• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical analysis and numerical simulation of mechanical energy loss and wall resistance of steady open channel flow*

    2016-10-18 05:36:50ShiheLIU劉士和JiaoXUE薛嬌

    Shi-he LIU (劉士和), Jiao XUE (薛嬌)

    School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China,

    E-mail: shihe3086@163.com

    ?

    Theoretical analysis and numerical simulation of mechanical energy loss and wall resistance of steady open channel flow*

    Shi-he LIU (劉士和), Jiao XUE (薛嬌)

    School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China,

    E-mail: shihe3086@163.com

    The mechanical energy loss and the wall resistance are very important in practical engineering. These problems are investigated through theoretical analysis and numerical simulation in this paper. The results are as follows. (1) A new mechanical energy equation for the total flow is obtained, and a general formula for the calculation of the mechanical energy loss is proposed. (2)The general relationship between the wall resistance and the mechanical energy loss for the steady channel flow is obtained, the simplified form of which for the steady uniform channel flow is in consistent with the formula used in Hydraulics deduced bytheorem and dimensional analysis. (3) The steady channel flow over a backward facing step with a small expansion ratio is numerically simulated, and the mechanical energy loss, the wall resistance as well as the relationship between the wall resistance and the mechanical energy loss are calculated and analyzed.

    channel flow, energy equation, mechanical energy loss, resistance

    Introduction

    Channel flows are gravity driven flows, with viscous resistance and form resistance at the channel wall to induce mechanical energy loss when the liquid flows downstream. The mechanical energy loss and the wall resistance are important issues in Hydraulics and Engineering Fluid Mechanics, as well as in practical engineering. The wall resistance was studied by experiments[1,2], numerical simulations[3,4]and theoretical analyses[5,6]since the pioneering work of the famous German scholar, Prandtl.

    Among the experimental studies, Knight and Sterling[1]conducted experiments to determine the distribution of the boundary shear stress, which, they found, was related to the shape of the secondary flow cells while the shape of the secondary flow cells was decided by the aspect ratio. Yoon et al.[7]studied the velocity distribution and the resistance coefficient with circular flume experiments. It is shown that the flow depth significantly affects the velocity distribution. The ratio of mean to maximum velocities will reduce and the position of the maximum velocity will be lowered if the flow depth is below 50%. The wall friction and the Manning coefficients also differ from the generally estimated values as the flow depth is reduced by 50%. Patnaik et al.[8]conducted experiments in highly sinuous trapezoidal meandering channels to investigate the effect of the aspect ratio and the sinuosity on the wall resistance under the smooth and rigid bed condition. The percentage of the shear force on the inner wall, the outer wall and the bed were estimated and the experimental data were used to establish an equation for the percentage of the total wall shear force, which is more consistent and covers a wider range of aspect ratio than available ones. The wall resistance was also studied by numerical simulations. Cacqueray et al.[3]investigated the shear stress in a smooth rectangular channel by numerical simulations and it is shown that the stress associated with the secondary flow and the shear stress on the interface could not be neglected and the provided division lines match well with the existing results. Berlamont et al.[9]studied the shear stress distribution in circular channels by numerical simulations, focusing on the effect of the aspect ratio, the velocity distribution and the wall roughness on the stress distribution. The computational fluid dynamics (CFD) was used to determine thedistribution of the bed and sidewall shear stresses in trapezoidal channels by Ansari et al.[10]and the effects of the slant angle of the side walls, the aspect ratio and the composite roughness on the shear stress distribution were analyzed. The stress associated with the secondary flow and the shear stress on the interface are the main contributions. The distribution of the shear stress on the boundaries is considerably influenced by the variation of the slant angle and the aspect ratio, especially for low aspect-ratio channels. Stoesser et al.[11]calculated the turbulent flow in a meandering channel with the steady Reynolds-averaged Navier-Stokes equations (RANS) code based on an isotropic turbulence closure and the large eddy simulation (LES)code, respectively and the results were compared with the previous ones. It is shown that the RANS code ove-predicts the size and the strength of the secondary cell while the LES code is better in the secondary cell prediction. However, the wall shear stresses obtained by the LES code and the RANS code agree well though the secondary cells have a great influence on the distribution of the wall shear stress. In addition,the wall resistance was studied by analytical methods. For example, Guo and Julien[12]discussed the wall shear stress and Yang and Lim[13]discussed this paper,subsequently. Khodashenas et al.[14]made a comparison among six methods for the determination of the boundary shear stress distribution. There were a few investigations of the wall mechanical energy loss. Liu et al.[15,16]established a mechanical energy equation for the total flow of incompressible homogeneous liquid in pipes and open channels, and the expressions for the mechanical energy loss were suggested based on a theoretical analysis. In Ref.[16] the effect of the aspect ratio and the Reynolds number on the mechanical energy loss in open channels was studied numerically, and it is shown that in a laminar flow, the coefficient of the mechanical energy loss decreases with the increase of the aspect ratio and the Reynolds number, yet in a turbulent flow, this coefficient tends to be independent of the aspect ratios as long as the Reynolds number is large enough. Nevertheless, the mechanical energy defined in Ref.[16] includes the mean turbulent kinetic energy, which is difficult to determine in practical engineering now and the relationship between the wall resistance and the mechanical energy loss is not available.

