| 一区二区三区四区激情视频 | 人妻丰满熟妇av一区二区三区| 99热只有精品国产| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 国产亚洲精品av在线| 舔av片在线| 在线播放无遮挡| 舔av片在线| 国产亚洲精品av在线| 国产精品自产拍在线观看55亚洲| 久久久久久久久久成人| 两个人视频免费观看高清| 搞女人的毛片| 欧美激情在线99| netflix在线观看网站| 国产精品久久久久久精品电影| 一本一本综合久久| 亚洲精华国产精华液的使用体验 | 国产高清三级在线| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 欧美绝顶高潮抽搐喷水| 哪里可以看免费的av片| 中文字幕免费在线视频6| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 国产av麻豆久久久久久久| 搡女人真爽免费视频火全软件 | 欧美性猛交╳xxx乱大交人| 观看免费一级毛片| 国产精品人妻久久久久久| 色吧在线观看| 精品午夜福利视频在线观看一区| 亚洲精品成人久久久久久| 亚洲欧美精品综合久久99| 欧美+亚洲+日韩+国产| 亚洲最大成人手机在线| 久久午夜福利片| 成年女人毛片免费观看观看9| 看十八女毛片水多多多| 欧美精品国产亚洲| 精品午夜福利视频在线观看一区| 成人毛片a级毛片在线播放| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 亚州av有码| 中文字幕免费在线视频6| 国产精品综合久久久久久久免费| 国产精品久久久久久av不卡| 少妇的逼水好多| 高清日韩中文字幕在线| 免费看av在线观看网站| 一进一出抽搐gif免费好疼| 欧美xxxx黑人xx丫x性爽| 欧美人与善性xxx| 国产欧美日韩精品亚洲av| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 能在线免费观看的黄片| 国产三级在线视频| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 国产色爽女视频免费观看| 长腿黑丝高跟| 91在线观看av| 欧美激情在线99| 小说图片视频综合网站| 日韩亚洲欧美综合| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 91麻豆av在线| 国产精品免费一区二区三区在线| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 免费人成视频x8x8入口观看| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 最近在线观看免费完整版| 两个人的视频大全免费| 成年免费大片在线观看| 国产不卡一卡二| 中文在线观看免费www的网站| 国产欧美日韩精品亚洲av| 看黄色毛片网站| 国产伦人伦偷精品视频| 欧美日韩综合久久久久久 | 欧美日韩综合久久久久久 | 老熟妇乱子伦视频在线观看| 久久国内精品自在自线图片| 久久精品人妻少妇| 99久国产av精品| 他把我摸到了高潮在线观看| 国产探花在线观看一区二区| 免费大片18禁| 一级黄色大片毛片| 久99久视频精品免费| 色在线成人网| av黄色大香蕉| 国产一区二区亚洲精品在线观看| 免费看光身美女| 中国美女看黄片| 成人av一区二区三区在线看| 哪里可以看免费的av片| 亚洲国产欧美人成| 国产精品永久免费网站| 亚洲乱码一区二区免费版| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| 99精品久久久久人妻精品| 国产爱豆传媒在线观看| 国产美女午夜福利| 中文字幕av成人在线电影| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| 熟妇人妻久久中文字幕3abv| 日本爱情动作片www.在线观看 | 特大巨黑吊av在线直播| 欧美日本亚洲视频在线播放| 亚洲人与动物交配视频| 97碰自拍视频| 亚洲人成伊人成综合网2020| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 国产精品1区2区在线观看.