• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers?

    2021-03-11 08:34:22YongLi李勇XiaoMingLi李曉明RuiTingHao郝瑞亭JieGuo郭杰YuZhuang莊玉SuNingCui崔素寧GuoShuaiWei魏國帥XiaoLeMa馬曉樂GuoWeiWang王國偉YingQiangXu徐應強ZhiChuanNiu牛智川andYaoWang王耀
    Chinese Physics B 2021年2期

    Yong Li(李勇), Xiao-Ming Li(李曉明), Rui-Ting Hao(郝瑞亭),?, Jie Guo(郭杰),Yu Zhuang(莊玉), Su-Ning Cui(崔素寧), Guo-Shuai Wei(魏國帥),Xiao-Le Ma(馬曉樂), Guo-Wei Wang(王國偉),?, Ying-Qiang Xu(徐應強),Zhi-Chuan Niu(牛智川), and Yao Wang(王耀)

    1School of Energy and Environment Science,Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology of the Ministry of Education,Yunnan Normal University,Kunming 650092,China

    2Key Laboratory for SLs and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    3Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    4National Center for International Research on Green Optoelectronics,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology,Institute of Electronic Paper Displays,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China

    Keywords: compound buffers,AlInSb/GaSb,defect inhibition,InSb,molecular beam epitaxy(MBE)

    1. Introduction

    In the III–V group material system, InSb has attracted wide attention due to its high electron mobility,narrow direct band gap, and low effective mass.[1–6]After years of development, it has become an important material for the fabrication of 3μm–5μm infrared detector.[7,8]At present,there are many ways to growth InSb materials, and the InSb epitaxial thin films fabrication by MBE has become one of the preferred methods due to the advantages of high uniformity,in-situ doping,real-time control,and no need of thinning.[9,10]The selection of GaAs substrate materials with semi-insulating and high resistance provides convenient conditions for the fabrication of InSb optoelectronic devices,and also makes InSb materials in infrared focal plane array detectors easier to mix with siliconbased charge couplers for interconnection.[11,12]However,the main challenges in the epitaxial growth of InSb on GaAs substrate is that the lattice mismatch of 14.6% between the two materials will lead to large surface roughness and high dislocation density,and the structure and electrical properties of the epitaxial materials will be affected in varying degrees.[13]According to the literatures,high-quality InSb thin films are usually fabrication by two-step growth,and high-quality materials are also obtained by using other buffer layers structure.[14–16]In addition,in recent years,attention has been paid to adding AlInSb to InSb materials to improve the overall electrical performance of InSb. For example, AlInSb is added to InSb as a barrier layer to reduce the dark current and improve the operating temperature of the device.[17–20]Therefore, AlInSb is used as a buffer layer to suppress the defects caused by lattice mismatch and provide a reference for the integration of AlInSb/InSb materials.

    In this paper, high-quality GaSb layer is grown by MBE method on GaAs substrate, and then the epitaxial AlInSb buffer layer with similar InSb lattice. The compound buffer layer is designed to release the strain caused by lattice mismatch between substrate and epitaxial layer, and explore the effect of AlInSb interface layer structure on defect density. At last,InSb thin films were grown onto compound buffer layers,the obtained structures were also studied.

    2. Experimental details

    The equipment used in this experiment is GEN-II molecular beam epitaxy system produced by Veeco,and using GaAs SI as substrate. The substrate was pre degassed at 200?C and 400?C respectively to remove residual water molecules before growth,and then degassed at 800?C for 15 min in the growth chamber to remove the oxide on the substrate surface. After that, the temperature was reduced to 700?C and the 300-nm GaAs buffer layer was deposited to cover the residual oxide to flatten the substrate surface. Then, 600-nm GaSb buffer layer was deposited at Tc(GaSb surface reconstruction conversion temperature) +60?C and 0.25-ML/s condition, and 2 μm AlInSb buffer layer with different interface structures was deposited onto the GaSb layer as the compound buffer layer afterwards:

    (B1): Gradient layer buffer Al0.35In0.65Sb(500 nm)/Al0.25In0.75Sb (1.5 μm) with high Al component interlayer.