    Thence in this paper the investigations are focused on the following points: (1) A new mechanical energy equation for the total flow is proposed by defining the mechanical energy as the sum of the potential energy of gravity, the potential energy of surface force and the mean kinetic energy. (2) The general relationship between the wall resistance and the mechanical energy loss in open channel flows is analyzed, and further discussed for the steady uniform flow and the steady flow over a backward-facing step.

    Fig.1 The sketch of open channel flow

    1. Improved mechanical energy equation for steady channel flow

    We consider the steady channel flow of a control volumeas shown in Fig.1, with the outer boundariescomposed of two cross-sectionsandat its upstream and downstream positions with a distancebetween them, the channel walland the free surface. For the statistically steady turbulent flow of homogeneous incompressible liquid of densityin the gravitational field, the mean surface force, whereandare the mean pressure and the mean viscous shear stress respectively can be expressed by using the Reynolds averaged equation(Eq.(7) of this paper) as

    Therefore, Eq.(1) can be simplified further as

    The boundary conditions for the steady channel flow are: on the channel wallthe mean velocity is zero, which is the so called no-slip condition, on the free surface, where, the kinematic boundary condition is, whereis the unit vector in the outward direction of the normal line on, the dynamical boundary conditions mean that there exist no shear stresses and the normal stress is just the atmospheric pressure. The above dynamical boundary conditions on the free surface are reasonable in the case that the relative velocity between the liquid and the air is not so large and the effect of the surface tension can be neglected.

    Integrating Eq.(3) over the control volume, by transforming the volume integral into the surface integral using the Gaussian Theorem, we have

    Now let us consider the integral terms in Eq.(4). Since for a static pressure field,is always equal to a constant on any cross-section, therefore by using the boundary conditions on the wall and on the free surface, as well as the continuity equation, we obtain

    We have

    Therefore if we further define

    Equation (4) can be simplified as

    2. Formulation of the momentum equation for steady channel flow

    The Reynolds averaged equation for the steady channel flow is

    Integrating Eq.(7) over the control volume, transforming the volume integral into the surface integral using the Gaussian Theorem and projecting the integral result in the direction of, we have

    Euation (8) is the general form of the momentum equation for the total flow, and in this paper, only its longitudinal component (i.e., letandis discussed. By defining the angles between the outward directions of the normal line onandand the horizontal plane asand, and introducing the no-slip boundary condition on the channel wall and the kinematic boundary condition on the free surface,we have

    Substituting Eq.(9) into Eq.(8), we obtain the relationship between the total resistance on the channel walland the mechanical energy loss,as

    The wall resistance and the mechanical energy loss are both the characteristics of the total flow in open channels, and there surely exists a certain relationship between them since the liquid flow is harmonious. This relationship is given in Eq.(10), where on the right hand side,are the resultant force of the mean pressure, the momentum variation, the resistance caused by the mechanical energy variation and the variation of the mean shear stress including the viscous shear stress and the Reynolds stress, respectively.

    3. Wall resistance for steady uniform channel flow

    If the shape of the cross section of the open channel does not change along the longitudinal direction and the channel is straight and long enough, the flow in it will be steady and uniform. In this case we have for Eq.(10):and, whereandare the wetted perimeter, the bed area and the wetted perimeter averaged shear stress, hereafter referred to as the mean shear stress, respectively. Under this condition, the mean shear stress of the steady uniform flow in open channels is simplified as

    Substituting Eq.(5c) into Eq.(11), and defining the coefficient of the mechanical energy lossλas

    Equation (13) expresses the relationship between the mean shear stress and the mean velocity in the section for the steady uniform channel flow. This formula is widely used in Hydraulics, which is deduced based ontheorem and dimensional analysis. However, in this paper, it is obtained directly from the governing equations of Fluid Mechanics. Defining the wall resistance coefficient for the steady uniform channel flow as, according to the definition we have

    Comparing Eq.(13) with Eq.(14), we obtain that, i.e., the coefficient of the mechanical energy loss is three times larger than the wall resistance coefficient for the steady uniform channel flow.

