• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in the neurons

    2019-04-13 01:14:48ZuoxianXiang向左鮮ChuanxiangTang唐傳祥andLixinYan顏立新
    Chinese Physics B 2019年4期

    Zuoxian Xiang(向左鮮),Chuanxiang Tang(唐傳祥),and Lixin Yan(顏立新)

    Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    1.Introduction

    Quantum theory is one of the greatest discoveries of the twentieth century. In recent years,quantum effects in biological systems have been discovered in several areas,including olfaction,[1,2]avian magnetoreception,[3,4]photosynthesis,[5–9]quantum entanglement in living bacteria,[10]and so on.[11]Theoretical study of quantum effect in bio-systems and its possible relevance to explaining the functional properties of these systems are also drawing rapid attention,such as consciousness in the brain.

    How to explain consciousness? Classical or quantum? It is so mysterious and researchers have proposed many models.[12–24]Some studies suggested that the quantum effect might play an important role in the functioning of the brain.[16–24]Penrose and Hameroff proposed the orchestrated objective reduction(Orch OR)model,which suggests that microtubules(MTs)in neurons act as a quantum computer,[18–20,24]Fisher proposed that quantum entanglement may exist between two neurons.[23]

    Decoherence is an important phenomenon in quantum information.The“warm,wet,and noisy”environment might destroy the quantum state,[26–29]thus the decoherence time scale τ is an important parameter to the quantum model.

    To study the decoherence process in MTs,researchers determined this parameter according to different mechanisms of decoherence,including quantum gravity,[18]cavity quantum electrodynamics(QED)model,[25,26]and single ion-MT interactions;these results are listed in Table 1 and the value of decoherence time varies greatly.

    Table 1.Decoherence time scales and their mechanisms.

    Decoherence mainly derives from the interaction between quantum systems and the environment.There are 4 basic interactions that have been discovered in nature;in the range of molecule interactions,the main interaction between environment and tubulin dimers is electromagnetic interaction.In this paper,a model based on the electromagnetic interaction Hamiltonian between microtubules and plasmon in the neurons is proposed.Previous studies considered the effect of a single ion on the decoherence process in MTs;however,cells are known to contain different kinds of ions that have different charges and masses,i.e.,some ions have positive charge,whereas others have negative charge.Over a long time scale,cells can be considered to be electrically neutral;however,this is not true over very short time scales.Therefore,the decoherence rates cannot be calculated only considering the effect of a single ion since decoherence is a result of the interaction between tubulin dimers and cellular fluid environment.In this paper,the interaction Hamiltonian is constructed by using the second quantization method,and the decoherence time is estimated according to the interaction Hamiltonian.

    This article is organized as follows.Section 2 includes the introduction for decoherence mechanisms in our model,as well as the total Hamiltonian of tubulin dimers and cell fluid environment;the decoherence timescale τ are computed and howτ changes with environment parameters will be discussed.In Section 3,other mechanisms of decoherence will be discussed,and some important formulas and their derivations are given in the appendix.

    2.Decoherence rates

    In this section,the decohenrence mechanisms in MTs will be discussed.MT is a hollow cylinder with an outer diameter of 24 nm and an inner diameter of 15 nm.The basic unit of MT is tubulin dimer which has two subunits(denoted by α and β);all of the tubulin dimers form MT crystal lattice by helical encircle.The tubulin dimers have different kinds of conformational states which are regarded as quantum bit in Orch model,and MTs can store information owing to different combinations of these conformational states.Electron transition in each tubulin dimer could change the conformational states,and the MT is a polar molecule and has intrinsic electric dipole moment(Fig.1).[25]

    Fig.1.The structure diagram of MTs.

    2.1.Mechanisms of decoherence

    The cellular fluid is considered to have both positive and negative charges(similar to plasma),and thus two basic and very important parameters are used to describe the it,namely Debye length λDand plasma frequency ωp;these two parameters will be discussed compendiously and their range will be given.

    The Debye length λDrepresents the space scale when the plasma is kept as a neutral state and is determined by

    where nk,0is the average density of the k-th kind of ion,qkis the quantity of charge,ε=80ε0is the dielectric constant of water,kBis the Boltzmann constant,and T is the temperature of the cellular fluid.For physiological Ringer solution,λD~0.7 nm,[29]and in the following calculation,the value of λDis set to be around 0.7 nm.

    The surface of tubulin dimers have net charge,[30]so a counterion layer will be formed because of the Debye shielding.The thickness of the counterions is approximately λD,as shown in Fig.2.The counterions could shield the interaction between MTs and the environment,as shown in Appendix C,the coupling coefficient is decreased if the shielding effect is considered.

    Fig.2.Schematic diagram of counterion layer with a thickness of λD.

    The second parameter is called plasma frequency,which describes the collective oscillations of ions and is determined by

    For typical parameters in a cell,[29][K+]in=400 mmol/L,[Na+]in=50 mmol/L[Cl?]in=52 mmol/L,ωp≈ 0.6 THz.Therefore,in the following calculation,the value of ωpis set to be around 0.6 THz.

    When the plasmon is in an excited state,the electric neutrality is destroyed,and some net charges appear.The net charges can interact with the dipole in the tubulin dimmers,as shown in Fig.3.As shown in Appendix A,the local ion density fluctuation could excite ion density waves.There are different ion density waves,but the only one called plasma oscillation could be coupled with MTs,and the dispersion relation of plasma oscillation is

    where β is the average value of ion thermal velocity,which has the same order of magnitude as the thermal velocity.

    The total Hamiltonian of the MT-environmental systems can be derived as follows:whereis the Hamiltonian of the excited systems in the MTs,is the Hamiltonian of the plasmons in the cellular fluid environment,andrepresents the interaction between the MTs and cellular aqueous environment caused by the interactions between the dipole and net charges.is the reason for decoherence;if=0,the decoherence time is τ=∞.

