• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 ?C?

    2021-03-11 08:34:20SiChengLiu劉思成XiaoYanTang湯曉燕QingWenSong宋慶文HaoYuan袁昊YiMengZhang張藝蒙YiMenZhang張義門andYuMingZhang張玉明
    Chinese Physics B 2021年2期

    Si-Cheng Liu(劉思成), Xiao-Yan Tang(湯曉燕),3,Qing-Wen Song(宋慶文),3,?, Hao Yuan(袁昊),Yi-Meng Zhang(張藝蒙), Yi-Men Zhang(張義門),3, and Yu-Ming Zhang(張玉明),3

    1Key Laboratory of Wide Band Gap Semiconductor Materials and Devices,Xidian University,Xi’an 710071,China

    2School of Microelectronics,Xidian University,Xi’an 710071,China

    3XiDian-WuHu Research Institute,WuHu 241000,China

    Keywords: junction field-effect transistors,high temperature,4H-SiC,depletion-mode

    1. Introduction

    Aerospace, automotive, energy production, and other industrial systems are calling for electronics that can operate reliably in harsh environments, including high temperatures (above 300?C).[1]Due to the large bandgap, silicon carbide (SiC) materials not only shine in the field of highpower devices,[2–4]but also attract much attention for devices which can operate under harsh environment.[5]Over the past decade, significant progress has already been made in the high-temperature devices and integrated circuits(ICs). Hightemperature ICs based on metal-oxide-semiconductor fieldeffect transistors(MOSFETs),[6,7]bipolar junction transistors(BJTs),[8,9]and junction field-effect transistors (JFETs)[10,11]have already been reported. High stability of threshold(VTH)within a wide temperature range and being free from oxide reliability problem give JFET based ICs very high robustness for harsh environment applications. Packaged 4HSiC JFET-based logic ICs with two level interconnects are reported.[12]So far, 4H-SiC lateral trench JFETs (LTJFETs)operating at 450?C have also been developed for harsh environment applications.[13]More recently, for reducing power loss, 400?C normally-on and normally-off operation of nchannel and p-channel junction field-effect transistors(JFETs)or complementary JFET(CJFET)fabricated by ion implantation into a common high-purity semi-insulating silicon carbide(SiC)substrate has been demonstrated.[14,15]

    Expect for LTJFETs and CJFETs, the most common reported JFET ICs are based on 4H-SiC p-type wafer, and the backside metallization to the p-type substrate facilitates more direct control of the electrical potential of the p-type epilayer immediately beneath the JFET n-channel.[10–12]However,the backside contact needs extra diffusion barrier metallization(such as TaSi2/Pt metallization) to prevent the migration of bond pad Au and atmospheric oxygen toward the ohmic contact/SiC interface, otherwise devices will lose their backside contact in high temperature environment.[16,17]What’s more,the inter-metallic mixing between the introduced diffusion barrier system and the underlying ohmic contact metallization is another dominant failure mechanism at high temperature. It will reduce the challenges of high temperature packaging and long-term stability of ICs by bringing the back-side body contact to front side, as shown in Fig.1. In this work, 4H-SiC n-channel LJFETs based on n-type wafer are demonstrated to operate with well-behaved characteristics at temperatures ranging from room temperature to 400?C.