    4. Estimation of mechanical energy loss and wall resistance for steady backward-facing step flow

    A sketch of the backward-facing step flow is shown in Fig.2, whereis the height of the stepis the water depth of the downstream uniform flow, and the expansion ratiois used to represent the step change. In view of the scope, only the 2-D backward-facing step flow with expansion ratio less than 5% is considered. Under this condition, the free surface would not be influenced by the step.

    Fig.2 Sketch of the backward-facing step flow

    4.1 Mathematical model and numerical calculation method

    The governing equations for the mean velocityand the mean pressureare as follows:

    The governing equations are discretized by the finite volume method (FVM). The coupling relationship between the mean pressure and the mean velocity is handled with the SIMPLE scheme based on the collocated variable arrangement. A third-order accuracy QUICK scheme is used for the convection term while the central difference scheme is used for the diffusion term. The algebraic equations are solved by the Gauss-Seidel iteration method in this paper.

    4.2 Verification

    The experimental results[18]are used for verification. The experiment was conducted in a wind tunnel. A flat plate is put into the wind tunnel as shown in Fig.3. The velocity over the flat plate is measured with the pulsed-wire anemometer, which is used to verify the numerical model. The computed results are well consistent with the measured ones as shown in Fig.4,which shows that the calculated results from the numerical model can be further used to estimate the mechanical energy loss and other quantities.

    Fig.3 The experimental facility[18]

    Fig.4 The verification results of the velocity distribution

    4.3 Estimation of mechanical energy loss and wall resistance

    4.3.1 Simulation conditions

    In the simulation, the calculation cases are asfollows. The flow Reynolds numbervaries between 4×104and 9×104, and the expansion ratiovaries between 0.02 and 0.05. Under these conditions, the Froude numbers of all cases are less than 1, which shows that the flow is the subcritical flow in all calculation cases. The cross sectionis in the upstream of the step with a distance of 200-500 times of the step height while the cross section 2 S is in the downstream of the step with a distance of 200-500 times of the step height in order to make sure that the flow in these two sections is uniform.

    Fig.5 Variation of the mechanical energy loss with the Reynolds numbers and the expansion ratios

    Fig.6 Variations of the surface force potential energy deviation between static liquid and moving liquid with the Reynolds numbers and the expansion ratios

    Fig.7 Variations of portion of surface force potential energy deviation in the mechanical energy excluding the gravitational potential energy

    4.3.2 Mechanical energy loss and surface force potential energy deviation of total flow

    4.3.3 Wall resistance

    The wall resistance between the cross sectionsandincludes the form resistance and the viscous resistance, calculated from the simulation results, and the variations of the resistance forces against the Reynolds numbers and the expansion ratios are shown in Fig.8. As can be seen from Fig.8 that: (1) the viscous resistance is much smaller than the form resistance under given conditions, (2) the viscous resistance increases with the increase of the Reynolds number and decreases with the increase of the expansion ratio,(3) the form resistance decreases with the increase of the Reynolds number, and increases with the increase of the expansion ratio.

    Fig.8 Variations of resistance forces with the Reynolds numbers and the expansion ratios

    4.3.4 The relationship between wall resistance and mechanical energy loss of total flow Equation (10) shows that the wall resistance of the total flow between the cross sectionsandis approximately proportional to the mechanical energy loss. By converting Eq.(10) to its dimensionless form,we have

    Fig.9 Variation ofagainst the Reynolds numbers and the expansion ratios

    5. Conclusions

    The mechanical energy loss and the wall resistance are investigated through theoretical analysis and numerical simulation in this paper. The following conclusions are drawn for the steady flow in open channels.

    (1) A new mechanical energy equation for the total flow is obtained by defining the mechanical energy as the sum of the potential energy of gravity,the potential energy of surface force and the mean kinetic energy as in Hydraulics. The formula for the mechanical energy loss of the total flow is derived exactly while in Hydraulics it is determined empirically or experimentally.

    (2) The general relationship between the wall resistance and the mechanical energy loss for steady channel flows is obtained by theoretical analysis, the simplified form of which for the steady uniform channel flow is in consistent with the formula used in Hydraulics deduced bytheorem and dimensional analysis.

    (3) The steady channel flow over a backward facing step with a small expansion ratio is numerically simulated, and the mechanical energy loss, the wall resistance as well as the relationship between the wall resistance and the mechanical energy loss are calculated and analyzed based on the simulation results.

    References

    [1] KNIGHT D. W., STERLING M. Boundary shear in circular pipes running partially full[J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(4): 263-275.