    Fig.3.Schematic diagram of the coupling between tubulin dimers and the cellular fluid environment.

    As shown in Fig.3,the interaction Hamiltonian between a single tubulin dimer with the electric dipole moment pand the cellular fluid environment can be shown as follows:

    2.2.Computation method of decoherence timescale

    Now,the total Hamiltonian equation(4)will be derived;some basic assumption or approximation is listed below,and will be discussed in Section 3 and appendix.

    (i)Water is treated as an medium with a dielectric constant ε=80ε0,and detailed interaction of ion-water molecules and MT-water molecules is ignored.

    (ii)Due to the Debye shielding,plasma oscillations could only be excited above the Debye length,that is to say,the wave numberk has an upper limit of k=kD=2π/λD;in our calculation,we consider k will decay rapidly as a small quantity for the short wavelength modes.

    (iii)Random phase approximation(RPA)for many particles system,In equilibrium state or near equilibrium state,as the position of particles is random,∑iexp(ik ·ri)=0 unless k=0.

    (iv)The tubulin dimers are seen as a mass point with electric dipole moment p.

    As introduced in Subsection 2.1,the tubulin dimers have different conformational states,denoted by|ki,and let?c?k,?ckbe the creation operator and annihilation operator of the quantum state|ki,so the Hamiltonian of tubulin dimers can be expressed by

    The detailed calculation ofwill be given in Appendix A and Appendix B,and the total Hamiltonian of the MTs and cellular environment can be expressed as follows:

    where ω(k)=is the dispersion relation of plasma oscillation,(k)and(k)are the creation operator and annihilation operator of plasma oscillations,respectively,and the coupling coefficient μn,kis given by

    Equation(8)is given in Appendix C,and pnis the electric dipole moment in state|ni.

    Next,Tolkunov’s model is used,[31,32]which describes the interaction between the spin system and Boson thermal reservoir.In 2-level approximation,the Hamiltonian equation(7)of our model is the same with that of Tolkunov’s in form,so the non-diagonal elements of density matrix will also change with time in the same way

    Here,and the integral region is 0

    where

    Obviously,G(t)>0.In the quantum information theory,the decoherence process is reflected in the damping of the nondiagonal element of the density matrix,so we define decoherence timeτas the timescale when qn(t)decays into qn(0)/e,namely

    Equations(11)and(12)could be used to compute decoherence time.

    2.3.Typical order of magnitude of decoherence timescale

    In this section, the typical value of decoherence time scale will be estimated by Eqs.(11)and(12).The parameters in Eq.(10)are chosen as follows:

    pn=3×10?28C·m is the electric dipole moment of tubulin dimer.[25]

    ε=80ε0is the dielectric constant of water.[29]

    λD~0.7 nm,ωp=0.6 THz;these two basic plasma parameters have been discussed in Subsection 2.1.

    T=310 K is the environment temperature.

    β=300 m/s since it has the same order of magnitude with the thermal velocity.

    kB=1.38×10?23J/K is the Boltzmann’s constant.

    =1.0546×10?34J·s is the Planck’s constant.

    The function G(t)can be computed in a numerical method(Fig.4).Set G(τ)=1 and the decoherence time could be easily obtained

    The decoherence timescale is about 10 fs.

    Fig.4.Schematic diagram of how to compute the decoherence time by the exponential factor G(t).

    2.4.The dependence of decoherence time with other parameters

    Decoherence time may change with other parameters;how these parameters affect the decoherence time will be studied in this section.As discussed in Subsection 2.3,the typical time scale for decoherence is T0=10 fs.So set T0=10 fs as the time unit,six dimensionless physical quantities are shown below

    Then equations(11)and(12)become

    The typical values of these parameters are given in Subsection 2.3;in this section,their values are given in a wide range as follows:

    Here,some values may never be reached,such as T=900 K,ε=240ε0,and so on;but the purpose in this model is to analyze how the decoherence time changes with physical parameter,so the parameter distribution is in a very wide range.

    Case 1: Decoherence time changes with plasma frequency ωp

    As shown in Fig.5,decoherence remains almost unchanged when the plasma frequency changes.

    Fig.5.Decoherence time changes with plasma frequency ωpwhen other parameters are consistent with those in Subsection 2.3.

    Case 2:Decoherence time changes with average thermal velocity β

    As shown in Fig.6,decoherence remains almost unchanged when the average thermal velocity β changes,similar to Case 1.

    Fig.6.Decoherence time changes with average thermal velocity β when other parameters are consistent with those in Subsection 2.3.

    Case 3:Decoherence time changes with Debye length λD

    In Fig.7,the decoherence time increases with Debye length;since the plasma oscillation modes could only be excited when k<2π/λD,a larger Debye length means that fewer modes will be excited,so the number of the modes interacting with MTs will decrease,and the decoherence time will increase.

    Fig.7.Decoherence time changes with Debye length λDwhen other parameters are consistent with those in Subsection 2.3.

    Use τ=CλsDto fit the curve in Fig.7(or equivalently lnτ=slnλD+lnC),the power exponent s and linearly dependent coefficient for lnτ,lnλDare

    Doing the same work to other parameters and we find that τ=CλsDcould fit the relationship between τ,λD,so we can approximately consider that

    Case 4:Decoherence time changes with dielectric constant of water

    In Fig.8,the decoherence time increases with dielectric constant of water,and the reason is obvious.According to Eq.(5),a larger dielectric constant means the weaker interaction between MTs and environment.

    Fig.8.Decoherence time changes with dielectric constant of water when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 5:Decoherence time changes with dipole moment of tubulin dimer pn

    In Fig.9,we show the decoherence time decreases as the dipole moment of tubulin dimer increases;according to Eq.(5),the increase of the dipole moment will enhance the interaction between MTs and environment,and then the decoherence time will decrease.

