• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the spectrum of a new join of two graphs

    2021-03-23 07:29:12LIUJianpingWUXianzhangCHENJinsong
    浙江大學學報(理學版) 2021年2期

    LIU Jianping,WU Xianzhang,CHEN Jinsong

    (College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China)

    Abstract:Given graphs G1 and G2,let E(G1)={e1,e2,…,em1} be the edge set of G1,the graph G1⊙G2 can be obtained from one copy of G1 and m1 copies of G2 by adding a new vertex corresponding to each edge of G1, letting the resulting new vertex set be U={u1,u2,…,um1}, and joining ui with each vertex of i-th copy of G2 and with the endpoints of ei,for i=1,2,…,m1.We can determine: (i) the adjacency spectrum of G1⊙G2 for G1,G2 are both regular graphs, or G1 is regular graph, but G2 is a complete bipartite graph; (ii) the Laplacian spectrum of G1⊙G2 when G1 is a regular graph and G2 is an arbitrary graph; (iii) the signless Laplacian spectrum of G1⊙G2 for both G1 and G2 are regular graphs.As applications, we construct infinitely many pairs of A-cospectral graphs, L-cospectral graphs and Q-cospectral graphs.and determine the number of spanning trees and the Kirchhoff index of G1⊙G2,where G1 is a regular graph.

    Key Words: spectrum;cospectral graphs;spanning trees;Kirchhoff index

    0 Introduction

    All graphs described in this paper are simple and undirect.LetGbe a connected graph with vertex setV(G)={v1,v2,…,vn} and edge setE(G)={e1,e2,…,em}.The adjacency matrix ofGisA(G)=(aij)n×n,withaij=1 ifviis adjacent tovj,andaij=0 otherwise.LetD(G)=diag(d1,d2,…,dn) be the diagonal matrix of vertex degrees ofG.The Laplacian matrix and the signless Laplacian matrix are defined asL(G)=D(G)?A(G) andQ(G)=D(G)+A(G),respectively.The characteristic polynomial ofA(G) is defined asfG(A:x)=det(xEn?A),whereEnis the identity matrix of ordern.The roots offG(A:x)=0 is called the eigenvalues ofG.The eigenvalues ofL(G) andQ(G) are called the Laplacian eigenvalues and the signless Laplacian eigenvalues (in short,L-eigenvalues orQeigenvalues) ofG, respectively.SinceA(G),L(G)andQ(G) are real symmetric matrices, their eigenvalues are all real numbers.Their eigenvalues are conventionally denoted and arranged asλ1(G)≥λ2(G)≥…≥λn(G),μ1(G)≥μ2(G)≥…≥μn(G)andγ1(G)≥γ2(G)≥…≥γn(G),respectively.The set of all the eigenvalues (L-eigenvalues orQeigenvalues) together with their multiplicities is called the spectrum (L-spectrum orQ-spectrum) ofG.GraphsG1andG2are calledA-cospectral (Lcospectra orQ-cospectral) if they have the same adjacency spectrum (L-spectrum orQ-spectrum).The incidence matrixR(G) ofGis a (0,1) matrix with rows indexed by vertices and column indexed by edges,whereRve=1 when the vertex is an endpoint of the edge,and 0 otherwise.Undefined terminology and notations may refer to paper [1].

    Spectral graph theory is a fast growing branch of algebraic graph theory and it concerns an interwind tale of properties of graphs and spectrum of related matrices.Calculating the spectra of graphs as well as formulating the characteristic polynomials of graphs is a fundamental and very meaningful work in spectra graph theory.The characteristic polynomial and spectra of graphs help to investigate some properties of graphs such as energy[2-3],the Kirchhoff index[4-6],the Laplacian-energy-like invarients[7-8]and so on.Until now,many graph operations such as the disjoint union,the corona,the edge corona and the neighbour corona have been introduced,and their spectrum are computed[9-15].For more results on spectral graph theory,see paper[16-17].

    In this paper,we define a new join of two graphs and determine the following:

    The adjacency spectrum ofG1⊙G2forG1,G2are regular graphs,and for a regular graphG1and a complete bipartite graphG2; the Laplacian spectrum ofG1⊙G2for a regular graphG1and an arbitrary graphG2; and the signless Laplacian spectrum ofG1⊙G2forG1,G2are regular graphs.