    [2] CHEN Xiao-fang, HE Jian-jing. Experimental study on bed shear stress in smooth open channels[J]. Journal of Hohai University (Natural Sciences), 2007, 35(6): 704-708(in Chinese).

    [3] CACQUERAY N. D., HARGREAVES D. M. and MORVAN H. P. A computational study of shear stress in smooth rectangular channels[J]. Journal of Hydraulic Research, 2009, 47(1): 50-57.

    [4] KNIGHT D. W., OMRAN M. and TANG X. Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(1): 39-47.

    [5] CHENG N. S. Resistance coefficients for artificial and natural coarse-bed channels: alternative approach for large-scale roughness[J]. Journal of Hydraulic Engineering, ASCE, 2015, 141(2): 04014072.

    [6] HU Xu-yue, ZENG Guang-ming and HUANG Guo-he et al. Study on the boundary shear stress in rectangular open channels[J]. Journal of Sediment Research, 2002, (4): 42-47(in Chinese).

    [7] YOON J., SUNG J. and LEE M. H. Velocity profiles and friction coefficients in circular open channels[J]. Journal of Hydraulic Research, 2012, 50(3): 304-311.

    [8] PATNAIK M., PATRA K. C. and KHATUA K. K. et al. Modelling boundary shear stress in highly sinuous meandering channels[J]. ISH Journal of Hydraulic Engineering, 2014, 20(2): 161-168.

    [9] BERLAMONT J. E., TROUW K. and LUYCKX G. Shear stress distribution in partially filled pipes[J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(9): 697-705.

    [10] ANSARI K., MORVAN H. P. and HARGREAVES D. M. Numerical investigation into secondary currents and wall shear in trapezoidal channels[J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(4): 432-440.

    [11] STOESSER T., RUETHER N. and OLSEN N. R. B. Calculation of primary and secondary flow and boundary shear stresses in a meandering channel[J]. Advances in Water Resources, 2010, 33(2): 158-170.

    [12] GUO J., JULIEN P. Y. Shear stress in smooth rectangular open-channel flows[J]. Journal of Hydraulic Engineering, ASCE, 2005, 131(1): 30-37.

    [13] YANG S. Q., LIM S. Y. Discussion of “Shear stress in smooth rectangular open-channel flows” by Junke Guo and Pierre Y. Julien[J]. Journal of Hydraulic Engineering, ASCE, 2006, 132(6): 629-632.

    [14] KHODASHENAS S. R., ABDERERRZAK K. E. K. and PAQUIER A. Boundary shear stress in open channel flow: A comparison among six methods[J]. Journal of Hydraulic Research, 2008, 46(5): 598-609.

    [15] LIU Shi-he, XUE Jiao and FAN Min. The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid[J]. Journal of Hydridynamics, 2013, 25(6): 912-918.

    [16] LIU Shi-he, FAN Min and XUE Jiao. The mechanical energy equation for total flow in open channels[J]. Journal of Hydridynamics, 2014, 26(3): 416-423.

    [17] LIU Shi-he, LIU Jiang and LUO Qiu-shi et al. Engineering turbulence[M]. Beijing, China: Science Press,2011(in Chinese).

    [18] DURST F., LAUNDER B. C. and SCHMIDT F. W. Turbulent shear flows I[M]. Berlin, Heidelberg, Germany: Springer-Verlag, 1979, 198-207.

    April 16, 2015, Revised March 8, 2016)