    Fig.9.Decoherence time changes with dipole moment of tubulin dimer pn when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 6: Decoherence time changes with environment temperature T

    In Fig.10,the decoherence time decreases as the environment temperature increases,and it is also easy to understand.The higher temperature means that more oscillation modes will be excited,and this will have a greater impact on the MTs,so the decoherence time decreases.

    Fig.10.Decoherence time changes with environment temperature T when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    According to Eqs.(16)–(19),the decoherence time could be approximately expressed as Since the decoherence time relies less on ωp, β,then equation(20)will be changed into:

    In fact,equation(21)could be proved,since the plasma frequency

    THz,the decoherence time τ~10 fs–100 fs,and the temperature T ~ 100 K.Therefore,

    Under the condition of Eq.(22),equation(12)could be approximately expressed as

    Then the decoherence time satisfies

    Equation(24)could be used for calculating the decoherence time only under the condition of Eq.(22).However,equation(24)is useful for various actual parameters.

    3.Conclusion and outlook

    If the Orch OR model can be verified both in theory and experiment,the influence will be inestimable;however,the conformational state is affected by the “warm and wet”cellular environment,and the decoherence time is a very important parameter.

    In this paper,the decoherence time scale is even smaller than 0.1 ps.This timescale is so short that quantum state will be destroyed by the cell solution environment soon.This model only considers the coupling between the tubulin dimers and ions in the cellular fluid system,treating the water as a medium and overlooking the interactions of MTs-water molecules;water molecules may shield some interactions of ion-MTs,and the interaction of water-ions and water-MTs may have influence on the decoherence process.[32,33]According to Eq.(24),if the interaction strength a√ttenuates to ε(0<ε<1),the decoherence will increase to 1/ε than before;an enough decoherence requires ε?1 and the strength of shielding by water molecules needs to be measured by experiment.

    Other mechanism for decoherence that is not considered is the coherent pumping of the system via the environment.[21]According to Fro¨hlich’s theory,if a system is strongly coupled to its environment via some degrees of freedom,and a coherent pumping source exists in environment,it might inhibit other degrees of freedom known as coherent oscillations.[35,36]Such oscillations might increase the decoherence time.Guanosine triphosphate(GTP)hydrolyzation in the cells might act as a pumping source.This mechanism was not considered in this paper.

    Decoherence is an important phenomenon in quantum information.Decoherence mainly comes from the interaction of quantum systems with the environment.In the range of molecule interactions,the main interaction between environment and tubulin dimers is the electromagnetic interaction;the electromagnetic field comes from ions and thermal radiation of the environment.However,in this model,the thermal radiation is ignored,and in the range of room temperature,the thermal frequency spectrum mainly concentrates in the range of THz band.The water molecules in the cell environment could strongly absorb the THz photon and the model only takes into account the electromagnetic field from ions.Besides,if the thermal radiation is considered,the decoherence time would be smaller than the result given before,and it will not change the conclusion.

    This model needs to be verified both experimentally and theoretically. This model may offer a helpful theoretical framework to compute the decoherence time in quantum biosystems,even though the environment of biological system is different.However,the electromagnetic interaction is essential in the scale of molecules,so this modelcould be used for reference when dealing with the interaction between the ions in cell environment and dipoles of bio-molecules.The direct experiment to verify this model is hard to be carried out at this time,but with the development of ultrafast biophysics,quantum information,quantum optics,and imaging technology,[37–41]the experiment could be carried out in the future.

    Appendix A:Dispersion relation of ion density wave

    In Appendix A,the dispersion relation of ion density wave is derived by fluid theory.Note that ni,mi,vi,qirepresent the particle number density,ion mass,the macro velocity,and electric charge of the i-th ion. E is the space electric field,βiis used to represent the ion thermal velocity,and?mβ2i?niis the thermodynamic pressure of the i-th ion.Then according to fluid theory

    In order to deduce intrinsic oscillation mode and its dispersion relation,linearization is done for Eq.(A1).For arbitrary physical quantity A,it is divided into two parts

    Now,let us compute the eigenmode with intrinsic wavelength and frequency.Set?A=?A0exp[i(k·r?ωt)].Then the operator?/?t= ?iω,? =ik,and equation(A3)changes to

    According to Eq.(A4),the eigen-equation is

    Or equivalent in matrix form where ?l,k=(ω2?k2β2l)δkl?hnliqlqk/εml,and?=(?1,?2,...,?M)T.Set f(ω,k)=det?(ω,k),equation(A6)must have untrivial solution to ensure eigenmode exits,so the dispersion relation is determined by

    Set ql=(?1)υlZle,where Zlis the valence state of ions,e.g.,for Na+and Cl?,Zl=1,and for Ca2+,Zl=2,and υlrepresents the sign of ion charge,and

    In long-wavelength limit kβl/ω ?1,then

    whereis the plasma frequency,is the average thermal velocity of all ions,and cj(j=2,3,...,M)is the M?1 roots of the following equation

    So M kinds of waves are obtained,and their dispersion relation is

    The ion charged density is

    Use Eqs.(A11)and(A6),under the condition of longwavelength approximation,only when ω2=ω2p+β2k2,ρ 6=0;otherwise ρ =0.That is to say,ω2= ω2p+β2k2represents ion charged density wave,and can be coupled with MTs by dipole–charge interactions as shown in Fig.2.Other M ?1 kinds of waves could not couple with MTs under the condition of long-wavelength approximation.

    Finally,diagonalize matrix ?

    Set P(k)=P(0)+O(k2)and define another variable ρ=(ρ1,ρ2,...,ρM)T,which is determined by

    The transformation between n and ρ is

    Then

    Compare Eqs.(A16)and(A11),then

    So eρ1could also be used to represent net charge density of ions,and equations(A15)and(A17)will be used in Appendix B.

