[摘要] 近年來,胎兒顱腦磁共振(MR)檢查取得巨大進(jìn)步,能夠更好更快地顯示出胎兒腦組織的形態(tài)、功能及代謝狀態(tài)。本文著重就彌散加權(quán)成像序列及彌散張量成像序列、磁敏感序列、三維磁共振序列、磁共振波譜成像序列等MR成像技術(shù)在胎兒腦組織檢查中的應(yīng)用新進(jìn)展進(jìn)行綜述。
[關(guān)鍵詞] 胎兒;腦;磁共振成像;綜述
[中圖分類號(hào)] R445.2;R714.5
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2021)03-0467-03
doi:10.11712/jms.2096-5532.2021.57.072
[開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210224.0922.001.html;2021-02-24 11:12:25
ADVANCES IN FETAL BRAIN MAGNETIC RESONANCE IMAGING
SUN Mingze, LIU Shitong, WANG Ning
(Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
[ABSTRACT]In recent years, great progress has been made in fetal brain magnetic resonance imaging (MRI), which can display the morphology, function, and metabolic state of fetal brain tissue better and faster. This article reviews the recent advances in the application of several MRI techniques in fetal brain examination, such as diffusion-weighted imaging, diffusion tensor imaging, magnetic sensitive sequence, three-dimensional magnetic resonance sequence, and magnetic resonance spectroscopy imaging.
[KEY WORDS]fetus; brain; magnetic resonance imaging; review
胎兒腦組織發(fā)育過程是一個(gè)敏感、脆弱的過程,容易受到干擾而發(fā)生畸形,甚至導(dǎo)致死亡。超聲檢查一直是胎兒產(chǎn)前體檢的首選檢查方式,但其在胎兒腦組織檢查中有諸多限制與不足[1]。磁共振(MR)檢查無輻射,具有良好的軟組織分辨力,近年來已越來越多地用于胎兒腦組織產(chǎn)前檢查[2-3]。MR檢查常規(guī)序列已廣泛應(yīng)用于胎兒檢查,本文對(duì)此不作贅述。為了探索更優(yōu)質(zhì)的胎兒顱腦檢查方法,本文著重就彌散加權(quán)成像序列(DWI)及彌散張量成像序列(DTI)、磁敏感加權(quán)成像(SWI)、三維磁共振序列(3D-MR)以及磁共振波譜成像序列(MRS)等MR成像技術(shù)在胎兒腦組織檢查中的應(yīng)用新進(jìn)展進(jìn)行綜述。
1 DWI與DTI
DWI通過自由水的氫質(zhì)子在橫向磁化上產(chǎn)生的相位位移變化,反映組織中水分子無序擴(kuò)散運(yùn)動(dòng)快慢的信息。處于不同組織中的水分子,受周圍微環(huán)境的影響,其擴(kuò)散能力不同。DWI檢查將相位位移量化為表觀彌散系數(shù)(ADC),采用ADC值反映組織中水分子運(yùn)動(dòng)受限的程度。其中ADC值越高,表明組織內(nèi)水分子彌散運(yùn)動(dòng)的能力越強(qiáng),反之亦然。DWI檢查用于胎兒可以評(píng)估腦組織的發(fā)育成熟程度,早期診斷腦損傷。
近年來,多位學(xué)者應(yīng)用DWI獲得了更多胎兒腦組織的信息。ARTHURS等[4]分析30例宮內(nèi)生長(zhǎng)受限嚴(yán)重的胎兒DWI圖像,發(fā)現(xiàn)其腦白質(zhì)、丘腦、半卵圓中心及腦橋等處ADC值低于正常胎兒,表明這些區(qū)域發(fā)育不良。KUTUK等[5]對(duì)54例宮內(nèi)生長(zhǎng)受限的胎兒行腦部DWI檢查,也得到了類似的結(jié)果。此外,通過對(duì)DWI和多普勒超聲檢查對(duì)比,發(fā)現(xiàn)ADC值降低的分布和程度不僅與腦組織的部位有關(guān),還與腦組織的舒張末期異常逆流有關(guān)。SHROT等[6]的研究結(jié)果顯示,CHIARIⅡ型畸形的胎兒,其額顳葉的ADC值會(huì)降低。除了可檢查胎兒腦組織發(fā)育情況之外,DWI還可用于檢查胎兒腦組織有無感染。