    2. Device fabrication

    Figure 1 shows the schematic cross section of a fabricated 4H-SiC lateral JFET structure. The devices were fabricated using customer-ordered heavily doped n-type 4H-SiC wafers with three different epi-layers. The thickness and doping concentration of individual epilayers are given in Fig.1.The fabrication process starts from the dry etching of the p+gate finger mesa structure with depth of 0.3 μm by inductively coupled plasma(ICP)etching. Then,to reduce the gateto-source and gate-to-drain series resistance (RS/D), nitrogen(N) ions are implanted with a box profile. To achieve better source/drain ohmic contact,high temperature nitrogen implant is also used to form the n+contact area to the source and drain,with doses of 7.3×1014, 5.7×1014and 4.0×1014cm?2, respectively. Then the second ICP etching with depth of 0.8μm was performed to form the active region and to isolate the devices. In order to form p+ohmic contact region in the bulk layer, a series of high temperature aluminum (Al+) implants were also performed with doses of 8.6×1014, 5.6×1014and 3.3×1014cm?2,respectively. The implantation annealing was performed at 1700?C for 30 min with carbon film protection.After sacrificial oxidation,the surface passivation was accomplished by a three-hour oxidation process at 1100?C,followed by a 1-μm PECVD SiO2layer. After the surface passivation layer opening, a 200 nm nickel (Ni) thin layer was sputtered in the contact regions and annealed to form the metal ohmic contacts. An 800-nm-thick layer of Al was deposited and patterned to form the metal interconnects. Finally,4-μm-thick Al metal was patterned for the pad. Figures 2(a) and 2(b) show the layout(not including the pad layer)and the optical image of a fabricated 4H-SiC lateral JFET with gate length L=6μm and gate width W =120μm. All the metal contacts are protected by the surface passivation layer for better device operating lifetime.

    Fig.1. Schematic cross section of the fabricated 4H-SiC lateral JFET device.

    The electrical properties of the devices were measured on-chip using a probe station(Cascade MPS150)and a digital ceramic hot plate to heat the samples from room temperature to 400?C in air. A semiconductor parameter analyzer (Agilent B1500A)was used to measure the current–voltage(I–V)characteristics of the devices. At each temperature point, the LJFET device and adjacent TLM structures are tested together.

    Fig.2. (a)Layout and(b)optical micrograph of a fabricated device of a typical JFET with L=6μm and W =120μm.

    3. Results and discussion

    3.1. Ohmic contact characteristics at high temperature

    Ohmic contact is a key step in achieving highperformance SiC LJFETs.In this work,on-wafer transmission line measurement (TLM) structures (consisting of six identical metal pads with area of 150×150 μm2and spacing d of 20, 40, 60, 80, 100μm)were used to extract specific contact resistance ρcand sheet resistance RSH.

    The TLM structure in Fig.3(a)was used to measure the ρcof the Ni n+/p+contact (given n+contact resistance Rc)and the sheet resistance RSH.n+of the n+layer (given n+region resistance Rn+). The TLM structure in Fig.3(b)was used to measure the sheet resistance RSH.nof the light nitrogen(N)implanted layer (given gate-to-drain/gate-to-source series resistance RS/D). Figure 3(c) shows each extrinsic resistance component’s contribution to the parasitic resistance RParaof the device.

    Figure 4(a) shows the 25?C on-wafer TLM I–V characteristics of both source/drain n-type and gate p-type ohmic contacts, along with the corresponding TLM fitting curves.For the source/drain n-type contacts,the ρcand the RSH.n+are 6.29×10?5Ω·cm2and 0.53 kΩ/□,respectively. For the gate p-type ohmic contact, the eliminate of the metallic contact’s Schottky barrier is beneficial for reducing the gate series resistance. The ρcand the RSHfor the gate p-type ohmic contact are 3.19×10?4Ω·cm2and 16.40 kΩ/□,respectively.

    Figure 4(b)shows the on-wafer TLM I–V curves at different temperatures with contact spacing d=20μm. It is shown that both n-type and p-type contacts remain excellent ohmic behavior at temperature up to 400?C. At 400?C, due to increasing average electron kinetic energy,the n-type contacts ρcreduce to 3.95×10?6Ω·cm2. For the p-type ohmic contacts,the ρcslightly increases to 8.86×10?4Ω·cm2. Since the gate current is very small, it is enough to meet the demand. This result indicates that the employed metallic contact scheme can simultaneously form ohmic contact to both source/drain ntype and gate p-type regions with excellent high-temperature Ohmic characteristics up to 400?C.