    Appendix B:Second quantization of environment Hamiltonian Heand interaction Hamiltonian Hin

    In the coordinate representation,the Hamiltonian Heof cellular environment can be shown as follows:

    where rk,irepresents the position of the k-th kind of ions that have been numbered i,φ,A are scalar potential and vector potential,respectively,and pk,j=?k,jis the canonical momentum.The first term represents the kinetic energy of the ions,and the second term represents the field energy.

    The potentials φ,A are not unique.For two different potentials(φ,A),(φ0,A0),if they satisfy

    the two potentials will have the same field E, B as follows:

    We use an approach similar to the David Bohm’s electron gas model and define the Hamiltonian Eq.(B1)in another manner;[33]the second term is derived from the interactions between ions and the energy stored in the field.Therefore,equation(B1)can be written in an equivalent way as follows:

    First,set ξ =Rφdt so that φ0=0,then E = ??A/?t, B =?×A.ExpandAin Fourier series exp(ik·r)

    whereek=k/k is an unit vector parallel to the direction of the wave propagation,ekμ(μ =1,2)is another two-unit vector which is perpendicular to ek,and ek1⊥ek2.SoAkandA⊥represent longitudinal wave and transverse wave,respectively.Their electric field and magnetic field are

    where p(?k)=˙q(k),Pμ(?k)=˙Qμ(k).Aand Eare real and can be ensured as follows:

    Use Eqs.(B5)and(B6)as well as the commutative relation[^p,A]=?i??·A,the Hamiltonian equation(B4)will become

    where

    Now,use Eq.(B5),then we have

    where nlis the number of l-th kind of ions in a unit volume.The random phase approximation(RPA)makes the second term inconsiderably smaller than the first termtherefore

    Similarly,

    Use Eqs.(B6a)and(B6b),then we obtain

    means the kinetic energy,and it can be divide it into two parts

    The first term is the macroscopical translational energy,and the second term means the thermodynamic energy.

    The second term in Eq.(B14)can be changed into

    Now,use Eq.(A15)and ignore the cross term ρiρj(i6=j),then

    As discussed in Appendix A,eρ1represents net charge density of ions,so use Gauss’s theorem in k-space

    Use Eqs.(B8)–(B17),then the total Hamiltonian is expressed by

    where the first term means ion sound wave,the second term means interaction between ions and fields and it is neglected for the reason that each ion has a random phase(random phase approximation or RPA),?21(k)= ω2p+c2k2is the dispersion relation of electromagnetic wave in plasma,and ?22(k)=ω2p+β2k2is the dispersion relation of charged density wave or plasma oscillation.

    At last,using second quantization method,define(k),(k)as the creation operator and annihilation operator of electromagnetic wave,respectively,and(k)and ?a(k)as the creation operator and annihilation operator of the plasma oscillations,respectively,and we can obtain

    Andsatisfy the commutation relation

    Use Eqs.(B19)and(B20)and the random phase approximation,the Hamiltonian equation(B18)will become

    where

    In long-wavelength limit,β2k2/ω2p?1,so

    This is the dispersion relation of ion charged density wave as shown in Appendix A.

    In Eq.(B21),only the 3rd term could be coupled with MTs by dipole–charge interactions(as seen in Eq.(B17),ρ(k)is only related to p(k)instead of Pμ(k)),so this model only considers the 3rd term which is named

    namely,the coupling between MTs and cellular environment via interactions between plasma oscillations and dipoles.The interaction Hamiltonian for a single dipole with the cellular environment is determined by Eq.(5).Thus,after Fourier transformation,equation(5)becomes

    According to Eqs.(B17)and(B19b),then

    the MT’s dipole p can be written as follows:

    Here, pn=hn|? p|ni is the observed value of pin state|ni.In Eq.(B27),the the cross term pm,n?c?m?cnwas neglected,use Eqs.(B25)–(B27),then the coupling Hamiltonian can be written as follows:

    where

    The Hn,kmeans the interaction between MTs and cellular fluid environment mentioned later,and it is then used to compute decoherence time,and λn,kis the coupling coefficient.The method for computing the coupling coefficient λn,kwill be introduced in Appendix C.

    Appendix C:Computation of coupling coefficient λn,k

    The coupling coefficient λn,kis expressed as follows:

    where pnis a constant vector;for a certaink,the z axis is set to be parallel tok.In the spherical coordinate frame,k·r =krcosθ,and the volume element dr =r2sinθdθd?;thus, pncan be expressed as follows:

    Thus,

    When the variable ? is integrated in the interval[0,2π],thenpzcosθ exp(ikrcosθ)sinθdrdθd?

    where

    Compute Eq.(C5),then A=0 and

    Here, pz= pn·k/k;generally,in the actual situation,plasma oscillations will be excited only when the wavelength is larger than the Debye length λD.Therefore,only k<2π/λDcould be used to refer to the excited state.The integral in Eq.(C1)in the space|r|> λDbecause a shielding layer charge appears on the surface of MTs with a thickness λD,as shown in Fig.2.The shielding layer charge is stable and cannot excite plasma oscillations;therefore,in Eq.(C6),rmin=λDand rmax=∞.Hence,

    Define b(k)= ?ia(k)as new creation operator and annihilation operator,then the total Hamiltonian is

    where

    and we have obtained Eqs.(7)and(8).