| 91久久精品国产一区二区成人| 色综合色国产| 欧美激情在线99| 不卡视频在线观看欧美| 亚洲精品粉嫩美女一区| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 91精品国产九色| 最好的美女福利视频网| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 夜夜爽天天搞| 亚洲精品一卡2卡三卡4卡5卡| 啪啪无遮挡十八禁网站| 伦理电影大哥的女人| 99国产精品一区二区蜜桃av| 成人国产综合亚洲| 亚洲黑人精品在线| 国产白丝娇喘喷水9色精品| 狠狠狠狠99中文字幕| 不卡视频在线观看欧美| 亚洲性夜色夜夜综合| 亚洲精华国产精华液的使用体验 | 午夜免费男女啪啪视频观看 | 亚洲黑人精品在线| 国产高清视频在线播放一区| 色av中文字幕| 久久精品影院6| 熟妇人妻久久中文字幕3abv| 亚洲四区av| 亚洲自拍偷在线| 尤物成人国产欧美一区二区三区| 琪琪午夜伦伦电影理论片6080| 中文字幕高清在线视频| av在线天堂中文字幕| 国产高清不卡午夜福利| 在线看三级毛片| 国产精品av视频在线免费观看| 日韩一区二区视频免费看| 亚洲欧美日韩卡通动漫| 欧美日韩综合久久久久久 | 日本-黄色视频高清免费观看| 国产亚洲欧美98| 色吧在线观看| 国产精品亚洲美女久久久| 国产成人影院久久av| 亚洲精品一区av在线观看| 尤物成人国产欧美一区二区三区| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 国产蜜桃级精品一区二区三区| 毛片一级片免费看久久久久 | 国产精品永久免费网站| 日韩中字成人| 精品99又大又爽又粗少妇毛片 | 99热这里只有精品一区| 国产不卡一卡二| 色尼玛亚洲综合影院| 久久精品国产清高在天天线| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 中文字幕熟女人妻在线| 国产精品99久久久久久久久| 女人十人毛片免费观看3o分钟| 黄色日韩在线| 亚洲欧美清纯卡通| 日本-黄色视频高清免费观看| 久久久国产成人免费| 嫩草影视91久久| 干丝袜人妻中文字幕| 最新在线观看一区二区三区| 五月伊人婷婷丁香| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久大av| 久久国产精品人妻蜜桃| 亚洲内射少妇av| 白带黄色成豆腐渣| 一级黄片播放器| 免费电影在线观看免费观看| 熟妇人妻久久中文字幕3abv| 99在线视频只有这里精品首页| 国产一区二区在线观看日韩| 精品久久久久久久人妻蜜臀av| videossex国产| 亚洲乱码一区二区免费版| 精品久久久噜噜| 成人午夜高清在线视频| 成人国产一区最新在线观看| 乱码一卡2卡4卡精品| 观看美女的网站| 一区二区三区高清视频在线| 别揉我奶头 嗯啊视频| 国产精品自产拍在线观看55亚洲| 动漫黄色视频在线观看| 色av中文字幕| 综合色av麻豆| 一区二区三区激情视频| 婷婷丁香在线五月| 欧美日韩中文字幕国产精品一区二区三区| 精品不卡国产一区二区三区| 国产单亲对白刺激| 国产一区二区激情短视频| 麻豆成人av在线观看| 女人被狂操c到高潮| 国产亚洲91精品色在线| 国产精品1区2区在线观看.| 夜夜夜夜夜久久久久| 久久午夜福利片| 悠悠久久av| 国产av一区在线观看免费| 少妇裸体淫交视频免费看高清| 国产高清视频在线播放一区| 国内久久婷婷六月综合欲色啪| 国产精品自产拍在线观看55亚洲| 不卡一级毛片| 亚洲精品乱码久久久v下载方式| 俄罗斯特黄特色一大片| 国产女主播在线喷水免费视频网站 | 亚洲国产精品久久男人天堂| 欧美性感艳星| 1000部很黄的大片| 黄色丝袜av网址大全| 少妇裸体淫交视频免费看高清| 国产爱豆传媒在线观看| 国产综合懂色| 国产高清有码在线观看视频| 欧美+亚洲+日韩+国产| 亚洲av成人精品一区久久| 啪啪无遮挡十八禁网站| 午夜影院日韩av| 成人一区二区视频在线观看| 18禁裸乳无遮挡免费网站照片|