    As applications, we construct infinitely many pairs ofA-cospectral graphs,L-cospectral graphs andQ-cospectral graphs.Moreover, the number of spanning trees and the Kirchhoff index ofG1⊙G2are determined,whereG1is a regular graph.

    1 Preliminaries

    In this section, we define a new join of two graphsG1andG2and list some known results for later use.

    Definition 1Given graphsG1andG2withn1,n2vertices respectively, letE(G1)={e1,e2,…,em1} be the edge set ofG1,the graphG1⊙G2can be obtained from one copy ofG1andm1copies ofG2as follows.Firstly, we add a new vertex corresponding to each edge ofG1, the resulting new vertex setU={u1,u2,…,um1}.Then joinuiwith each vertex ofi-th copy ofG2and with the endpoints ofei, fori=1,2,…,m1.

    Note that the graphG1⊙G2in definition 1 containsn1+m1(n2+1) vertices.Consider the graphsG1=C4,G2=P3.Fig.1 describes the graphC4⊙P3.

    The symbols 0nand 1n(resp.,0m×nand 1m×n)denote the length-ncolumn vectors (resp.,m×nmatrices) consisting entirely of 0′s and 1′s respectively.The ΓA(x) of the square matrixAis defined to be the sum of entries of the matrix (xEn?A)?1[14].This can be calculated as ΓA(x)= 1T(xEn?A)?11.The Kronecker productA?Bof two matricesA=(aij)m×nandB=(bij)p×qis themp×nqmatrix which obtained fromAby replacing each elementaijbyaij B.

    Fig.1 Graph C4⊙P3

    Lemma 1[18]LetA,B,C,Dbe four arbitrary matrices, then the Kronecker product has the following properties:

    (i) If the productsACandBDexist, then(A?B)T=AT?BTand (A?B)(C?D) =AC?BD,

    (ii) IfAandBare nonsingular matrices, then(A?B)?1=A?1?B?1,

    (iii) IfAandBare square matrices of ordernandp,then det(A?B) =(detA)p(detB)n.

    Lemma 2[19]LetGbe anr-regular graph withnvertices andmedges,and letA,Rbe its adjacency matrix and incidence matrix, respectively, thenRRT=A+rEnandRTR=A(GL)+2Em, whereGLis the line graph ofG.

    Lemma 3[20]LetM1,M2,M3,M4bep×p, p×q,q×p,q×qmatrix, respectively, withM1andM4are invertible,then

    Lemma 4[14]LetGber-regular withnvertices and letAbe the adjacency matrix ofG,then

    Lemma 5[14]LetGbe the complete bipartite graphKp,qand letAbe the adjacency matrix ofG,then

    2 Spectrum of the graph G1⊙G2

    In this section,motivated by the above works,we determine the adjacency spectrum,the Laplacian spectrum and the signless Laplacian spectrum ofG1⊙G2.

    2.1 Adjacency spectrum of the graph G1⊙G2

    In this subsection,we present the characteristic polynomial and the adjacency spectrum ofG1⊙G2forG1,G2are regular graphs,and for a regular graphG1and a complete bipartite graphG2.Moreover, we construct infinitely many pairs ofA-cospectral graphs.

    Theorem 1LetGibe anri-regular withnivertices andmiedges,and letAi,Ribe the adjacency matrix and incidence matrix ofGifori=1,2,respectively.Then the characteristic polynomial of the adjacency matrixAofG1⊙G2is

    ProofBy a proper labelling of vertices, the adjacency matrixAofG1⊙G2can be written as

    It follows that the characteristic polynomial ofG1⊙G2is

    where

    By the Kronecker product properties,we have

    thus,we have

    then we get

    where

    then,we get

    It follows from the above argument,

    Directly from theorem 1,we have the following corollary.

    Corollary 1LetGibe anri-regular withnivertices andmiedges,letAibe the adjacency matrix ofGi,wherei=1,2.Then the adjacency spectrum ofG1⊙G2consists of

    (i)λi(A2),repeatedm1times fori=2,3,…,n2.