    [1]Turin L 1996 Chem.Senses 21 773

    [2]Franco M I and Siddiqi O 2011 Proc.Natl.Acad.Sci.USA 108 3797

    [3]Ritz T,Adem S and Schulten K 2000 Biophys.J.78 707

    [4]Hiscock H G,Worster S,Kattnig D R,Steers C,Jin Y,Manolopoulos D E,Mouritsen H and Hore P J 2016 Proc.Natl.Acad.Sci.USA 113 201600341

    [5]Gregory S E,Tessa R C,Elizabeth L R,Tae-Kyu A,Toma′s M,Yuan-Chung C,Robert E B and Graham R F 2007 Nature 446 782

    [6]Romero E,Augulis R,Novoderezhkin V I,Ferretti M,Thieme J,Zigmantas D and Van Grondelle R 2014 Nat.Phys.10 676

    [7]Levi F,Mostarda S,Rao F and Mintert F 2015 Rep.Prog.Phys.78 082001

    [8]Novelli F,Nazir A,Richards G H,Roozbeh A,Wilk K E,Curmi P M and Davis J A 2015 J.Phys.Chem.Lett.6 4573

    [9]Sarovar M,Ishizaki A,Fleming G and Whaley B 2010 Nat.Phys.3 462

    [10]Marletto C,Coles D,Farrow T and Vedral V 2018 J.Phys.Commun.2 101001

    [11]Mesquita M V,VasconcellosR,Luzzi R and Mascarenhas S 2005 Int.J.Quantum Chem.102 1116

    [12]Jackendoff R 1987 Consciousness and the Computational Mind(Cambridge:The MIT Press)pp.275–280

    [13]Tononi G,Boly M,Massimini M and Koch C 2016 Nat.Rev.Neurosci.17 450

    [14]Crick F and Koch C 2003 Nat.Neurosci.6 119

    [15]Edelman G M 2003 Proc.Natl.Acad.Sci.USA 100 5520

    [16]Jahn R G and Dunne B J 2007 Found.Phys.3 306

    [17]Mershin A,Sanabria H,Miller J H,Nawarathna D,Skoulakis E M,Mavromatos N E,Kolomenskii A A,Schuessler H A,Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness(Berlin:Springer)pp.95–170

    [18]Hameroff S and Penrose R 2014 Phys.Life Rev.11 39

    [19]Hameroff S and Penrose R 2014 Phys.Life Rev.11 94

    [20]Hameroff S R and Penrose R 2017 Biophysics of Consciousness:A Foundational Approach(Singapore:World Scientific)pp.517–599

    [21]Craddock T J A and Tuszynski J A 2010 J.Biol.Phys.36 53

    [22]Craddock T J,Priel A and Tuszynski J A 2014 J.Integr.Neurosci.13 293

    [23]Fisher M 2015 Ann.Phys.61 593

    [24]Hameroff S R 2007 Cogn.Sci.31 1035

    [25]Mavromatos N E,Mershin A and Nanopoulos D V 2002 Int.J.Mod.Phys.B 16 3623

    [26]Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273

    [27]Tegmark M 2000 Phys.Rev.E 61 4194

    [28]Hagan S,Hameroff S R and Tuszy′nski J A 2002 Phys.Rev.E 65 061901

    [29]Nelson P 2007 Biological Physics(New York:WH Freeman)p.416

    [30]Priel A,Tuszynski J A and Woolf N J 2005 Eur.Biophys.J.Biophys.Lett.35 40

    [31]Privman V and Tolkunov D 2005 Quantum Information and Computation III(Bellingham:The International Society for Optics and Photonics),pp.187–195

    [32]Tolkunov D,Privman V and Aravind P K 2005 Phy.Rev.A 71 060308

    [33]Craddock T J,Friesen D,Mane J,Hameroff S and Tuszynski J A 2014 J.R.Soc.Interface 11 20140677

    [34]Chen Y,Okur H I,Gomopoulos N,Macias-Romero C,Cremer P S,Petersen P B,Tocci G,Wilkins D M,Liang C and Ceriotti M 2016 Sci.Adv.2 e1501891

    [35]Fr?hlich H 1968 Int.J.Quantum Chem.2 641

    [36]Wu T M and Austin S J 1981 J.Biol.Phys.9 97

    [37]Bohm D and Pines D 1953 Phy.Rev.92 609

    [38]Yin C C and Biophysics D O 2018 Chin.Phys.B 27 058703

    [39]Zheng C J,Jia T Q,Zhao H,Xia Y J,Zhang S A and Sun Z R 2018 Chin.Phys.B 27 057802

    [40]Wade C G,ˇSibali′c N,de Melo N R,Kondo J M,Adams C S and Weatherill K J 2017 Nat.Photon.11 40

    [41]Trocha P,Karpov M,Ganin D,Pfeiffer M H,Kordts A,Wolf S,Krockenberger J,Marin-Palomo P,Weimann C and Randel S 2018 Science 359 887