YANIV等[7]應(yīng)用DWI檢查巨細(xì)胞病毒感染的胎兒腦組織,發(fā)現(xiàn)額頂顳枕葉、丘腦及小腦ADC值降低,其中以小腦降低最明顯,而基底核區(qū)等部位變化不明顯,這可能與細(xì)胞富集及包涵體有關(guān)。DTI是在DWI的基礎(chǔ)上,施加多個(gè)非線性方向的梯度場(chǎng)獲取彌散張量圖像。利用白質(zhì)纖維束示蹤技術(shù),DTI檢查常用于評(píng)估白質(zhì)纖維束的完整性。SONG等[8]應(yīng)用DTI檢查預(yù)測(cè)胎兒胼胝體及皮質(zhì)脊髓束的產(chǎn)后完整性,但由于胎兒纖維束發(fā)育尚不成熟,所得結(jié)果并不理想,但作者認(rèn)為DTI檢查可以作為預(yù)測(cè)胎兒投射纖維和聯(lián)合纖維發(fā)育畸形的方法。DTI受運(yùn)動(dòng)偽影的影響較重。為了防止運(yùn)動(dòng)偽影產(chǎn)生明顯影響,LOCKWOOD等[9]在DTI檢查時(shí)應(yīng)用運(yùn)動(dòng)補(bǔ)償技術(shù),得到了84%胎兒的DTI圖像,并獲得ADC值、分?jǐn)?shù)各向異性值等定量數(shù)值。有部分學(xué)者嘗試?yán)眠\(yùn)動(dòng)偽影較重的圖像數(shù)據(jù),得到DTI圖像。例如,KHAN等[10]運(yùn)用一種新的算法,從運(yùn)動(dòng)偽影明顯的DWI圖像中提取數(shù)據(jù),得到較高質(zhì)量的DTI圖像。
2 SWI
SWI屬于梯度回波序列,對(duì)磁性物質(zhì)如血、鐵、鈣化物等
敏感。這些順磁性或逆磁性物質(zhì)會(huì)干擾磁場(chǎng),導(dǎo)致局部信號(hào)缺失。因此,SWI常用于診斷腦組織創(chuàng)傷、血管畸形,評(píng)估鈣質(zhì)沉積及區(qū)分出血性疾病和非出血性疾病[11-12]。除了常規(guī)應(yīng)用,近年來部分學(xué)者探索了諸多SWI的新應(yīng)用。NEE-
LAVALLI等[13]應(yīng)用SWI進(jìn)行胎兒腦部MR靜脈造影,發(fā)現(xiàn)多數(shù)圖像質(zhì)量較好,可以滿足診斷要求。通過分析上矢狀竇的MR磁化率,SWI還可用于評(píng)估胎兒腦靜脈血氧飽和度,所得結(jié)果與經(jīng)腹近紅外光譜法所得結(jié)果相似[14]。定量磁敏感圖是在梯度回波序列基礎(chǔ)上,通過將幅值圖與相位圖融合而得到反映組織之間磁化率差異的MR成像方法,可以在SWI基礎(chǔ)上進(jìn)行定量分析[15]。YADAV等[16]應(yīng)用SWI獲得胎兒腦定量磁敏感圖,測(cè)得胎兒上矢狀竇血氧飽和度為(67±7)%,與SWI腦部靜脈造影等方法所得數(shù)值相符。
3 3D-MR
與二維磁共振序列(2D-MR)相比,3D-MR具有更高的信號(hào)噪聲比,可以進(jìn)行任意方位重建,在檢查時(shí)不需要嚴(yán)格根據(jù)定位像確定掃描方位。早期MR受硬件和軟件的限制,3D-MR很少用于胎兒檢查,最開始僅用于測(cè)量宮內(nèi)發(fā)育遲緩和巨大胎兒的體積和體質(zhì)量[17-18]。與一般受檢者不同,胎兒行MR檢查時(shí),不僅存在母體的呼吸運(yùn)動(dòng)偽影,還存在胎動(dòng)偽影,而3D-MR受運(yùn)動(dòng)干擾影響較重。因此,如何快速獲得高質(zhì)量的3D-MR圖像,一直是國(guó)內(nèi)外學(xué)者的研究重點(diǎn)。國(guó)內(nèi)孫子燕等[19]應(yīng)用3D-FIESTA序列聯(lián)合并行采集技術(shù),一次屏氣采集時(shí)間為10~15 s,基本克服了母體呼吸運(yùn)動(dòng)偽影和胎動(dòng)偽影。此外,該研究運(yùn)用容積重組和磁共振仿真內(nèi)鏡技術(shù)后,可較2D-MR更準(zhǔn)確診斷無腦回畸形、腦膜腦膨出畸形。LIU等[20]應(yīng)用自由呼吸的快速3D-MR進(jìn)行胎兒檢查,獲得了較高質(zhì)量的圖像,并依靠原始數(shù)據(jù)重建出橫軸位、冠狀位和矢狀位圖像,明顯縮短了成像時(shí)間,減少了運(yùn)動(dòng)偽影的影響。ZHAO等[21]運(yùn)用3D-MR水成像技術(shù),準(zhǔn)確地獲得胎兒側(cè)腦室體積的數(shù)據(jù),表明該方法可以用于早期診斷先天性巨腦室。
4 MRS