    (iii)Three roots of

    fori=1,2,…,n1.

    Theorem 2LetGbe anr1-regular withn1vertices andm1edges,letKp,qbe a complete bipartite graph withn2=p+qvertices, and letA,A1,A2be the adjacency matrix ofG⊙Kp,q,G,andKp,q,respectively,then

    ProofBy equation (1), we have

    SinceA2has eigenvalueswith multiplicity one, we yield the following equations:

    Directly from theorem 2, we have the following corollaries.

    Corollary 2LetGbe anr1-regular withn1vertices andm1edges,Kp,qbe a complete bipartite graph withn2vertices,and letA1,A2be the adjacency matrix ofGandKp,q,respectively,then the adjacency spectrum ofG⊙Kp,qconsists of

    (i)λi(A2), repeatedm1times fori=2,3,…,n2?1.

    (ii) Three roots ofx(x2?pq)?n2x?2pq=0,each root repeatedm1?n1times.

    (iii)Four roots of

    Corollary 3IfGis anr-regular graph,H1andH2areA-cospectral graphs withΓA(H1)(x) =ΓA(H2)(x), thenG⊙H1andG⊙H2areA-cospectral graphs.

    ProofBy equation (1),we have

    IfΓA(H1)(x) =ΓA(H2)(x), then

    Hence,G⊙H1andG⊙H2areA-cospectral graphs.

    2.2 Laplacian spectrum of the graph G1⊙G2

    In this subsection, we present the Laplacian characteristic polynomial and the Laplacian spectrum of the graphG1⊙G2,whereG1is a regular andG2is an arbitrary graph.Moreover, many pairs ofLcospectral graphs are constructed infinitely,also the number of spanning trees and the Kirchhoff index ofG1⊙G2for a regular graphG1are determined.

    Theorem 3LetG1be anr1-regular withn1vertices andm1edges,G2be an arbitrary graph withn2vertices andm2edges,and letLi,Ribe the Laplacian matrix and incidence matrix ofGifori=1,2,respectively,then

    ProofThe Laplacian matrixLofG1⊙G2can be written as

    then the Laplacian characteristic polynomial ofG1⊙G2is

    where

    thus,

    where

    SinceG1isr1-regular,2r1En1,thus,we have

    then,we get

    It follows from above argument,

    Since the Laplacian matrix ofG2has a constant row sum 0,we have.By direct calculation,we obtain

    SinceL2has an eigenvalue 0,thus

    Immediately from theorem 3, we have the following corollaries.

    Corollary 4LetG1be anr1-regular withn1vertices andm1edges,G2be an arbitrary graph withn2vertices andm2edges,and letLibe the Laplacian matrix ofGifori=1,2, respectively.Then the Laplacian spectrum ofG1⊙G2consists of

    (i) 1+μi(L2), repeatedm1times fori=1,2,…,n2?1.

    (iii)Three roots of

    Corollary 5IfGis anr-regular graph,andH1andH2areL-cospectral graphs withΓL(H1)(x?1)=ΓL(H2)(x?1), thenG⊙H1andG⊙H2areLcospectral graphs.

    ProofBy equation (2),we have

    then

    Hence,G⊙H1andG⊙H2areL-cospectral graphs.

    From the matrix-tree theorem[21],the number of spanning trees of a connected graphGwithnvertices is

    whereμ1(G),μ2(G),…,μn?1(G) are the non-zero Laplacian eigenvalues ofG.Recall thatμ1(G)μ2(G)…μn?1(G) is equal to the absolute value of the coefficient ofxin polynomialfG(L:x).As an application of theorem 3, we present the number of spanning trees for

    Corollary 6LetG1be anr1-regular graph withn1vertices andm1edges,G2be an arbitrary graph withn2vertices andm2edges,and letLibe the Laplacian matrix ofGifori=1,2,respectively.Then

    ProofUsing theorem 3 and the matrix-tree theorem,notice thatt(G1⊙G2) is a positive integer,we obtain

    The Kirchhoff index of a graphG,denoted byKf(G),is defined as the sum of resistance distances between all pairs of vertices[15,22].At almost exactly the same time,GUTMAN et al[23]and ZHU et al[24]proved that the Kirchhoff index of a connected graphGwithn(n≥2)vertices can be expressed as

    whereμ1(G),μ2(G),…,μn?1(G) are the non-zero Laplacian eigenvalues ofG.