    日本一本二区三区精品| 亚洲精品456在线播放app | 久久精品久久久久久噜噜老黄 | 免费看美女性在线毛片视频| 久久久久久久久中文| 99精品久久久久人妻精品| 五月玫瑰六月丁香| 婷婷精品国产亚洲av| 国产在视频线在精品| 中国美女看黄片| 国产一区二区在线观看日韩| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| av黄色大香蕉| 九色成人免费人妻av| 日韩欧美 国产精品| 99热这里只有精品一区| 欧美性猛交黑人性爽| 老熟妇仑乱视频hdxx| 人人妻人人看人人澡| 日韩欧美精品免费久久| 村上凉子中文字幕在线| 少妇的逼水好多| 麻豆精品久久久久久蜜桃| 日韩欧美免费精品| 99久久中文字幕三级久久日本| 久久热精品热| 国产黄片美女视频| 免费一级毛片在线播放高清视频| 久久精品国产99精品国产亚洲性色| 舔av片在线| 色吧在线观看| 欧美日本亚洲视频在线播放| 国产亚洲精品久久久久久毛片| 日日摸夜夜添夜夜添av毛片 | 亚洲av五月六月丁香网| 亚洲在线观看片| 两人在一起打扑克的视频| 久久亚洲真实| 亚洲熟妇中文字幕五十中出| 免费在线观看影片大全网站| 伦精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 日本一二三区视频观看| 一夜夜www| 色哟哟·www| 日本色播在线视频| 亚洲成人久久性| 伦精品一区二区三区| 99精品在免费线老司机午夜| 国产精品久久久久久久久免| 国产美女午夜福利| 免费观看的影片在线观看| 女人十人毛片免费观看3o分钟| 国产亚洲91精品色在线| 亚洲乱码一区二区免费版| 午夜福利高清视频| 天天一区二区日本电影三级| 又黄又爽又免费观看的视频| 在线观看66精品国产| h日本视频在线播放| 欧美日本视频| 日日摸夜夜添夜夜添小说| 久久国产精品人妻蜜桃| 久久精品国产亚洲av天美| 美女高潮的动态| 国产真实乱freesex| 午夜日韩欧美国产| 99久久成人亚洲精品观看| 蜜桃亚洲精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 麻豆国产av国片精品| 亚洲va在线va天堂va国产| 午夜福利在线观看吧| 男女之事视频高清在线观看| 黄色视频,在线免费观看| 欧美精品国产亚洲| 91麻豆精品激情在线观看国产| 久久久成人免费电影| 无遮挡黄片免费观看| 午夜福利在线在线| avwww免费| 国产免费av片在线观看野外av| 国产一区二区激情短视频| 小说图片视频综合网站| 波野结衣二区三区在线| 91久久精品电影网| 天堂动漫精品| 亚洲精华国产精华精| 亚洲人成网站在线播| 国产探花在线观看一区二区| 久久香蕉精品热| 国产av在哪里看| 搞女人的毛片| 欧美日本亚洲视频在线播放| 国产精品人妻久久久影院| 天天躁日日操中文字幕| 高清毛片免费观看视频网站| 午夜激情福利司机影院| 国内精品久久久久久久电影| 欧美激情久久久久久爽电影| 亚洲av电影不卡..在线观看| 免费看日本二区| 特大巨黑吊av在线直播| 久久久久精品国产欧美久久久| 欧美+日韩+精品| 国产大屁股一区二区在线视频| aaaaa片日本免费| 久久精品国产亚洲网站| 99热这里只有是精品在线观看| 热99re8久久精品国产| 久久国内精品自在自线图片| 亚洲性夜色夜夜综合| 国产精品无大码| 亚洲精品一区av在线观看| 日韩欧美国产一区二区入口| 国产av在哪里看| 欧美日本亚洲视频在线播放| 免费观看在线日韩| 一个人看的www免费观看视频| 波多野结衣巨乳人妻| 精品久久久久久久久久免费视频| 国产aⅴ精品一区二区三区波| 色尼玛亚洲综合影院| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美激情综合另类| 乱系列少妇在线播放| 毛片女人毛片| 最近在线观看免费完整版| 免费观看的影片在线观看| 久久午夜福利片| 欧美一区二区亚洲| 少妇裸体淫交视频免费看高清| 俄罗斯特黄特色一大片| 乱人视频在线观看| 国产一区二区三区在线臀色熟女| 琪琪午夜伦伦电影理论片6080| 狂野欧美激情性xxxx在线观看| 国产一区二区在线av高清观看| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 国产黄色小视频在线观看| 亚洲av熟女| 岛国在线免费视频观看| 欧美黑人巨大hd| 国产亚洲av嫩草精品影院| 桃红色精品国产亚洲av| 精品欧美国产一区二区三| 美女cb高潮喷水在线观看| 97热精品久久久久久| 毛片一级片免费看久久久久 | 日韩欧美一区二区三区在线观看| 国产av在哪里看| 18禁黄网站禁片免费观看直播| 色噜噜av男人的天堂激情| 国产私拍福利视频在线观看| 在线观看美女被高潮喷水网站| 国产真实乱freesex| 亚洲天堂国产精品一区在线| 午夜福利成人在线免费观看| 夜夜夜夜夜久久久久| 老司机福利观看| 女的被弄到高潮叫床怎么办 | 又粗又爽又猛毛片免费看| 精品人妻1区二区| 免费看a级黄色片| av国产免费在线观看| 精品人妻1区二区| 国产主播在线观看一区二区| 国产精品久久久久久精品电影| 婷婷六月久久综合丁香| 91麻豆精品激情在线观看国产| 亚州av有码| 91久久精品国产一区二区三区| 亚洲av第一区精品v没综合| 狠狠狠狠99中文字幕| 久久久久国内视频| 午夜激情福利司机影院| 91麻豆av在线| 直男gayav资源| 免费一级毛片在线播放高清视频| 在线播放无遮挡| 色综合色国产| 成年女人看的毛片在线观看| 嫩草影视91久久| 精品人妻1区二区| 久久精品国产自在天天线| 日韩中字成人| 国产91精品成人一区二区三区| 国产成人福利小说| 日本爱情动作片www.在线观看 | 男女边吃奶边做爰视频| 亚洲av熟女| 18禁黄网站禁片午夜丰满| 色视频www国产| 人妻久久中文字幕网| 九九爱精品视频在线观看| 精品一区二区三区av网在线观看| 国产色婷婷99| 欧美高清成人免费视频www| 波野结衣二区三区在线| 精品人妻偷拍中文字幕| 久久国产乱子免费精品| 日日撸夜夜添| 嫩草影院精品99| 亚洲黑人精品在线| 亚洲欧美清纯卡通| 久99久视频精品免费| 久久精品国产亚洲网站| 女的被弄到高潮叫床怎么办 | 一级a爱片免费观看的视频| 美女高潮喷水抽搐中文字幕| 综合色av麻豆| 中国美女看黄片| 国产美女午夜福利| 中出人妻视频一区二区| 久久久久精品国产欧美久久久| 国产亚洲精品综合一区在线观看| 欧美激情国产日韩精品一区| 看免费成人av毛片| 国产视频一区二区在线看| 一级黄色大片毛片| 国产精品98久久久久久宅男小说| 99久久精品热视频| ponron亚洲| av.