    (B2): A three-period superlattice interlayer buffer of [Al0.35In0.65Sb (83 nm)/Al0.15In0.85Sb (83 nm)]×3/Al0.25In0.75Sb(1.5μm).

    Finally,3-μm InSb thin films were further grown onto the buffer layer structure of samples B1and B2at Tcbeing 5?C and 0.6-ML/s condition, and denoted as samples C1and C2.Meanwhile,InSb thin film sample C3without buffer layer was also grown as the reference group. The evolution process of surface morphology was observed. The detailed structure of samples is illustrated in Fig.1. In the whole epitaxial process,the growth parameters we adopted were optimized according to Ref. [21] in order to ensure the material quality. The parameters include growth rate, substrate temperature (material growth temperature),and III–V beam flux ratio.

    The surface morphology and defects of samples were studied by using Digital S-II nano Navi atomic force microscope (AFM) and optical microscope. The crystal quality was identified by high resolution x-ray diffraction(HRXRD).RHEED is used for in-situ monitoring the growth process and calibrating the reconstruction conversion temperature Tcof GaSb surface(Fig.2).

    Fig.1. Schematic representation of heterostructure growth of the InSb thin films structure with various structures of each layer.

    Fig.2. RHEED diagram of GaSb epilayer surface with nucleation stage and reconstruction conversion occurred(from 2×5 to 1×3).

    3. Results and discussion

    Figure 3 shows the AFM morphology of the GaSb buffer layer on GaAs substrate, and the surface presents a typical pyramid-like structure, which has been reported in the previous investigate.[22,23]The scale of pyramid-like structures in the 10μm×10μm range has continuous changes. Careful observation on the junction of the adjacent great pyramid-like structures (in Fig.3 (10 μm×10 μm)) was conducted to reveal the feature of the small pyramid-like structures outcrops,which are the results of spiral growth and accumulation of atoms around threading dislocations. In the range of 2 μm×2 μm, the pyramid-like structures on the surface of GaSb epitaxial layer presents a terrace-like sidewall with atomic steps, and there are interrupted atomic steps at the side wall,which is also a feature of threading dislocations outcrops. At the same time,large strain is exiting at the intersection of the adjacent pyramid-like sidewalls. When 2-μm AlInSb buffer layer was grown on GaSb surface, the pyramid-like structure was replaced by a flat surface with atomic step stripes, indicating that AlInSb buffer layer interrupted the propagation of most threading dislocations. However,different AlInSb buffer layers still show different effects on defect suppression.

    Fig.3. AFM surface morphologies of the GaSb buffer grown on GaAs substrates with different scanning ranges.

    The AFM images in Fig.4 shows the comparison of morphologies characteristics of the AlInSb/GaSb compound buffer layer with different interface structures. The results shows that the size and density of edge dislocation are related to the structure of AlInSb interface layer.AFM images of sample B1revealed that the edge dislocations on its surface terminate the continuity of atomic arrangement. The edge dislocation may be caused by the sliding and extending of the stacking fault under the extrusion of the pyramid-like sidewalls on the GaSb surface, and vertically across the AlInSb interface to the epitaxial layer surface. At the same time, due to some threading dislocations crossing the interface layer, atoms spiral grown around it form a hillock,which is a typical form of defects caused by lattice mismatch. Compared with sample B1, sample B2presents a smoother surface with lower defect density, small average height and diameter. The results show that the superlattice buffer layer can effectively release the internal strain of epitaxial materials and reduce the structural defects.

    Fig.4. AFM surface morphology of AlInSb compound buffer layer(2μm×2 μm) with (B1) high Al content AlInSb as interface layer, (B2) AlInSb superlattice as interface layer.