    Now we consider the Kirchhoff index of the graphG1⊙G2.

    Corollary 7LetG1be anr1-regular connected graph withn1vertices andm1edges,G2be an arbitrary graph withn2vertices andm2edges,and letLibe the Laplacian matrix ofGifori=1,2,respectively.Then

    ProofRecall thatG1⊙G2hasn1+m1+m1n2vertices.By theorem 3,we obtain

    2.3 Signless Laplacian spectrum of the graph G1⊙G2

    Now we consider the signless Laplacian characteristic polynomial and the signless Laplacian spectrum ofG1⊙G2forG1andG2are regular graphs.Furthermore,we construct infinitely many pairs ofQcospectral graphs.

    Theorem 4Fori=1,2, letGibe anri-regular withnivertices andmiedges,and letQi,Ribe the signless Laplacian matrix and incidence matrix ofGi,respectively.Then,

    ProofThe signless Laplacian matrixQofG1⊙G2can be written as

    SinceG2isr2-regular,Q2has a constant row sum 2r2,thusBy direct calculation,we obtain that

    SinceQ2has an eigenvalue 2r2,which yields the following equations:

    Directly from theorem 4,we have the following corollaries.

    Corollary 8LetGibe anri-regular withnivertices andmiedges fori=1,2.Then the signless Laplacian spectrum ofG1⊙G2consists of

    (i) 1+γi(Q2), repeatedm1times fori=2,3,…,n2.

    (iii)Three roots of

    fori=1,2,…,n1.

    Corollary 9IfGis anr-regular graph,andH1andH2are theQ-cospectral graphs withΓQ(H1)(x?1)=ΓQ(H2)(x?1).ThenG⊙H1andG⊙H2areQ-cospectral graphs.

    ProofBy equation (3),we have

    IfΓQ(H1)(x?1)=ΓQ(H2)(x?1),then

    Hence,G⊙H1andG⊙H2areQ-cospectral graphs.