在线天堂| 国产在视频线在精品| 观看免费一级毛片| 尤物成人国产欧美一区二区三区| 看片在线看免费视频| 中文资源天堂在线| 女同久久另类99精品国产91| 亚洲成人久久性| 人人妻,人人澡人人爽秒播| 亚洲精品日韩av片在线观看| 国产免费av片在线观看野外av| 国国产精品蜜臀av免费| 日韩av在线大香蕉| 国产亚洲精品久久久com| 久久久久性生活片| 日韩欧美在线二视频| 真人做人爱边吃奶动态| 老司机深夜福利视频在线观看| 日本-黄色视频高清免费观看| 91久久精品电影网| 色噜噜av男人的天堂激情| 久久人人爽人人爽人人片va| 女生性感内裤真人,穿戴方法视频| 少妇裸体淫交视频免费看高清| 国模一区二区三区四区视频| 很黄的视频免费| 国内久久婷婷六月综合欲色啪| 可以在线观看毛片的网站| 亚洲色图av天堂| 日本黄大片高清| 国产av在哪里看| 日韩欧美三级三区| 桃红色精品国产亚洲av| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 久久久久久九九精品二区国产| 一a级毛片在线观看| 国产精品日韩av在线免费观看| 久久亚洲真实| 在线看三级毛片| 欧美最黄视频在线播放免费| 成人高潮视频无遮挡免费网站| 国产乱人视频| 伊人久久精品亚洲午夜| 日韩欧美 国产精品| 搡女人真爽免费视频火全软件 | 一区二区三区激情视频| 国产真实伦视频高清在线观看 | 最新在线观看一区二区三区| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 他把我摸到了高潮在线观看| 亚洲狠狠婷婷综合久久图片| 欧美xxxx黑人xx丫x性爽| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区四那| 日韩,欧美,国产一区二区三区 | 色5月婷婷丁香| 午夜福利在线观看免费完整高清在 | 欧洲精品卡2卡3卡4卡5卡区| av专区在线播放| 变态另类成人亚洲欧美熟女| 国产三级在线视频| 久久久久久久久久黄片| 十八禁网站免费在线| 制服丝袜大香蕉在线| 1024手机看黄色片| 免费黄网站久久成人精品| 中文字幕高清在线视频| 日本熟妇午夜| 一进一出抽搐gif免费好疼| 午夜福利欧美成人| 亚洲熟妇中文字幕五十中出| 国产精品女同一区二区软件 | 黄色配什么色好看| 亚洲专区中文字幕在线| 国产精品av视频在线免费观看| 露出奶头的视频| 午夜福利视频1000在线观看| 91精品国产九色| 99精品在免费线老司机午夜| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 在线观看一区二区三区| 床上黄色一级片| 久久天躁狠狠躁夜夜2o2o| 美女高潮的动态| 亚洲中文日韩欧美视频| 成人av一区二区三区在线看| 天堂动漫精品| 中国美女看黄片| 极品教师在线视频| 亚洲精华国产精华液的使用体验 | 久久久久国内视频| 校园春色视频在线观看| 欧美日本视频| 97碰自拍视频| 综合色av麻豆| 亚洲人成伊人成综合网2020| 欧美潮喷喷水| 日韩人妻高清精品专区| 亚洲内射少妇av| 日韩 亚洲 欧美在线| 久久久久久久久中文| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 免费搜索国产男女视频| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 亚洲精品日韩av片在线观看| 日韩强制内射视频| 很黄的视频免费| 亚洲午夜理论影院| 精品人妻偷拍中文字幕| 综合色av麻豆| 韩国av在线不卡| 日韩在线高清观看一区二区三区 | 国产国拍精品亚洲av在线观看| 欧美色视频一区免费| 免费观看精品视频网站| 在线观看av片永久免费下载| 国产精品一区二区三区四区久久| 欧美色视频一区免费| 午夜精品一区二区三区免费看| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 天美传媒精品一区二区| 国产人妻一区二区三区在| 日日夜夜操网爽| 91久久精品电影网| 亚洲精品色激情综合| 一本一本综合久久| 大又大粗又爽又黄少妇毛片口| 国产白丝娇喘喷水9色精品| av天堂在线播放| 极品教师在线免费播放| 一本一本综合久久| 国产色婷婷99| 成人国产一区最新在线观看| 久久久精品欧美日韩精品| 一级av片app| 日韩,欧美,国产一区二区三区 | 日韩欧美精品v在线| 亚洲最大成人av| 日韩亚洲欧美综合| 尤物成人国产欧美一区二区三区| 又紧又爽又黄一区二区| avwww免费| 一个人免费在线观看电影| 在线看三级毛片| 欧美日韩国产亚洲二区| 91午夜精品亚洲一区二区三区 | 亚洲av不卡在线观看| 亚洲专区中文字幕在线| 十八禁网站免费在线| 久久精品国产亚洲网站| 在线观看舔阴道视频| 亚洲欧美日韩无卡精品| 欧美黑人巨大hd| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 哪里可以看免费的av片| 无人区码免费观看不卡| 午夜视频国产福利| 国产精品无大码| 两个人视频免费观看高清| 亚洲天堂国产精品一区在线| 成年女人看的毛片在线观看| 久久久久久大精品| 国产69精品久久久久777片| 成年版毛片免费区| 亚洲精品色激情综合| 热99re8久久精品国产| 久久久久久久久久成人| 久久亚洲精品不卡| 男插女下体视频免费在线播放| 级片在线观看| 久久久久久九九精品二区国产| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 99热网站在线观看| 久久午夜亚洲精品久久| 亚洲人成网站高清观看| 日韩欧美国产一区二区入口| 嫩草影院精品99| 91麻豆av在线| 亚洲专区国产一区二区| 男女做爰动态图高潮gif福利片| 一边摸一边抽搐一进一小说| 日日夜夜操网爽| 国产三级在线视频| 久久6这里有精品| 国产综合懂色| 国内少妇人妻偷人精品xxx网站| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 