    In order to determine the strain relaxation mechanism of buffer layer and the residual strain in epitaxial layer,TEM tests were carried out to study the interface of samples B1and B2.The types and distribution of dislocations in the buffer layer were well characterized. Due to the small difference in the composition of AlInSb interface layer,the delamination structure of AlInSb interface was not observed in TEM images,but the effect of interface layer can be evaluated according to defect distribution. As shown in Fig.5,there are a large number of dislocations in sample B1. A series of complex dislocation types cross the interface layer and extend to the epitaxial layer. Among them,most of the 60?dislocations form closed dislocation loops in the buffer layer and annihilate each other.Therefore,the 90?edge dislocation is dominant,and some of them are generated at the top of epitaxial layer.This is also the main source of edge dislocation in Fig.4. It is demonstrated that the relaxation process in the initial 500-nm interface layer of AlInSb has not completed, and the epitaxial material still has large strain and produces new edge dislocations. Compared with sample B1, sample B2presents different strain relaxation mechanisms,and the defects are mainly concentrated in the initial 500-nm interface layer, and low density dislocations were observed at the top of AlInSb buffer layer, which indicated that the continuous SL structure with elastic strain interrupted the propagation of dislocations,a large number of dislocations were annihilated in the growth process, and the rapid relaxation of AlInSb buffer layer was achieved. The results of TEM show that the introduction of superlattice structure is beneficial to the overall function of the buffer layer design.

    Fig.5.TEM spectrum of AlInSb compound buffer layer(2μm×2μm)with(B1)high Al content AlInSb as interface layer, (B2)AlInSb superlattice as interface layer.

    Based on the optimized results of buffer layer,3-μm InSb thin films were further grown onto the buffer layer structures of samples B1and B2respectively. The evolution process of surface morphology was observed.

    Figure 6 shows the AFM surface morphology of InSb thin films sample. Sample C1adopts the buffer layer structure of sample B2. At the same time, it also inherits the generation mode of edge dislocation in sample B2, and intensifies the size of edge dislocation. Its surface is filled with a large number of edge dislocation and uneven mound with obvious layered step structure. The surface roughness(RMS)is 0.57 nm(2 μm×2 μm). For the sample C2with superlattice buffer layer, its presented a smoother surface morphology without obvious mound and edge dislocation characteristics, indicating that a large number of defects were suppressed while the processes of buffer layer growth, and the surface roughness(RMS) is as low as 0.18 nm (2 μm×2 μm). Compared with the surface of InSb thin film directly epitaxial on GaAs substrate (sample C3), we can find that the addition of buffer layer greatly improves the epitaxial quality of InSb thin film.When InSb sample is directly epitaxed on GaAs substrates, a large number of edge dislocations are found on the surface of InSb sample, and the surface roughness (RMS) is as high as 1.30 nm(2μm×2μm). It is indicated that the large mismatch InSb functional layer is not completely relaxed,which results in the deformation of epitaxial layer under the strain. This kind of defect destroyed the continuity of the material structure, and also formed a high-speed channel for electrons and holes,which seriously restricts the performance of the device.The surface distinction of three groups of samples shows the importance of buffer layer for heteroepitaxial growth,and also shows the influence of the difference of buffer layer structures design on material growth.

    Similar to the evolution of AFM surface morphology,the optical microscope results of samples also show the defect change(Fig.7). Samples C1and C2have similar mound-like surface morphology,but sample C1has higher mound density under the same observation multiple. However, the surface state of sample C3is completely different,and there are more fracture-lines under the action of strain,which is also the main feature of the edge dislocation in AFM.

    Gathering the results of AFM, HRXRD diffraction(Fig.8)carried out for the three groups of samples,the similar conclusions were obtained. The results of HRXRD diffraction patterns could reflect the difference of material quality.InSb sample C2with superlattice buffer has the optimum crystal quality,and the FWHM of InSb diffraction peak is 248 arcsec.For sample C1with high Al-content interface buffer layer,the crystallization quality is slightly worse than that of sample C2,and the FWHM of InSb diffraction peak is 392 arcsec.The C3samples without buffer layer show the worst crystallization quality. The InSb diffraction peak in HRXRD diffraction pattern shows a wide bulge,and the FWHM is up to 525 arcsec.