    Fig.3. Schematic of TLMs to measure(a)ρc between Ni metal and n+/p+ 4H-SiC along with the corresponding Rc, and RSH.n+ along with the corresponding Rn+. (b)Light doped N layer RSH.n along with the corresponding RS/D. (c)Schematic of extrinsic resistance components.The contributions to and equation for RPara are also given.

    Fig.4. On-chip TLM I–V measurements of the source/drain n-type and gate p-type ohmic contacts characteristics: (a) 25 ?C I–V curves and TLM fitting curves(inset),(b)I–V curves at different temperatures with spacing d=20μm.

    As described above in the device fabrication section, to minimize the gate-to-source and gate-to-drain series resistance influence, a light doped n-type layer between the gate and source/drain has been created using N+implantation. As shown in Fig.5(a),at room temperature this light n-type layer sheet resistance RSH.nis extracted from on-wafer TLM to be 2.83 kΩ/□,and much greater than n+source/drain layer sheet resistance RSH.n+of 0.53 kΩ/□. Compared with the reported light n-type layer sheet resistance data,[18]RSH.nin our work is effectively reduced by optimization of the dose of light nitrogen implants. As temperature increases to 400?C,the higher the doping concentration,the lower the dopant activation,and the ionized dopant concentration increase is compensated for by the mobility lowering,[19]therefore RSH.ngradually increases to 9.44 kΩ/□while RSH.n+swings to 0.48 kΩ/□.

    Fig.5.Variation of(a)RSH for n+and n layer,(b)RPara and contribution of each component at different temperatures.

    According to Fig.5(b), RParaof 17.56 kΩ·μm is obtained at 25?C, which is mainly contributed by RS/Dof 14.14 kΩ·μm, and the contribution of Rcto the total RParais only 10.41%. As temperature increases to 400?C,RParaincreases to 47.18 kΩ·μm and the contribution of Rcdecreases to 0.89%, which is dominated by the increase of RS/D. This result indicates that the light nitrogen implantation process is a very critical step for fabrication SiC JFETs in high temperature applications.

    3.2. Electrical characterization at high temperature

    Figures 6(a) and 6(b) show the typical drain-to-source current versus drain-to-source voltage(IDS–VDS)curves(output characteristics) of the fabricated 4H-SiC LJFET at room temperature and 400?C. The drain IDS–VDScharacteristics were measured at a body-to-source (VBS) bias of 0 V and a gate-to-source(VGS)bias of ?8 to 0 V with ?1 V steps. It can be seen that the fabricated 4H-SiC LJFET shows good transistor performance. At 25?C,this fabricated LJFET conducts 23.03μA/μm drain-to-source saturation current IDsatat VDSof 20 V,and VGSof 0 V,corresponding to a very large drain current density JDSof 7678 A/cm2by considering that the channel layer is 300 nm and the channel width is 120μm(for a crosssectional area of 3.6×10?7cm2). At 400?C, the developed device remains good transistor performance. As temperature increases to 400?C, IDsatdecreases to 7.47 μA/μm, which is mainly caused by the decrease of electron mobility with increasing temperature.

    Fig.6. Typical measured drain IDS–VDS curves(output characteristics)for VBS=0 V(a)at 25 ?C and 400 ?C,and(b)for VGS=0 V at different temperatures of the fabricated 4H-SiC LJFET with L=6 μm and W =120μm at 25 ?C.

    On-resistance Ronof the fabricated device is extracted at VDSof 0.5 V,VGSand VBSof 0 V.As shown in Fig.7,at room temperature,Ronis extracted to be 130.15 kΩ·μm,and mainly contributed by channel resistance RChanof 95.03 kΩ·μm or 73.02%. RParaof 17.56 kΩ·μm is contributed by Ronof only 13.49%. Considering RS/Dof the devices without light nitrogen implants can be estimated to be at least 79 kΩ·μm(it is assumed that the thickness and doping concentration in the gate-to-drain/gate-to-source region is the same as that in the channel region). RS/Dis significantly reduced by the adopted light nitrogen implants,thus RParais reduced greatly.As temperature increases to 400?C, caused by electron mobility lowering, Ronand RChanincrease up to 499.24 kΩ·μm and 401.14 kΩ·μm,respectively. The contribution of RParais around 10%within the measured temperature range(13.19%–9.28% at 25–250?C, respectively). This result indicates that RParais effectively reduced by the applied ohmic contacts and light nitrogen implants.