    * Biography: Shi-he LIU (1962-), Male, Ph. D., Professor

    久久久久国产网址| 看免费av毛片| 最黄视频免费看| 香蕉丝袜av| 精品视频人人做人人爽| 婷婷色综合www| 国产精品亚洲av一区麻豆 | 免费大片黄手机在线观看| 久久久久久久国产电影| 黄色毛片三级朝国网站| 色婷婷av一区二区三区视频| 最近最新中文字幕大全免费视频 | 亚洲一级一片aⅴ在线观看| 国产成人精品久久久久久| 一区福利在线观看| 麻豆精品久久久久久蜜桃| 啦啦啦在线免费观看视频4| 亚洲伊人久久精品综合| 久久精品国产亚洲av高清一级| 秋霞伦理黄片| 妹子高潮喷水视频| 久久韩国三级中文字幕| 亚洲av成人精品一二三区| 人体艺术视频欧美日本| 日韩一区二区视频免费看| 一区二区三区激情视频| 久久久久久久久免费视频了| 国产精品秋霞免费鲁丝片| 欧美激情高清一区二区三区 | 飞空精品影院首页| 丰满少妇做爰视频| 国产男女内射视频| 香蕉国产在线看| 人体艺术视频欧美日本| av视频免费观看在线观看| 女的被弄到高潮叫床怎么办| 国语对白做爰xxxⅹ性视频网站| 女人精品久久久久毛片| 免费女性裸体啪啪无遮挡网站| 涩涩av久久男人的天堂| 下体分泌物呈黄色| 免费观看性生交大片5| 国产97色在线日韩免费| 1024视频免费在线观看| 国产在线视频一区二区| 国产精品久久久av美女十八| 午夜激情av网站| 9色porny在线观看| av片东京热男人的天堂| 一级,二级,三级黄色视频| 看免费成人av毛片| 十八禁高潮呻吟视频| 777久久人妻少妇嫩草av网站| 天美传媒精品一区二区| 18禁裸乳无遮挡动漫免费视频| 亚洲av中文av极速乱| 女性生殖器流出的白浆| 在线观看一区二区三区激情| 黄网站色视频无遮挡免费观看| 天天躁日日躁夜夜躁夜夜| 搡老乐熟女国产| 日韩一卡2卡3卡4卡2021年| 男女边摸边吃奶| 久久久久久久久久久免费av| 精品人妻在线不人妻| 久久人人97超碰香蕉20202| av女优亚洲男人天堂| 一区二区三区四区激情视频| 欧美精品国产亚洲| 精品国产乱码久久久久久小说| 成人毛片a级毛片在线播放| 看免费成人av毛片| 亚洲精品久久成人aⅴ小说| 亚洲国产成人一精品久久久| a级毛片黄视频| 黄色毛片三级朝国网站| 欧美国产精品一级二级三级| 最新中文字幕久久久久| 少妇人妻 视频| 精品久久蜜臀av无| 中文字幕色久视频| 美女国产高潮福利片在线看| 国产精品一国产av| 国产精品香港三级国产av潘金莲 | 欧美人与性动交α欧美精品济南到 | 久久久久久久久久人人人人人人| 精品国产露脸久久av麻豆| 国产成人精品久久久久久| 最近最新中文字幕大全免费视频 | 一区二区三区乱码不卡18| 久久精品夜色国产| 婷婷成人精品国产| 999久久久国产精品视频| 成年女人在线观看亚洲视频| 99国产精品免费福利视频| 欧美在线黄色| 在线观看免费视频网站a站| 久久精品国产亚洲av天美| 亚洲三区欧美一区| 丰满少妇做爰视频| 欧美日韩视频高清一区二区三区二| 免费久久久久久久精品成人欧美视频| 国产极品粉嫩免费观看在线| 色网站视频免费| 国产淫语在线视频| 久久精品国产a三级三级三级| 精品少妇一区二区三区视频日本电影 | 久久久久久久亚洲中文字幕| 国产在线一区二区三区精| 啦啦啦啦在线视频资源| 丝袜脚勾引网站| 王馨瑶露胸无遮挡在线观看| 黄色怎么调成土黄色| 久久热在线av| 国产精品三级大全| 性少妇av在线| 久久99精品国语久久久| 永久网站在线| 黄色配什么色好看| 国产精品国产av在线观看| av在线app专区| 性色av一级| 亚洲一区中文字幕在线| 啦啦啦视频在线资源免费观看| 色哟哟·www| 久久精品国产自在天天线| 最近最新中文字幕大全免费视频 | 国产精品欧美亚洲77777| 色婷婷av一区二区三区视频| 免费播放大片免费观看视频在线观看| 丝袜人妻中文字幕| 久久精品国产亚洲av高清一级| 九草在线视频观看| 国产成人一区二区在线| 少妇的逼水好多| tube8黄色片| 99久久人妻综合| 另类精品久久| 青春草国产在线视频| 一二三四在线观看免费中文在| 99久国产av精品国产电影| 国语对白做爰xxxⅹ性视频网站| 亚洲成人手机| 亚洲精品av麻豆狂野| 亚洲情色 制服丝袜| 97在线视频观看| 熟女少妇亚洲综合色aaa.