    精品熟女少妇av免费看| 人体艺术视频欧美日本| 久久久午夜欧美精品| 久久久久视频综合| 国产精品久久久久久av不卡| 国产精品蜜桃在线观看| 蜜桃久久精品国产亚洲av| 亚洲第一av免费看| 日韩欧美 国产精品| 色吧在线观看| 99久国产av精品国产电影| 纯流量卡能插随身wifi吗| 亚洲国产精品999| 亚洲激情五月婷婷啪啪| 在线观看国产h片| 乱系列少妇在线播放| 免费少妇av软件| 人体艺术视频欧美日本| xxx大片免费视频| 亚洲成人手机| 久久精品国产亚洲av天美| 在线精品无人区一区二区三| 少妇被粗大猛烈的视频| 亚洲国产精品一区三区| 国产一级毛片在线| 中文资源天堂在线| 男人舔奶头视频| 国产免费一级a男人的天堂| 另类精品久久| 国产乱来视频区| 国产乱来视频区| 精品亚洲成a人片在线观看| 18禁动态无遮挡网站| 黑人巨大精品欧美一区二区蜜桃 | 欧美人与善性xxx| 伦精品一区二区三区| 夫妻性生交免费视频一级片| 在线看a的网站| 国产精品国产三级专区第一集| 日本与韩国留学比较| 视频区图区小说| 亚洲国产欧美在线一区| 男女国产视频网站| 卡戴珊不雅视频在线播放| 2021少妇久久久久久久久久久| 建设人人有责人人尽责人人享有的| 国产乱来视频区| 国产色爽女视频免费观看| www.av在线官网国产| 日产精品乱码卡一卡2卡三| 在线观看三级黄色| 色婷婷av一区二区三区视频| 国产精品一区二区在线不卡| 丰满少妇做爰视频| 青春草国产在线视频| 欧美97在线视频| 久久久久久久久久人人人人人人| 久久99精品国语久久久| 免费久久久久久久精品成人欧美视频 | 免费高清在线观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 校园人妻丝袜中文字幕| 国产成人a∨麻豆精品| 亚洲内射少妇av| 欧美精品一区二区免费开放| 九色成人免费人妻av| 91精品伊人久久大香线蕉| 麻豆乱淫一区二区| 久久久久久久亚洲中文字幕| 免费看不卡的av| 国产一区二区三区综合在线观看 | 自拍欧美九色日韩亚洲蝌蚪91 | videos熟女内射| 国产精品不卡视频一区二区| 2022亚洲国产成人精品| 女人精品久久久久毛片| 欧美国产精品一级二级三级 | 尾随美女入室| 黄色日韩在线| 亚洲一区二区三区欧美精品| 伊人久久精品亚洲午夜| 午夜免费男女啪啪视频观看| 日韩在线高清观看一区二区三区| 日韩一区二区视频免费看| 欧美老熟妇乱子伦牲交| 免费看不卡的av| 日韩成人伦理影院| 国产黄片美女视频| 这个男人来自地球电影免费观看 | 国产伦在线观看视频一区| av福利片在线观看| 亚洲精品久久久久久婷婷小说| www.色视频.com| 黑人猛操日本美女一级片| 久久午夜福利片| 免费看日本二区| 日韩一区二区视频免费看| 中文字幕人妻丝袜制服| 亚洲美女视频黄频| 人人妻人人添人人爽欧美一区卜| 国产精品一区www在线观看| 另类精品久久| 高清毛片免费看| 尾随美女入室| 少妇人妻久久综合中文| 精品人妻熟女av久视频| 国产成人精品福利久久| 日韩三级伦理在线观看| 国产精品一二三区在线看| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线 | 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 少妇人妻 视频| 一区二区三区乱码不卡18| 久久久a久久爽久久v久久| 天堂中文最新版在线下载| 在线观看三级黄色| 麻豆乱淫一区二区| 亚洲av二区三区四区| 中国三级夫妇交换| 97精品久久久久久久久久精品| 久久精品熟女亚洲av麻豆精品| av天堂中文字幕网| 亚洲综合色惰| 欧美 亚洲 国产 日韩一| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 久久国内精品自在自线图片| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 免费人成在线观看视频色| 国产精品国产三级专区第一集| 久久99热这里只频精品6学生| 九九爱精品视频在线观看| 成年美女黄网站色视频大全免费 | 亚洲人与动物交配视频| 日韩成人伦理影院| 一级,二级,三级黄色视频| 中文字幕免费在线视频6| 成人无遮挡网站| 亚洲欧美日韩卡通动漫| 热99国产精品久久久久久7| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 少妇猛男粗大的猛烈进出视频| 狂野欧美白嫩少妇大欣赏| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 亚洲欧美精品专区久久| 免费久久久久久久精品成人欧美视频 | 91精品伊人久久大香线蕉| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验| 日韩中字成人| 2021少妇久久久久久久久久久| 赤兔流量卡办理| av福利片在线| 国产美女午夜福利| 欧美最新免费一区二区三区| 久久久久人妻精品一区果冻| 日本91视频免费播放| 久久免费观看电影| 好男人视频免费观看在线| 久久狼人影院| 国产午夜精品久久久久久一区二区三区| 啦啦啦视频在线资源免费观看| 又黄又爽又刺激的免费视频.