    In order to further determine the quality of InSb thin films,four probe electrical Hall tests were carried out on three groups of samples (C1, C2, C3) with different buffer structures. The results are shown in Table 1. Compared with Table 1 (C2) and other samples, it can be seen that sample C2with superlattice buffer layer has the highest electron mobility of 5.91×104cm2/V·s at room temperature (300 K), and ptype transition occurs at low temperature(77 K).The electrical properties of sample C1are slightly lower than that of sample C2, but the electron mobility decreases abnormally from 300 K (5.14×104cm2/V·s) to 77 K (5.00×102cm2/V·s),which has been reported in many literatures.[24]The electron mobility of C3is the lowest one at room temperature(300 K),the value is 1.17×104cm2/V·s, and the test results are abnormal at 77 K. Hall test results show that the introduction of superlattice buffer layer can improve the overall electrical properties of InSb thin films.

    Fig.6. AFM surface morphology of InSb thin film sample (2 μm×2 μm) with (C1) high Al content AlInSb as interface layer, (C2) AlInSb superlattice as interface layer,(C3)directly epitaxial InSb thin films on GaAs substrates.

    Fig.7. Optical microscope spectrum of InSb thin film sample (133 μm×100 μm) with (C1) high Al content AlInSb as interface layer, (C2)AlInSb superlattice as interface layer,(C3)directly epitaxial InSb thin films on GaAs substrates.

    Fig.8. High-resolution x-ray diffraction of InSb thin films specimens with(C1)high Al component AlInSb as interface layer,(C2)AlInSb superlattice as interface buffer layer,(C3)directly epitaxial InSb thin film on GaAs substrates.

    Table 1. Hall characterization of InSb samples with different buffer layers.

    4. Conclusions

    A compound buffer layer of InSb heterostructure has been successfully grown on GaAs(001)substrate.The buffer layers consist of GaSb layer as the first intermediate buffer layer and AlInSb layer as the second intermediate buffer layer.The morphology of GaSb buffer layer is a typical pyramid-like structure. AFM and TEM images of the buffer layer confirm the effective dislocation filtering effect by introducing superlattice buffer layer into AlInSb buffer layer. The RMS roughness of the InSb thin film surface with superlattice buffer structure is 0.18 nm, and the FWHM of HRXRD diffraction peak is 248 arcsec. Besides, the electron mobility at room temperature (300 K) reaches 5.91×104cm2/V·s. These results indicate that the InSb thin films grown on this type of buffer layer has the best material quality.