| 大片电影免费在线观看免费| 欧美精品国产亚洲| 午夜激情久久久久久久| 国产成人精品婷婷| 欧美日韩亚洲国产一区二区在线观看 | 日日爽夜夜爽网站| 又粗又硬又长又爽又黄的视频| 中文字幕色久视频| 在线观看三级黄色| av又黄又爽大尺度在线免费看| 亚洲一级一片aⅴ在线观看| av免费在线看不卡| 99久久中文字幕三级久久日本| 99热网站在线观看| 十分钟在线观看高清视频www| 美女国产视频在线观看| 成年女人毛片免费观看观看9 | 国产亚洲午夜精品一区二区久久| 中文字幕另类日韩欧美亚洲嫩草| 黄色配什么色好看| 国产精品二区激情视频| 精品人妻在线不人妻| 男女无遮挡免费网站观看| tube8黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜喷水一区| 国产亚洲av片在线观看秒播厂| 黑人巨大精品欧美一区二区蜜桃| 18禁动态无遮挡网站| 狠狠精品人妻久久久久久综合| 亚洲国产成人一精品久久久| 黑人巨大精品欧美一区二区蜜桃| 欧美成人午夜免费资源| 熟妇人妻不卡中文字幕| 老熟女久久久| 国产野战对白在线观看| 国产精品麻豆人妻色哟哟久久| 少妇精品久久久久久久| 亚洲三级黄色毛片| 国产精品香港三级国产av潘金莲 | 久久久久精品久久久久真实原创| 免费在线观看黄色视频的| 少妇人妻 视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产av新网站| 菩萨蛮人人尽说江南好唐韦庄| 性少妇av在线| 中国三级夫妇交换| 免费不卡的大黄色大毛片视频在线观看| 久久久久久伊人网av| 亚洲av男天堂| 国产97色在线日韩免费| av免费在线看不卡| 国产精品亚洲av一区麻豆 | 少妇被粗大猛烈的视频| 欧美日韩视频精品一区| 青草久久国产| 欧美人与性动交α欧美精品济南到 | 欧美精品人与动牲交sv欧美| freevideosex欧美| 亚洲熟女精品中文字幕| 少妇人妻 视频| 亚洲一级一片aⅴ在线观看| 啦啦啦在线观看免费高清www| 亚洲精品乱久久久久久| 精品午夜福利在线看| 一边亲一边摸免费视频| 欧美另类一区| 天堂8中文在线网| 91精品国产国语对白视频| 热re99久久国产66热| 丰满少妇做爰视频| 成年人午夜在线观看视频| 黄色视频在线播放观看不卡| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品古装| 如何舔出高潮| 日日啪夜夜爽| 欧美av亚洲av综合av国产av | 纯流量卡能插随身wifi吗| 精品亚洲成a人片在线观看| h视频一区二区三区| 午夜免费男女啪啪视频观看| 日本黄色日本黄色录像| 欧美激情高清一区二区三区 | 老司机影院毛片| 男的添女的下面高潮视频| 亚洲美女黄色视频免费看| 色婷婷av一区二区三区视频| 色哟哟·www| 自拍欧美九色日韩亚洲蝌蚪91| 日本vs欧美在线观看视频| 中文精品一卡2卡3卡4更新| 最近最新中文字幕免费大全7| 69精品国产乱码久久久| 亚洲av国产av综合av卡| 1024视频免费在线观看| 免费在线观看黄色视频的| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图| 高清不卡的av网站| 中文字幕精品免费在线观看视频| 日韩一区二区三区影片| 亚洲图色成人| 另类亚洲欧美激情| 看十八女毛片水多多多| 久久久久久久久久久久大奶| 香蕉国产在线看| 国产97色在线日韩免费| 欧美少妇被猛烈插入视频| av国产精品久久久久影院| 午夜日韩欧美国产| 国产精品免费视频内射| 中文字幕亚洲精品专区| 国产精品麻豆人妻色哟哟久久| 亚洲精品乱久久久久久| 国产精品 欧美亚洲| 欧美日韩视频高清一区二区三区二| 黄色毛片三级朝国网站| 夜夜骑夜夜射夜夜干| 久久精品夜色国产| 久久久久久人人人人人| 国产一区有黄有色的免费视频| 日韩欧美一区视频在线观看| 精品少妇黑人巨大在线播放| 熟女电影av网| 婷婷色麻豆天堂久久| 搡女人真爽免费视频火全软件| 国产亚洲午夜精品一区二区久久| 一二三四中文在线观看免费高清| 中文乱码字字幕精品一区二区三区| 超碰97精品在线观看| 久久久a久久爽久久v久久| 免费在线观看完整版高清| 欧美激情高清一区二区三区 | 中文字幕另类日韩欧美亚洲嫩草| 麻豆av在线久日| 婷婷色综合大香蕉| 成年女人毛片免费观看观看9 | 男女免费视频国产| 香蕉国产在线看| 大片电影免费在线观看免费| 亚洲,一卡二卡三卡| 曰老女人黄片| 韩国精品一区二区三区| 国产毛片在线视频| 日本免费在线观看一区| 观看av在线不卡| 一级片'在线观看视频| 91精品国产国语对白视频| 亚洲欧美日韩另类电影网站| 午夜福利视频在线观看免费| 不卡视频在线观看欧美| 欧美精品一区二区大全| 亚洲欧洲国产日韩| 国产亚洲最大av| 天天躁日日躁夜夜躁夜夜| 久久久久久免费高清国产稀缺| 国产日韩欧美在线精品| 在线精品无人区一区二区三| 亚洲一码二码三码区别大吗| 国产国语露脸激情在线看| 国产亚洲最大av| 99久久精品国产国产毛片| 蜜桃国产av成人99| 久久婷婷青草| 久久久久久久久久久免费av| 亚洲精品日韩在线中文字幕| 