| 久久免费观看电影| 午夜老司机福利剧场| av专区在线播放| 久久国产乱子免费精品| 久久久久网色| 看十八女毛片水多多多| 午夜久久久在线观看| 香蕉精品网在线| 免费观看在线日韩| 国产高清有码在线观看视频| 日韩一区二区视频免费看| 精品久久久久久久久亚洲| 国产亚洲精品久久久com| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 青春草国产在线视频| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 我要看日韩黄色一级片| 中文字幕亚洲精品专区| 久久av网站| 亚洲精品日韩av片在线观看| 嫩草影院入口| 国产欧美日韩一区二区三区在线 | 欧美精品国产亚洲| 99热这里只有是精品在线观看| .国产精品久久| 丰满乱子伦码专区| 国产深夜福利视频在线观看| 国产黄频视频在线观看| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 一级毛片电影观看| tube8黄色片| av在线观看视频网站免费| 午夜老司机福利剧场| 亚洲精品一二三| 色婷婷av一区二区三区视频| 韩国av在线不卡| 精品国产一区二区三区久久久樱花| 欧美国产精品一级二级三级 | 国产男女内射视频| 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜91福利影院| 久久亚洲国产成人精品v| 色吧在线观看| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av涩爱| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 伊人亚洲综合成人网| 99久久综合免费| 另类亚洲欧美激情| 亚洲自偷自拍三级| 乱人伦中国视频| 婷婷色麻豆天堂久久| 最后的刺客免费高清国语| 亚洲无线观看免费| 男女边吃奶边做爰视频| 国产一区有黄有色的免费视频| 黄片无遮挡物在线观看| 少妇 在线观看| 成人亚洲欧美一区二区av| 国产高清国产精品国产三级| 美女中出高潮动态图| 人人妻人人澡人人看| 99热6这里只有精品| av天堂中文字幕网| 嫩草影院新地址| a级一级毛片免费在线观看| 少妇人妻 视频| 日韩一区二区三区影片| 国内少妇人妻偷人精品xxx网站| 久久韩国三级中文字幕| 日日摸夜夜添夜夜添av毛片| 久久久久视频综合| 久久精品国产a三级三级三级| 国产精品国产三级专区第一集| 美女cb高潮喷水在线观看| 久久精品国产鲁丝片午夜精品| 老司机影院毛片| 精品久久国产蜜桃| 午夜影院在线不卡| 亚洲天堂av无毛| 人妻少妇偷人精品九色| 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 亚洲无线观看免费| 国产视频首页在线观看| 久久久久久久亚洲中文字幕| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 一本大道久久a久久精品| 亚洲欧美日韩东京热| 色哟哟·www| 精品亚洲乱码少妇综合久久| 亚洲欧美精品专区久久| a级毛色黄片| 欧美日韩一区二区视频在线观看视频在线| 国产成人a∨麻豆精品| 亚洲性久久影院| 一级a做视频免费观看| 国产乱人偷精品视频| 国产午夜精品久久久久久一区二区三区| 中文乱码字字幕精品一区二区三区| 亚洲av二区三区四区| 天堂8中文在线网| 亚洲丝袜综合中文字幕| 777米奇影视久久| 国产乱人偷精品视频| 69精品国产乱码久久久| 免费看av在线观看网站| 只有这里有精品99| 99热6这里只有精品| 欧美最新免费一区二区三区| 五月玫瑰六月丁香| av不卡在线播放| 三上悠亚av全集在线观看 | 在线观看国产h片| 成人二区视频| 成人亚洲精品一区在线观看| 亚州av有码| 97精品久久久久久久久久精品| 黄色配什么色好看| 欧美激情国产日韩精品一区| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| h视频一区二区三区| 只有这里有精品99| 国模一区二区三区四区视频| 日韩av免费高清视频| 亚洲精品国产av成人精品| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 午夜激情久久久久久久| 免费看av在线观看网站| 色网站视频免费| 免费久久久久久久精品成人欧美视频 | 一级毛片久久久久久久久女| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线| 