    久久热精品热| 露出奶头的视频| www.www免费av| 欧美中文日本在线观看视频| 欧美+日韩+精品| 日韩一本色道免费dvd| 夜夜夜夜夜久久久久| av黄色大香蕉| 女同久久另类99精品国产91| www日本黄色视频网| 精品久久久久久久久av| 成年人黄色毛片网站| 内地一区二区视频在线| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 深爱激情五月婷婷| 又爽又黄无遮挡网站| 看黄色毛片网站| 1000部很黄的大片| 麻豆国产97在线/欧美| 国产亚洲av嫩草精品影院| 极品教师在线视频| 亚洲成av人片在线播放无| 国产高潮美女av| 亚洲精品色激情综合| 亚洲精华国产精华精| 一级av片app| 搡老熟女国产l中国老女人| 又粗又爽又猛毛片免费看| 国产av不卡久久| 久久午夜亚洲精品久久| 窝窝影院91人妻| 身体一侧抽搐| 久久久久久国产a免费观看| 亚洲最大成人手机在线| 日韩大尺度精品在线看网址| 不卡一级毛片| 久久久久久大精品| 干丝袜人妻中文字幕| 搡老熟女国产l中国老女人| 婷婷精品国产亚洲av在线| 国产一区二区在线av高清观看| 日韩亚洲欧美综合| 99久久精品一区二区三区| 我的老师免费观看完整版| 免费不卡的大黄色大毛片视频在线观看 | 少妇熟女aⅴ在线视频| 免费看a级黄色片| 91久久精品国产一区二区三区| 在线免费十八禁| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 男女做爰动态图高潮gif福利片| 我要搜黄色片| 国产精品伦人一区二区| 亚洲经典国产精华液单| 99热只有精品国产| 精品一区二区三区视频在线| 免费av观看视频| 久久久午夜欧美精品| 琪琪午夜伦伦电影理论片6080| 国产人妻一区二区三区在| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 欧美精品国产亚洲| 午夜激情欧美在线| 欧美绝顶高潮抽搐喷水| 丰满的人妻完整版| 久久九九热精品免费| 中文在线观看免费www的网站| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 男女视频在线观看网站免费| 国产又黄又爽又无遮挡在线| 亚洲电影在线观看av| 精品乱码久久久久久99久播| 性色avwww在线观看| 午夜久久久久精精品| 亚洲中文字幕日韩| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 亚洲av五月六月丁香网| 丰满的人妻完整版| 日本欧美国产在线视频| netflix在线观看网站| 嫩草影视91久久| 亚洲最大成人av| 久久精品国产亚洲网站| 又黄又爽又免费观看的视频| 丰满人妻一区二区三区视频av| 亚洲最大成人手机在线| netflix在线观看网站| 国产精品无大码| 99国产精品一区二区蜜桃av| 久久人妻av系列| 国内精品美女久久久久久| 九色成人免费人妻av| 能在线免费观看的黄片| 欧美激情国产日韩精品一区| www.色视频.com| 一本久久中文字幕| 午夜日韩欧美国产| 欧美bdsm另类| 久9热在线精品视频| 免费一级毛片在线播放高清视频| 日韩欧美精品v在线| 69人妻影院| 亚洲男人的天堂狠狠| 在线观看66精品国产| 99久久中文字幕三级久久日本| 性色avwww在线观看| 天堂网av新在线| 国产精品综合久久久久久久免费| 超碰av人人做人人爽久久| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 老熟妇乱子伦视频在线观看| 国产av不卡久久| 久久精品国产亚洲网站| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 一进一出抽搐动态| 伦理电影大哥的女人| 五月伊人婷婷丁香| videossex国产| 久久久精品大字幕| 亚洲国产精品sss在线观看| 日本爱情动作片www.在线观看 | 成年版毛片免费区| 变态另类丝袜制服| 中文字幕免费在线视频6| 欧美区成人在线视频| 长腿黑丝高跟| 亚洲欧美精品综合久久99| 网址你懂的国产日韩在线| 国产蜜桃级精品一区二区三区| 男插女下体视频免费在线播放| 国产成人一区二区在线| 88av欧美| 成人二区视频| 人妻夜夜爽99麻豆av| 综合色av麻豆| 国产av一区在线观看免费| 国产极品精品免费视频能看的| 欧美日韩中文字幕国产精品一区二区三区| 极品教师在线视频| 99久久久亚洲精品蜜臀av| 极品教师在线免费播放| 又黄又爽又刺激的免费视频.