日韩一卡2卡3卡4卡2021年| 丰满迷人的少妇在线观看| 一级毛片我不卡| 黄网站色视频无遮挡免费观看| 在线观看一区二区三区激情| 国产一区二区三区综合在线观看| 久久人妻熟女aⅴ| 美女主播在线视频| 97在线视频观看| 亚洲欧美清纯卡通| 在线亚洲精品国产二区图片欧美| 考比视频在线观看| 欧美日韩综合久久久久久| 制服诱惑二区| 美女国产高潮福利片在线看| 亚洲欧美精品综合一区二区三区 | 久久这里有精品视频免费| 色94色欧美一区二区| 一级片免费观看大全| av片东京热男人的天堂| 午夜免费鲁丝| 一二三四在线观看免费中文在| 十八禁高潮呻吟视频| 99re6热这里在线精品视频| 久久久久久久久久久久大奶| 美女国产视频在线观看| 看免费av毛片| 亚洲精品成人av观看孕妇| 美女中出高潮动态图| 熟女电影av网| 亚洲国产av新网站| 黄色毛片三级朝国网站| 亚洲成人一二三区av| kizo精华| 精品福利永久在线观看| 精品久久蜜臀av无| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 久久久久精品人妻al黑| 在线观看免费日韩欧美大片| www.精华液| 99久国产av精品国产电影| 国产亚洲精品第一综合不卡| 亚洲经典国产精华液单| 搡女人真爽免费视频火全软件| 中文字幕av电影在线播放| 女人被躁到高潮嗷嗷叫费观| 国产探花极品一区二区| 中文欧美无线码| 精品第一国产精品| 国产日韩欧美视频二区| 欧美变态另类bdsm刘玥| 国产欧美亚洲国产| 少妇人妻 视频| 久久97久久精品| 如何舔出高潮| 亚洲成av片中文字幕在线观看 | 国产成人免费观看mmmm| 卡戴珊不雅视频在线播放| 婷婷成人精品国产| 国产成人一区二区在线| 日产精品乱码卡一卡2卡三| 黑人猛操日本美女一级片| 9热在线视频观看99| 日韩视频在线欧美| 国产免费福利视频在线观看| 亚洲精品乱久久久久久| 国产精品久久久久成人av| 免费黄频网站在线观看国产| 免费观看av网站的网址| 成年女人毛片免费观看观看9 | 日本av免费视频播放| 久久久久人妻精品一区果冻| 久久精品夜色国产| 久热这里只有精品99| 欧美精品一区二区大全| 又粗又硬又长又爽又黄的视频| av不卡在线播放| 在线观看一区二区三区激情| 国产成人精品久久二区二区91 | 色94色欧美一区二区| 久久久精品国产亚洲av高清涩受| 99九九在线精品视频| 老女人水多毛片| 亚洲第一区二区三区不卡| 国产一区亚洲一区在线观看| 亚洲四区av| 男人添女人高潮全过程视频| 精品福利永久在线观看| 欧美国产精品一级二级三级| 狂野欧美激情性bbbbbb| 80岁老熟妇乱子伦牲交| 丝袜人妻中文字幕| 成人漫画全彩无遮挡| 性色av一级| 99re6热这里在线精品视频| 观看av在线不卡| 日日爽夜夜爽网站| 久久精品国产亚洲av天美| 免费高清在线观看日韩| av免费在线看不卡| 欧美 亚洲 国产 日韩一| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 青春草亚洲视频在线观看| 女人被躁到高潮嗷嗷叫费观| 老司机影院毛片| 大码成人一级视频| 亚洲欧美一区二区三区国产| 免费在线观看完整版高清| 婷婷色综合大香蕉| 午夜福利视频精品| tube8黄色片| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 丝袜在线中文字幕| 久久女婷五月综合色啪小说| 女人精品久久久久毛片| 久久久久网色| 赤兔流量卡办理| 中文欧美无线码| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| 国产男人的电影天堂91| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 91aial.com中文字幕在线观看| 天美传媒精品一区二区| av线在线观看网站| 亚洲第一区二区三区不卡| 国产亚洲午夜精品一区二区久久| 建设人人有责人人尽责人人享有的| 九草在线视频观看| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 熟女av电影| 美女主播在线视频| 咕卡用的链子| 一区福利在线观看| 国产黄频视频在线观看| 在线观看免费高清a一片| 波多野结衣av一区二区av| a级毛片在线看网站| 9色porny在线观看| 日韩制服丝袜自拍偷拍| 日本-黄色视频高清免费观看| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 亚洲三区欧美一区| 90打野战视频偷拍视频| 大片电影免费在线观看免费| 国产亚洲一区二区精品| 亚洲av电影在线进入| 国产激情久久老熟女| 