    Fig.7. Variation of Ron at different temperatures. The contributions to Ron and the equation are also given.

    Fig.8. Measured typical drain IDS–VGS curves(transfer characteristics)of the fabricated 4H-SiC LJFET with L=6 μm and W =120 μm at different temperatures for VSUB=0 V and VDS=20 V.

    Figure 8 shows the typical transfer characteristics of the fabricated 4H-SiC LJFET at different temperatures for VDS=20 V and VBS=0 V. The VTHis extracted to be ?5.31 V, at 25?C. At 400?C, the VTHdecreases to ?7.06 V, which is affected by the decrease of built-in voltage and the increase of effective channel thickness.[20]The off-state current Iofffor VGS=?8 V and VDS=20 V is 2.44×10?3mA at room temperature, and increases up to 6.23×10?3mA as temperature increases to 400?C, due to the increasing intrinsic carrier concentration.[21]Ioffis significantly larger than the value theoretically predicted. The excessive Ioffis also reported by NASA.[22,23]We surmise that Ioffis caused by unexpected process failure,and further studies of this problem,which are well beyond the scope of this work,are warranted.

    In the typical design of JFET ICs,VBSis not always biased at 0 V. As shown in Figs. 9(a) and 9(b), the JFET I–V curves have a dependence on the applied VBS,because the VBSmodifies the width of the depletion region at the p–n junction,decreasing the effective conducting channel thickness.At room temperature,as VBSdecreases to ?20 V,IDsatdecreases to 14.75μA/μm and VTHincreases to ?3.75 V.At 400?C,for VBS=?20 V, IDsatis 4.45 μA/μm and VTHis ?4.50 V. This result together with Fig.8 indicates that this device remains effective,and the normally-on operation under tested temperature and bias range is beneficial for circuit applications.

    Fig.9. (a) The typical measured drain IDS–VDS curves at 25 ?C and 400 ?C for VGS = 0 V (output characteristics), and (b) the IDS–VGS curves for VDS = 20 V, with different VBS of the fabricated 4H-SiC LJFET for L=6μm and W =120μm.

    As shown in Fig.10, the value of transconductance gmis extracted from the measured transfer characteristics by?IDsat/?VGSand normalized to the channel width of 120μm.The intrinsic transconductance gm.intis calculated using the equation shown in Fig.10. At 25?C, gmof 8.61 μS/μm for VGS=0 V is among the highest value in the reported devices with the similar structure.[11]The corresponding gm.int=10.14μS/μm indicates that the reduction caused by the RParais 15.12%. As temperature increases to 400?C,gmand gm.intgradually reduce to 2.35 and 2.66 μS/μm, respectively. The reduction caused by RParais around 10% at different temperatures (15.12%–11.61% at 25?C and 300?C, respectively).This result indicates that the improved gmis mainly due to the reduction of RPara.

    Fig.10. The temperature dependence of gm and gm.int for the fabricated 4H-SiC LJFET at VGS=0 V with L=6μm and W =120μm.

    As is shown in Fig.11, at room temperature, the output resistance r0is 5.01×104Ω,corresponding to an intrinsic gain gmr0of 51.79. Considering today’s silicon CMOS technology, gmr0of short-channel devices is between roughly 5 and 10,[24]it fully meets the demands. As temperature increases to 400?C,gmr0slightly decreases to 41.35 because the reduction in gmwith increasing temperature is compensated for by the increase of r0. These results indicate that the developed 4H-SiC LJFET is promising for high temperature electronic applications.

    Fig.11. The temperature dependence of the normalized 4H-SiC LJFET performance parameters for VGS=0 V.