| 亚洲精品亚洲一区二区| 波多野结衣高清作品| 可以在线观看的亚洲视频| 欧美日韩国产亚洲二区| 欧美黑人欧美精品刺激| 成人二区视频| 亚洲成人久久性| 免费观看人在逋| 日本在线视频免费播放| 久久久午夜欧美精品| 成人午夜高清在线视频| a级一级毛片免费在线观看| 午夜福利高清视频| 亚洲国产精品成人综合色| 最近最新中文字幕大全电影3| 国产高清视频在线播放一区| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 日本五十路高清| 毛片一级片免费看久久久久 | 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产 | 免费观看的影片在线观看| 真人做人爱边吃奶动态| 一区福利在线观看| 少妇人妻精品综合一区二区 | 国产久久久一区二区三区| 精品一区二区三区av网在线观看| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 级片在线观看| 两个人的视频大全免费| 美女大奶头视频| 国产欧美日韩精品亚洲av| 亚洲精华国产精华精| 亚洲在线自拍视频| 国产高潮美女av| 成人特级av手机在线观看| 男人的好看免费观看在线视频| 久久久久性生活片| 精品久久久久久久人妻蜜臀av| 欧美+亚洲+日韩+国产| 日本精品一区二区三区蜜桃| 欧美成人一区二区免费高清观看| 国产中年淑女户外野战色| 国产综合懂色| 18+在线观看网站| 免费观看在线日韩| 亚洲成人中文字幕在线播放| 综合色av麻豆| 美女 人体艺术 gogo| 欧美一级a爱片免费观看看| 精品不卡国产一区二区三区| www.色视频.com| 18禁裸乳无遮挡免费网站照片| 婷婷丁香在线五月| 日本熟妇午夜| 久久国产乱子免费精品| 免费看美女性在线毛片视频| 久9热在线精品视频| 午夜日韩欧美国产| 老熟妇仑乱视频hdxx| 国内毛片毛片毛片毛片毛片| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 久久久久久伊人网av| 午夜激情欧美在线| 麻豆久久精品国产亚洲av| 91在线精品国自产拍蜜月| 欧美最黄视频在线播放免费| 久久久久久久久大av| 亚洲人成伊人成综合网2020| 精品一区二区三区人妻视频| 中国美女看黄片| 小蜜桃在线观看免费完整版高清| 日本精品一区二区三区蜜桃| 高清在线国产一区| 黄片wwwwww| 熟女人妻精品中文字幕| 永久网站在线| 久久久久国内视频| 国产精品一区二区三区四区免费观看 | 欧美日韩中文字幕国产精品一区二区三区| 九色国产91popny在线| 无遮挡黄片免费观看| 真人一进一出gif抽搐免费| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久大精品| 免费人成在线观看视频色| 热99在线观看视频| 又爽又黄无遮挡网站| 国产精品一区二区性色av| av视频在线观看入口| 看片在线看免费视频| 久久久久久伊人网av| 欧美3d第一页| 99久久久亚洲精品蜜臀av| 毛片一级片免费看久久久久 | 少妇的逼好多水| 99热这里只有精品一区| 午夜影院日韩av| 日本欧美国产在线视频| 欧美日韩综合久久久久久 | 波多野结衣巨乳人妻| 欧美bdsm另类| 久久草成人影院| 国产乱人视频| 精品欧美国产一区二区三| 亚洲色图av天堂| 嫩草影院精品99| 亚洲在线观看片| avwww免费| 亚洲人成伊人成综合网2020| 日本免费一区二区三区高清不卡| 免费观看的影片在线观看| 黄色一级大片看看| 国内毛片毛片毛片毛片毛片| 免费av观看视频| 天堂动漫精品| 老师上课跳d突然被开到最大视频| 91av网一区二区| 国产精品一区www在线观看 | 99热这里只有是精品在线观看| 国产一级毛片七仙女欲春2| 欧美zozozo另类| 少妇的逼水好多| 88av欧美| 九色国产91popny在线| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 久久香蕉精品热| 久久6这里有精品| 赤兔流量卡办理| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情福利司机影院| 国产精品一区二区性色av| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 最近视频中文字幕2019在线8| 日韩大尺度精品在线看网址| 精品午夜福利在线看| 久久精品国产亚洲av天美| 亚洲欧美日韩无卡精品| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 变态另类成人亚洲欧美熟女| 99久久无色码亚洲精品果冻| 成人国产综合亚洲| 岛国在线免费视频观看| 天天一区二区日本电影三级| 嫩草影院新地址| 亚洲成av人片在线播放无| 床上黄色一级片| 