隨著孕周及胎兒健康狀況的變化,胎兒腦組織的代謝情況會(huì)發(fā)生變化。正常胎兒代謝產(chǎn)物發(fā)生變化可能與突觸發(fā)育及髓鞘形成有關(guān)。目前,MRS是唯一能夠無創(chuàng)檢查胎兒腦組織代謝和生化變化情況的技術(shù)。早期MRS檢查只關(guān)注肌酐、膽堿和乙酰天門冬氨酸,而現(xiàn)在也會(huì)監(jiān)測(cè)谷氨酸、谷氨酰胺和肌醇等物質(zhì)的含量[22]。EVANGELOU等[23]通過分析204例MRS數(shù)據(jù),得到胎齡18~40周的胎兒腦部肌酐、膽堿和乙酰天門冬氨酸的正常范圍及變化趨勢(shì)。URBANIK等[24]通過分析32例胎齡18~40周的正常胎兒腦MRS數(shù)據(jù),得到了與EVANGELOU等[23]相似的結(jié)果。此外,該研究還發(fā)現(xiàn),肌醇會(huì)隨孕周增加而升高,而谷氨酸和谷氨酰胺增加并不明顯。HEIMER等[25]應(yīng)用氫質(zhì)子MRS技術(shù),發(fā)現(xiàn)1例死胎的右側(cè)大腦半球存在較高含量的SymbolbA@-羥基丁酸和丙酮,與尸檢結(jié)果相符,認(rèn)為MRS是無創(chuàng)診斷酮癥酸中毒導(dǎo)致胎兒死亡的可行方法。
5 總結(jié)與展望
近年來胎兒MR檢查取得了巨大進(jìn)步(本文所述幾種胎兒腦組織MR新序列的用途見表1),然而,MR檢查時(shí)母體呼吸或胎兒運(yùn)動(dòng)產(chǎn)生的偽影一直是影響圖像質(zhì)量的重要因素[26],偽影過重會(huì)影響診斷效能。減少偽影的主要方法為提高成像速度。因此,如何在保證質(zhì)量的前提下,快速獲得圖像是胎兒MR檢查的重要研究方向。由于3 T以上的磁場(chǎng)對(duì)胎兒的安全性有待驗(yàn)證[27-30],尚不能通過增加場(chǎng)強(qiáng)來縮短成像時(shí)間。因此,提高成像速度可考慮采取以下手段:①優(yōu)化已有序列,設(shè)計(jì)新的序列;②運(yùn)用新型并行采集技術(shù),如CAIPIRINHA技術(shù);③運(yùn)用壓縮感知技術(shù);④設(shè)計(jì)新的重建算法。以上設(shè)想有待進(jìn)一步研究證實(shí)。
[參考文獻(xiàn)]
[1]KLINE-FATH B M. Ultrasound and MR imaging of the normal fetal brain[J]." Neuroimaging Clinics of North America, 2019,29(3):339-356.
[2]RUTHERFORD M A. Magnetic resonance imaging of the fetal brain[J]." Curr Opin Obstet Gyneco, 2009,21(2):180-186.
[3]BARKOVICH M J, BARKOVICH A J. MR imaging of normal brain development[J]." Neuroimaging Clinics of North America, 2019,29(3):325-337.
[4]ARTHURS O J, REGA A, GUIMIOT F, et al. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction[J]." Ultrasound Obstet Gynecol, 2017,50(1):79-87.
[5]KUTUK M S, SAHIN M, GORKEM S B, et al. Relationship between Doppler findings and fetal brain apparent diffusion coefficient in early-onset intra-uterine growth restriction[J]." The Journal of Maternal-Fetal amp; Neonatal Medicine, 2018,31(23):3201-3208.
[6]SHROT S, SOARES B P, WHITEHEAD M T. Cerebral diffusivity changes in fetuses with Chiari Ⅱ malformation[J]." Fetal Diagn Ther, 2019,45(4):268-274.
[7]YANIV G, HOFFMANN C, WEISZ B, et al. Region-specificreductions in brain apparent diffusion coefficient in cytomegalovirus-infected fetuses[J]." Ultrasound Obstet Gynecol, 2016,47(5):600-607.
[8]SONG J W, GRUBER G M, PATSCH J M, et al. How accurate are prenatal tractography results? A postnatal in vivo follow-up study using diffusion tensor imaging[J]." Pediatric Ra-
diology, 2018,48(4):486-498.