    4. Conclusion and perspectives

    Lateral depletion-mode 4H-SiC n-channel JFETs have been demonstrated to perform well at temperatures up to 400?C. The gate-to-source parasitic resistance is reduced to 17.56 kΩ·μm by optimized light N+implantation process,which is helpful for improving the transconductance up to 8.61 μS/μm at room temperature. At 400?C, the transconductance and intrinsic gain remain 2.35 μS/μm and 41.35.This work demonstrates that the developed 4H-SiC JFETs are promising for applications in high-temperature environments.

    精品少妇久久久久久888优播| 插阴视频在线观看视频| 亚洲人与动物交配视频| 夜夜爽夜夜爽视频| 久久久国产精品麻豆| 超色免费av| 一级a做视频免费观看| 热re99久久国产66热| 亚洲精品成人av观看孕妇| 中文字幕人妻熟人妻熟丝袜美| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 男女高潮啪啪啪动态图| 国产日韩欧美视频二区| 亚洲无线观看免费| 亚洲精品乱码久久久久久按摩| 国产一区亚洲一区在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 熟女人妻精品中文字幕| 精品人妻在线不人妻| 欧美三级亚洲精品| 国产亚洲欧美精品永久| 亚洲国产色片| 赤兔流量卡办理| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 午夜福利影视在线免费观看| 欧美一级a爱片免费观看看| 国产av码专区亚洲av| 少妇人妻 视频| 久久99热这里只频精品6学生| 99热全是精品| 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 日韩强制内射视频| 热re99久久精品国产66热6| 午夜免费男女啪啪视频观看| 天天躁夜夜躁狠狠久久av| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| av黄色大香蕉| 人体艺术视频欧美日本| 草草在线视频免费看| 黄色怎么调成土黄色| 午夜激情福利司机影院| 久久久精品区二区三区| 久久精品国产亚洲av涩爱| 伦理电影大哥的女人| 亚洲精品视频女| 国产亚洲午夜精品一区二区久久| 美女国产高潮福利片在线看| 在线观看一区二区三区激情| 伦精品一区二区三区| 欧美人与善性xxx| 中文字幕精品免费在线观看视频 | 一本—道久久a久久精品蜜桃钙片| 七月丁香在线播放| 亚洲综合色惰| 亚洲,一卡二卡三卡| 老司机亚洲免费影院| 久久99热6这里只有精品| 国产在线一区二区三区精| 老女人水多毛片| 国产色爽女视频免费观看| 日本欧美视频一区| 亚洲国产毛片av蜜桃av| 天天影视国产精品| 免费人成在线观看视频色| 99国产精品免费福利视频| 大香蕉久久成人网| 国产av国产精品国产| 亚洲成人一二三区av| 麻豆成人av视频| 国产精品无大码| 黑人欧美特级aaaaaa片| 精品99又大又爽又粗少妇毛片| 五月开心婷婷网| 人人妻人人澡人人看| 日日爽夜夜爽网站| 熟妇人妻不卡中文字幕| 满18在线观看网站| 国产精品欧美亚洲77777| 午夜激情av网站| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| 国产亚洲av片在线观看秒播厂| 99国产综合亚洲精品| 亚洲av男天堂| 五月天丁香电影| 一级毛片aaaaaa免费看小| 男的添女的下面高潮视频| a级毛片免费高清观看在线播放| 久久久久国产精品人妻一区二区| 欧美人与善性xxx| 五月伊人婷婷丁香| 午夜福利影视在线免费观看| 青春草视频在线免费观看| 永久免费av网站大全| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人久久小说| 人妻一区二区av| 亚洲天堂av无毛| 中文字幕av电影在线播放| 久久久久久人妻| 波野结衣二区三区在线| 午夜久久久在线观看| 