美女视频免费永久观看网站| 日本-黄色视频高清免费观看| 成人18禁高潮啪啪吃奶动态图| 免费黄网站久久成人精品| 久久99一区二区三区| 国产综合精华液| 精品亚洲成a人片在线观看| 日韩一本色道免费dvd| 免费观看无遮挡的男女| 国产xxxxx性猛交| 欧美日韩视频精品一区| 又黄又粗又硬又大视频| 久久毛片免费看一区二区三区| 久久久久精品久久久久真实原创| 五月天丁香电影| 亚洲久久久国产精品| 日日撸夜夜添| 一边摸一边做爽爽视频免费| 女人久久www免费人成看片| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| videosex国产| 黑人猛操日本美女一级片| 九九爱精品视频在线观看| 永久免费av网站大全| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 波多野结衣一区麻豆| 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频| 亚洲精品乱久久久久久| 老汉色∧v一级毛片| 国产女主播在线喷水免费视频网站| 最近中文字幕高清免费大全6| 欧美av亚洲av综合av国产av | 精品国产乱码久久久久久男人| 制服人妻中文乱码| 精品亚洲成国产av| 两性夫妻黄色片| 亚洲av免费高清在线观看| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 亚洲av综合色区一区| 男女下面插进去视频免费观看| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 美女主播在线视频| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| av一本久久久久| 亚洲精品一区蜜桃| 国产精品偷伦视频观看了| 欧美国产精品va在线观看不卡| 日韩,欧美,国产一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲av在线观看美女高潮| 这个男人来自地球电影免费观看 | 人人澡人人妻人| 亚洲国产看品久久| 日韩一卡2卡3卡4卡2021年| 青春草国产在线视频| 永久网站在线| 少妇猛男粗大的猛烈进出视频| 久久久欧美国产精品| 精品久久蜜臀av无| 三上悠亚av全集在线观看| 亚洲精品自拍成人| 春色校园在线视频观看| 欧美+日韩+精品| 午夜久久久在线观看| 新久久久久国产一级毛片| 日韩中字成人| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 嫩草影院入口| 亚洲久久久国产精品| 丰满乱子伦码专区| 欧美av亚洲av综合av国产av | 电影成人av| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 黄色怎么调成土黄色| 两个人免费观看高清视频| 色吧在线观看| 999久久久国产精品视频| 欧美精品一区二区免费开放| 九色亚洲精品在线播放| 午夜福利在线观看免费完整高清在| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三| 免费av中文字幕在线| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码 | 国产成人精品一,二区| 精品国产一区二区久久| 999精品在线视频| 亚洲精品日韩在线中文字幕| 女性被躁到高潮视频| 黑丝袜美女国产一区| 一二三四中文在线观看免费高清| 亚洲,欧美,日韩| 久久久久人妻精品一区果冻| 国产精品香港三级国产av潘金莲 | 婷婷色av中文字幕| 久久免费观看电影| 久久久久精品性色| 满18在线观看网站| 亚洲四区av| 亚洲欧美一区二区三区黑人 | 国产在线视频一区二区| 成人18禁高潮啪啪吃奶动态图| 一区二区日韩欧美中文字幕| 各种免费的搞黄视频| 国产乱人偷精品视频| 最新中文字幕久久久久| 亚洲国产欧美日韩在线播放| 青草久久国产| 性色av一级| 久久精品亚洲av国产电影网| 国产乱来视频区| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 成人毛片a级毛片在线播放| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 欧美日韩国产mv在线观看视频| 亚洲成色77777| 色播在线永久视频| 90打野战视频偷拍视频| 美女福利国产在线| 黑丝袜美女国产一区| av国产久精品久网站免费入址| 亚洲av电影在线进入| 亚洲婷婷狠狠爱综合网| 亚洲经典国产精华液单| 亚洲成人手机| 亚洲人成77777在线视频| 精品少妇内射三级| 国产男女超爽视频在线观看|