国产视频内射| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 国产精华一区二区三区| 老师上课跳d突然被开到最大视频| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 如何舔出高潮| 国产视频一区二区在线看| 天堂√8在线中文| 最新在线观看一区二区三区| 色综合色国产| 欧美精品国产亚洲| 欧美3d第一页| 变态另类成人亚洲欧美熟女| 国产亚洲91精品色在线| 久久久国产成人精品二区| 成人特级黄色片久久久久久久| 变态另类丝袜制服| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 天堂动漫精品| 成熟少妇高潮喷水视频| 亚洲电影在线观看av| 俄罗斯特黄特色一大片| 黄色丝袜av网址大全| 成人国产一区最新在线观看| 嫩草影院新地址| 色av中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 3wmmmm亚洲av在线观看| 久久久久国内视频| 国产精品亚洲美女久久久| 国产免费av片在线观看野外av| 无人区码免费观看不卡| 在线观看66精品国产| 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片 | 欧美激情在线99| 久久久精品欧美日韩精品| 亚洲av电影不卡..在线观看| 动漫黄色视频在线观看| 国产精品精品国产色婷婷| 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 嫩草影院新地址| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 波多野结衣巨乳人妻| 丰满的人妻完整版| 免费搜索国产男女视频| 国产高清三级在线| 日本色播在线视频| 好男人在线观看高清免费视频| 国产精品99久久久久久久久| 长腿黑丝高跟| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 一个人观看的视频www高清免费观看| 亚洲精品456在线播放app | 久久久久久九九精品二区国产| 黄色女人牲交| 国产成人aa在线观看| 91久久精品电影网| 亚洲欧美清纯卡通| 国产精品一区www在线观看 | 窝窝影院91人妻| 精品人妻视频免费看| 久久国内精品自在自线图片| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 啪啪无遮挡十八禁网站| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 日本a在线网址| 级片在线观看| 亚洲成人中文字幕在线播放| 欧美xxxx性猛交bbbb| 全区人妻精品视频| 日韩欧美免费精品| 国内精品久久久久精免费| 少妇丰满av| 能在线免费观看的黄片| 国产老妇女一区| 观看美女的网站| 日韩欧美在线二视频| 亚洲av中文av极速乱 | 中文资源天堂在线| 欧美黑人欧美精品刺激| 亚洲欧美精品综合久久99| 色哟哟哟哟哟哟| 在线观看午夜福利视频| 亚洲无线观看免费| 久久精品影院6| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久一区二区三区 | 国产又黄又爽又无遮挡在线| 国产男靠女视频免费网站| 国内精品宾馆在线| 国产高清不卡午夜福利| 国产黄色小视频在线观看| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 中文字幕免费在线视频6| 又粗又爽又猛毛片免费看| 最后的刺客免费高清国语| 国产毛片a区久久久久| 少妇裸体淫交视频免费看高清| 精品久久久久久久人妻蜜臀av| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 午夜a级毛片| 亚洲欧美精品综合久久99| 无遮挡黄片免费观看| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 国内精品宾馆在线| 国语自产精品视频在线第100页| 99九九线精品视频在线观看视频| 国产激情偷乱视频一区二区| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 成人国产一区最新在线观看| 午夜免费激情av| 看免费成人av毛片| 超碰av人人做人人爽久久| 欧美高清成人免费视频www| 国产精品日韩av在线免费观看| 欧美潮喷喷水| 久久精品影院6| 欧美一级a爱片免费观看看| 九九久久精品国产亚洲av麻豆| 极品教师在线视频| 无遮挡黄片免费观看| 干丝袜人妻中文字幕| 亚洲自拍偷在线| av女优亚洲男人天堂| 国产免费一级a男人的天堂| 毛片女人毛片| 国产精品1区2区在线观看.| 欧美日韩乱码在线| 内射极品少妇av片p| 黄色视频,在线免费观看| 日韩在线高清观看一区二区三区 | 99riav亚洲国产免费| 成年版毛片免费区| 久久6这里有精品| 成人国产综合亚洲| 99久久无色码亚洲精品果冻| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性猛交╳xxx乱大交人| 日日摸夜夜添夜夜添av毛片 | 啦啦啦韩国在线观看视频| 亚洲自偷自拍三级| 成人综合一区亚洲| 高清日韩中文字幕在线| 老女人水多毛片| 亚洲av.av天堂| 国产在视频线在精品| 美女黄网站色视频| 久久人妻av系列| 天堂动漫精品| 99热精品在线国产| 欧美性猛交黑人性爽| 免费av观看视频| 嫩草影院精品99| 18+在线观看网站| 国产一区二区亚洲精品在线观看| 国内久久婷婷六月综合欲色啪| 最新中文字幕久久久久| 国内久久婷婷六月综合欲色啪| 日日撸夜夜添| 亚洲在线观看片| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 91久久精品国产一区二区三区| 欧美日本视频| 88av欧美| 亚洲不卡免费看| 一进一出好大好爽视频| 国内久久婷婷六月综合欲色啪| 亚洲精品一区av在线观看| 久9热在线精品视频| ponron亚洲| 久久久久性生活片| 99国产极品粉嫩在线观看| 97超级碰碰碰精品色视频在线观看| 村上凉子中文字幕在线|