黄色丝袜av网址大全| 黄片wwwwww| 成人鲁丝片一二三区免费| 久久欧美精品欧美久久欧美| x7x7x7水蜜桃| av天堂在线播放| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 日本 欧美在线| 国产精品99久久久久久久久| 久久久久久大精品| 欧美高清成人免费视频www| 99在线人妻在线中文字幕| av在线老鸭窝| 精品午夜福利在线看| 乱码一卡2卡4卡精品| 亚洲美女视频黄频| 日本在线视频免费播放| 国产精品久久久久久精品电影| 91麻豆av在线| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 18禁黄网站禁片免费观看直播| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 久久草成人影院| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 99精品久久久久人妻精品| 国产午夜福利久久久久久| 99riav亚洲国产免费| 网址你懂的国产日韩在线| 69av精品久久久久久| 欧美+日韩+精品| 深爱激情五月婷婷| 日韩国内少妇激情av| 观看美女的网站| 日日摸夜夜添夜夜添av毛片 | 国产毛片a区久久久久| 亚洲av一区综合| 色5月婷婷丁香| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 国产一区二区亚洲精品在线观看| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 91狼人影院| 乱人视频在线观看| 久久精品国产亚洲av涩爱 | 国产成人福利小说| 国产在线男女| 18禁在线播放成人免费| 欧美人与善性xxx| 在线观看美女被高潮喷水网站| 国产精品亚洲美女久久久| 国内毛片毛片毛片毛片毛片| 亚洲最大成人中文| 亚洲aⅴ乱码一区二区在线播放| 黄色配什么色好看| 一个人观看的视频www高清免费观看| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 亚洲色图av天堂| 嫩草影院入口| 九九在线视频观看精品| 亚洲欧美清纯卡通| 亚洲一区二区三区色噜噜| 日本欧美国产在线视频| 国内少妇人妻偷人精品xxx网站| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 两人在一起打扑克的视频| 午夜影院日韩av| 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 国产精品一及| 精品国内亚洲2022精品成人| 久久久久久大精品| 内射极品少妇av片p| 日日干狠狠操夜夜爽| 99久久九九国产精品国产免费| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 午夜爱爱视频在线播放| 国产男靠女视频免费网站| 女人被狂操c到高潮| 亚洲精品成人久久久久久| 在线看三级毛片| 国产精品无大码| 欧美成人免费av一区二区三区| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆 | 深爱激情五月婷婷| 伊人久久精品亚洲午夜| 乱人视频在线观看| 天堂av国产一区二区熟女人妻| 麻豆国产97在线/欧美| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 中出人妻视频一区二区| 色综合亚洲欧美另类图片| 乱码一卡2卡4卡精品| 国产高清视频在线观看网站| 亚洲中文日韩欧美视频| 嫩草影院新地址| 成年版毛片免费区| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 一级黄片播放器| 精品人妻视频免费看| 亚洲avbb在线观看| 亚洲av免费在线观看| 成人一区二区视频在线观看| 舔av片在线| 天天一区二区日本电影三级| 亚洲精品久久国产高清桃花| 91久久精品电影网| 国产视频内射| 久久这里只有精品中国| 免费观看精品视频网站| a级毛片a级免费在线| 色5月婷婷丁香| 99国产精品一区二区蜜桃av| 日本黄色视频三级网站网址| 无人区码免费观看不卡| 深夜a级毛片| 亚洲美女搞黄在线观看 | 天天躁日日操中文字幕| 又黄又爽又免费观看的视频| 校园人妻丝袜中文字幕| 一进一出好大好爽视频| 免费看av在线观看网站| 国产爱豆传媒在线观看| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 18禁在线播放成人免费| 免费观看精品视频网站| 99热网站在线观看| 精品欧美国产一区二区三| 国语自产精品视频在线第100页| 