[9]LOCKWOOD ESTRIN G, WU Z Q, DEPREZ M, et al. White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures[J]." Magnetic Resonance Materials in Physics, Biology and Medicine, 2019,32(4):473-485.
[10]KHAN S, VASUNG L, MARAMI B, et al. Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images[J]." NeuroImage, 2019,185:593-608.
[11]NORTHINGTON F J. Susceptibility weighted imaging of the neonatal brain[J]." Clin Radiol, 2012,67(8):793-801.
[12]KERSBERGEN K J, BENDERS M J N L, FLORIS G, et al. Different patterns of punctate white matter lesions in serially scanned preterm infants[J]." PloS One, 2014,9(10):e108904.
[13]NEELAVALLI J, MODY S, YEO L, et al. MR venography of the fetal brain using susceptibility weighted imaging[J]." J Magn Reson Imaging, 2014,40(4):949-957.
[14]NEELAVALLI J, JELLA P K, KRISHNAMURTHY U, et al. Measuring venous blood oxygenation in fetal brain using susceptibility-weighted imaging[J]." Journal of Magnetic Resonance Imaging, 2014,39(4):998-1006.
[15]楊星,陶曉峰. 定量磁敏感圖研究進(jìn)展及臨床應(yīng)用現(xiàn)狀[J]." 國(guó)際醫(yī)學(xué)放射學(xué)雜志, 2017,40(5):556-560.
[16]YADAV B K, BUCH S, KRISHNAMURTHY U, et al. Quantitative susceptibility mapping in the human fetus to measure blood oxygenation in the superior sagittal sinus[J]." European Radiology, 2019,29(4):2017-2026.
[17]SCHIERLITZ L, DUMANLI H, ROBINSON J N. Three-dimensional magnetic resonance imaging of fetal brains[J]. Lancet, 2001,357(9263):1177-1178.
[18]LEVINE D. Three-dimensional fetal MR imaging: will it fulfill its promise[J]?" Radiology, 2001,219(2):313-315.
[19]孫子燕,夏黎明,龐穎,等. 胎兒三維磁共振成像技術(shù)的初步應(yīng)用[J]." 放射學(xué)實(shí)踐, 2011,26(9):996-999.
[20]LIU J, GLENN O A, XU D. Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results[J]." Quant Imaging Med Surg, 2014,4(2):123-128.
[21]ZHAO S X, XIAO Y H, LV F R, et al. Lateral ventricular volume measurement by 3D MR hydrography in fetal ventriculomegaly and normal lateral ventricles[J]." J Magn Reson Imaging, 2018,48(1):266-273.
[22]CLOUCHOUX C, LIMPEROPOULOS C. Novel applications of quantitative MRI for the fetal brain[J]." Pediatric Radiology, 2012,42(Suppl 1):S24-S32.
[23]EVANGELOU I E, DU PLESSIS A J, VEZINA G, et al. Elucidating metabolic maturation in the healthy fetal brain using 1H-MR spectroscopy[J]." AJNR Am J Neuroradiol, 2016,37(2):360-366.
[24]URBANIK A, CICHOCKA M, KOZUB J, et al. Evaluation of changes in biochemical composition of fetal brain between 18th and" 40th gestational week in proton magnetic resonance spectroscopy[J]." J Matern Fetal Neonatal Med, 2019,32(15):2493-2499.
[25]HEIMER J, GASCHO D, FLISS B, et al. Detection of eleva-
ted ketone bodies by postmortem 1H-MRS in a case of fetal ketoacidosis[J]." J Forensic Leg Med, 2018,59:16-19.
[26]劉學(xué)玲. 胎兒超聲對(duì)新生兒顱內(nèi)出血的檢查及診斷價(jià)值評(píng)定[J]." 中國(guó)實(shí)用醫(yī)藥, 2019,14(34):42-44.
[27]艾李萍. 胎兒顱腦磁共振安全性與檢查優(yōu)化的探討[J]." 影像研究與醫(yī)學(xué)應(yīng)用, 2018,2(24):238-239.
[28]趙芳,王將軍. 磁共振成像在產(chǎn)前胎兒顱腦疾病的臨床應(yīng)用價(jià)值[J]." 實(shí)用醫(yī)學(xué)影像雜 志, 2019,20(1):15-17.
[29]周樂,李喬. 胎兒功能磁共振成像技術(shù)在胎兒生長(zhǎng)受限中的應(yīng)用[J]." 西部醫(yī)學(xué), 2019,31(5):814-817.
[30]STRIZEK B, JANI J C, MUCYO E, et al. Safety of MR imaging at 1.5 T in fetuses: a retrospective case-control study of birth weights and the effects of acoustic noise[J]." Radiology, 2015,275(2):530-537.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年3期