国国产精品蜜臀av免费| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 国产日韩一区二区三区精品不卡 | 成年人午夜在线观看视频| 久久av网站| 日本vs欧美在线观看视频 | 男女边摸边吃奶| 黄色毛片三级朝国网站 | 大片电影免费在线观看免费| a级毛色黄片| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 狂野欧美激情性bbbbbb| 老司机影院毛片| 一级a做视频免费观看| 亚洲国产成人一精品久久久| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 亚洲国产欧美日韩在线播放 | 美女cb高潮喷水在线观看| 人人妻人人爽人人添夜夜欢视频 | 五月天丁香电影| 亚洲在久久综合| av免费在线看不卡| 99热6这里只有精品| 夫妻性生交免费视频一级片| 国产精品欧美亚洲77777| 熟妇人妻不卡中文字幕| 交换朋友夫妻互换小说| av在线播放精品| 亚洲人成网站在线观看播放| 最黄视频免费看| 曰老女人黄片| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 在线观看www视频免费| av.在线天堂| 一级毛片久久久久久久久女| 观看免费一级毛片| 中文欧美无线码| 美女cb高潮喷水在线观看| 人人妻人人爽人人添夜夜欢视频 | 黄色视频在线播放观看不卡| 久久久久久久久久久免费av| 一级毛片电影观看| av在线老鸭窝| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 十八禁网站网址无遮挡 | 你懂的网址亚洲精品在线观看| 午夜老司机福利剧场| 欧美日韩综合久久久久久| av国产久精品久网站免费入址| 人人妻人人澡人人爽人人夜夜| 男男h啪啪无遮挡| 伦理电影大哥的女人| 少妇猛男粗大的猛烈进出视频| 国产精品.久久久| 热re99久久国产66热| 女性生殖器流出的白浆| 最后的刺客免费高清国语| 插逼视频在线观看| 99久国产av精品国产电影| 高清黄色对白视频在线免费看 | 深夜a级毛片| 亚洲成人一二三区av| 街头女战士在线观看网站| 国产亚洲一区二区精品| 观看av在线不卡| 在线亚洲精品国产二区图片欧美 | 久久韩国三级中文字幕| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 国产女主播在线喷水免费视频网站| 国产精品久久久久久精品电影小说| 亚洲av欧美aⅴ国产| 简卡轻食公司| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 新久久久久国产一级毛片| 日韩大片免费观看网站| 日韩精品免费视频一区二区三区 | 亚洲精品久久久久久婷婷小说| 国产视频内射| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 国产伦精品一区二区三区视频9| 国产在线一区二区三区精| 七月丁香在线播放| 成年女人在线观看亚洲视频| 我要看日韩黄色一级片| 久久久久国产网址| 国语对白做爰xxxⅹ性视频网站| 天堂中文最新版在线下载| 简卡轻食公司| 国产午夜精品久久久久久一区二区三区| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 男人爽女人下面视频在线观看| 老司机影院毛片| 高清欧美精品videossex| 两个人的视频大全免费| a级毛色黄片| 五月伊人婷婷丁香| 97在线人人人人妻| 久久人人爽人人爽人人片va| 国产精品国产av在线观看| 一级毛片久久久久久久久女| 人人妻人人澡人人爽人人夜夜| 一本大道久久a久久精品| 午夜福利网站1000一区二区三区| 99热这里只有是精品在线观看| 国产熟女午夜一区二区三区 | 精品国产一区二区三区久久久樱花| 国产精品久久久久成人av| 两个人的视频大全免费| 久久精品久久久久久久性| 精品国产乱码久久久久久小说| av黄色大香蕉| √禁漫天堂资源中文www| a级片在线免费高清观看视频| 久久99热6这里只有精品| 欧美国产精品一级二级三级 | 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 中文欧美无线码| 久热久热在线精品观看| 九九久久精品国产亚洲av麻豆| 国产亚洲av片在线观看秒播厂| 国产精品免费大片| 一个人看视频在线观看www免费| 99久久综合免费| 亚洲欧美一区二区三区黑人 | 国产极品粉嫩免费观看在线 | 中国美白少妇内射xxxbb| 久久97久久精品| 欧美区成人在线视频| 国产精品熟女久久久久浪| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美一区视频在线观看 | 