超碰av人人做人人爽久久| 欧美丝袜亚洲另类 | 日韩欧美一区二区三区在线观看| 国产成人av教育| 一区二区三区激情视频| 69人妻影院| 91狼人影院| 他把我摸到了高潮在线观看| 美女cb高潮喷水在线观看| 色5月婷婷丁香| 国产精品自产拍在线观看55亚洲| 亚洲在线自拍视频| 91麻豆精品激情在线观看国产| 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 精品午夜福利视频在线观看一区| 欧美日韩精品成人综合77777| 三级毛片av免费| 成人国产一区最新在线观看| 国产精品嫩草影院av在线观看 | 国产精品福利在线免费观看| 欧美丝袜亚洲另类 | 成人鲁丝片一二三区免费| av天堂在线播放| 国产精品一区www在线观看 | 99在线视频只有这里精品首页| 亚洲成人免费电影在线观看| 一区二区三区免费毛片| 一个人看的www免费观看视频| 岛国在线免费视频观看| 搞女人的毛片| 免费观看人在逋| 欧美人与善性xxx| 一级毛片久久久久久久久女| 久久久久久久久中文| 亚洲无线在线观看| 午夜视频国产福利| 色综合站精品国产| 日韩一区二区视频免费看| 99热只有精品国产| 久久人妻av系列| 色综合亚洲欧美另类图片| 亚洲第一电影网av| 99久久精品热视频| 精品人妻一区二区三区麻豆 | 亚洲精品一区av在线观看| 极品教师在线视频| 欧美精品国产亚洲| 少妇熟女aⅴ在线视频| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 高清在线国产一区| 日韩强制内射视频| 在线a可以看的网站| 亚洲人与动物交配视频| 国产精品av视频在线免费观看| 99精品在免费线老司机午夜| 欧美成人性av电影在线观看| 免费在线观看影片大全网站| 久久久国产成人精品二区| 久久中文看片网| 在线播放无遮挡| 成人无遮挡网站| 神马国产精品三级电影在线观看| 国产久久久一区二区三区| 亚洲国产欧美人成| 看十八女毛片水多多多| 国产麻豆成人av免费视频| 精品国产三级普通话版| 可以在线观看毛片的网站| 丝袜美腿在线中文| 在线观看av片永久免费下载| 日韩欧美在线二视频| 亚洲av日韩精品久久久久久密| 免费无遮挡裸体视频| 人妻少妇偷人精品九色| 搡女人真爽免费视频火全软件 | 国产乱人伦免费视频| 乱系列少妇在线播放| 一区福利在线观看| 亚洲中文日韩欧美视频| videossex国产| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久久久久| 狂野欧美激情性xxxx在线观看| 一级黄色大片毛片| 无人区码免费观看不卡| 欧美bdsm另类| 啦啦啦观看免费观看视频高清| 制服丝袜大香蕉在线| av天堂中文字幕网| 在线免费十八禁| 国产真实伦视频高清在线观看 | 在线免费观看的www视频| 色综合婷婷激情| 色播亚洲综合网| 国产极品精品免费视频能看的| 少妇人妻精品综合一区二区 | 精品人妻一区二区三区麻豆 | 精品乱码久久久久久99久播| 久久久久久久久中文| 欧美在线一区亚洲| 国产女主播在线喷水免费视频网站 | 日韩精品有码人妻一区| 国内精品久久久久精免费| 免费大片18禁| 麻豆成人av在线观看| 欧美xxxx性猛交bbbb| 一a级毛片在线观看| 国内精品久久久久精免费| 免费看美女性在线毛片视频| 九九在线视频观看精品| 很黄的视频免费| 久久精品国产亚洲av香蕉五月| 美女被艹到高潮喷水动态| 69人妻影院| 永久网站在线| 又爽又黄无遮挡网站| 精品午夜福利在线看| 欧美激情国产日韩精品一区| 亚洲欧美清纯卡通| 少妇人妻一区二区三区视频| 日韩欧美国产在线观看| 亚洲最大成人av| 国产熟女欧美一区二区| 亚洲欧美激情综合另类| 久久婷婷人人爽人人干人人爱| 99精品在免费线老司机午夜| 岛国在线免费视频观看| av在线蜜桃| 91精品国产九色| 波多野结衣高清作品| 免费看光身美女| 国产人妻一区二区三区在| 国产一区二区在线观看日韩| 国产激情偷乱视频一区二区| av视频在线观看入口| 国产女主播在线喷水免费视频网站 | 久久精品国产鲁丝片午夜精品 | 夜夜看夜夜爽夜夜摸| 91麻豆av在线| 淫秽高清视频在线观看| 亚洲第一区二区三区不卡| 精品99又大又爽又粗少妇毛片 | 国产高清不卡午夜福利| 久久久国产成人精品二区| 国产精品三级大全| 在线观看免费视频日本深夜| 极品教师在线视频| 露出奶头的视频| 欧美日韩黄片免| 久久精品国产亚洲av天美| 免费观看人在逋| 精品人妻偷拍中文字幕| 国产色爽女视频免费观看| 免费人成视频x8x8入口观看| 国产男靠女视频免费网站| 免费人成在线观看视频色| 性色avwww在线观看| 午夜福利欧美成人| 日日摸夜夜添夜夜添av毛片 |