99精国产麻豆久久婷婷| 国产美女午夜福利| 日韩中字成人| 免费少妇av软件| 精品久久久久久久久av| 国产探花极品一区二区| 亚洲国产最新在线播放| 一级,二级,三级黄色视频| 香蕉精品网在线| 我的女老师完整版在线观看| 国产在线男女| 啦啦啦中文免费视频观看日本| 99精国产麻豆久久婷婷| 97精品久久久久久久久久精品| av免费观看日本| av黄色大香蕉| 伦理电影免费视频| 十八禁网站网址无遮挡 | 婷婷色麻豆天堂久久| 中文字幕亚洲精品专区| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜添av毛片| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 在线观看www视频免费| 国产一区二区在线观看av| 伊人久久国产一区二区| 九九久久精品国产亚洲av麻豆| 自线自在国产av| 777米奇影视久久| 18+在线观看网站| 免费观看无遮挡的男女| 国产成人精品无人区| 妹子高潮喷水视频| 久久久久精品久久久久真实原创| 丝袜在线中文字幕| 亚洲欧美一区二区三区黑人 | 午夜日本视频在线| 成人无遮挡网站| av有码第一页| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| av国产久精品久网站免费入址| 日韩人妻高清精品专区| 狠狠精品人妻久久久久久综合| 国产亚洲91精品色在线| 日本黄色日本黄色录像| 久久久久网色| 精品久久久久久久久亚洲| 国产日韩欧美在线精品| 欧美日韩视频高清一区二区三区二| 国产白丝娇喘喷水9色精品| 中文乱码字字幕精品一区二区三区| 日本av免费视频播放| tube8黄色片| 久久综合国产亚洲精品| 欧美三级亚洲精品| 欧美3d第一页| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 高清欧美精品videossex| 国产精品成人在线| 国产一区有黄有色的免费视频| 免费大片18禁| 亚洲第一区二区三区不卡| 欧美丝袜亚洲另类| 亚洲自偷自拍三级| 日本黄色日本黄色录像| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 在线观看免费高清a一片| 国产亚洲精品久久久com| 欧美日本中文国产一区发布| 91在线精品国自产拍蜜月| 国产成人freesex在线| 成人漫画全彩无遮挡| 亚洲在久久综合| 少妇猛男粗大的猛烈进出视频| 亚洲av二区三区四区| 插阴视频在线观看视频| 欧美三级亚洲精品| 国产精品久久久久久精品电影小说| 91久久精品电影网| 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| 亚洲精品中文字幕在线视频 | 男女国产视频网站| 麻豆成人av视频| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 国产老妇伦熟女老妇高清| 天天躁夜夜躁狠狠久久av| 久久99热6这里只有精品| 国产熟女午夜一区二区三区 | h视频一区二区三区| 国产精品一区二区在线不卡| 十八禁网站网址无遮挡 | 免费av不卡在线播放| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 超碰97精品在线观看| 亚洲怡红院男人天堂| 男女无遮挡免费网站观看| 激情五月婷婷亚洲| 亚洲欧美日韩东京热| 六月丁香七月| 自拍偷自拍亚洲精品老妇| 国产成人精品一,二区| 91在线精品国自产拍蜜月| 久久久久久久久久久久大奶| 99久久人妻综合| 国产日韩一区二区三区精品不卡 | 国产午夜精品久久久久久一区二区三区| 国产成人精品一,二区| 日日爽夜夜爽网站| 午夜日本视频在线| 又黄又爽又刺激的免费视频.| 免费观看性生交大片5| av网站免费在线观看视频| 国产乱人偷精品视频| 在线观看美女被高潮喷水网站| 我的老师免费观看完整版| 亚洲不卡免费看| 欧美性感艳星| 成人毛片60女人毛片免费| 亚洲美女搞黄在线观看| 久久久精品94久久精品| 国产有黄有色有爽视频| 久久久久久久大尺度免费视频| 激情五月婷婷亚洲| 亚洲电影在线观看av| 晚上一个人看的免费电影| 丰满乱子伦码专区| 你懂的网址亚洲精品在线观看| 久久久久久久大尺度免费视频| 伦理电影免费视频| 午夜福利在线观看免费完整高清在| 国产欧美日韩一区二区三区在线 | 欧美3d第一页| 日本猛色少妇xxxxx猛交久久| 欧美日韩综合久久久久久| 嘟嘟电影网在线观看| 国产精品欧美亚洲77777| 夜夜看夜夜爽夜夜摸| 欧美 日韩 精品 国产| 亚洲欧洲精品一区二区精品久久久 | 另类亚洲欧美激情| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 中文字幕人妻熟人妻熟丝袜美| 免费av中文字幕在线| www.av在线官网国产| av不卡在线播放|