免费黄色在线免费观看| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 日本欧美国产在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费黄网站久久成人精品| 欧美日本中文国产一区发布| 国产成人91sexporn| 婷婷色综合www| 欧美精品高潮呻吟av久久| 人妻夜夜爽99麻豆av| 亚洲内射少妇av| 一边摸一边做爽爽视频免费| 亚洲中文av在线| 日韩制服骚丝袜av| a级毛片黄视频| 久久久精品免费免费高清| 国产极品天堂在线| 亚洲美女视频黄频| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 日韩av在线免费看完整版不卡| 777米奇影视久久| 成年人午夜在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线观看99| 极品人妻少妇av视频| 最后的刺客免费高清国语| 亚洲欧美色中文字幕在线| 久久久久久久久久久久大奶| 人人妻人人添人人爽欧美一区卜| 九九爱精品视频在线观看| 国产男女超爽视频在线观看| 多毛熟女@视频| 亚洲精品日韩av片在线观看| 久久99热这里只频精品6学生| 自线自在国产av| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 女性被躁到高潮视频| 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| 久久青草综合色| 如何舔出高潮| 日本免费在线观看一区| 久久ye,这里只有精品| 国产白丝娇喘喷水9色精品| 国产一区二区三区av在线| 久久韩国三级中文字幕| 精品视频人人做人人爽| 国产欧美日韩综合在线一区二区| 简卡轻食公司| 久久久久久久久久久免费av| 丰满乱子伦码专区| 亚洲精品一区蜜桃| freevideosex欧美| 国模一区二区三区四区视频| 尾随美女入室| 啦啦啦在线观看免费高清www| 一级黄片播放器| 欧美激情极品国产一区二区三区 | 亚洲情色 制服丝袜| 熟女电影av网| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 国产午夜精品久久久久久一区二区三区| av国产精品久久久久影院| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 美女内射精品一级片tv| 国产不卡av网站在线观看| 国产熟女午夜一区二区三区 | 高清黄色对白视频在线免费看| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 久久精品人人爽人人爽视色| 少妇的逼好多水| 三级国产精品片| 岛国毛片在线播放| a级毛片免费高清观看在线播放| 中文字幕制服av| 成年美女黄网站色视频大全免费 | 国产成人freesex在线| 成人国产av品久久久| av网站免费在线观看视频| 综合色丁香网| av在线app专区| 国产永久视频网站| 美女内射精品一级片tv| 午夜福利,免费看| 亚洲国产精品专区欧美| 久久精品国产亚洲网站| 久久人妻熟女aⅴ| 亚洲av电影在线观看一区二区三区| 国产深夜福利视频在线观看| 国产永久视频网站| 性色avwww在线观看| 午夜免费观看性视频| 国产 一区精品| 一本久久精品| 欧美老熟妇乱子伦牲交| 久久久国产一区二区| 婷婷成人精品国产| 久久久久久久久久久久大奶| 人妻人人澡人人爽人人| 人妻一区二区av| 日韩大片免费观看网站| 亚洲av不卡在线观看| 成年美女黄网站色视频大全免费 | 一级毛片黄色毛片免费观看视频| 日本av手机在线免费观看| 丁香六月天网| 欧美人与性动交α欧美精品济南到 | 性高湖久久久久久久久免费观看| 色哟哟·www| 嘟嘟电影网在线观看| av.在线天堂| 成人影院久久| 午夜福利视频在线观看免费| 日韩中字成人| 一边摸一边做爽爽视频免费| 交换朋友夫妻互换小说| 久久 成人 亚洲| 美女中出高潮动态图| 国产精品偷伦视频观看了| 亚洲国产最新在线播放| 久久av网站| 精品久久久久久电影网| 飞空精品影院首页| 亚洲精品视频女| 一级毛片我不卡| 精品久久久噜噜| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| 人人妻人人添人人爽欧美一区卜| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 免费观看的影片在线观看| 人妻一区二区av| 亚洲av.av天堂| a 毛片基地| 在线精品无人区一区二区三| 午夜激情久久久久久久| 成年av动漫网址| 欧美精品一区二区大全| 嫩草影院入口| 十八禁网站网址无遮挡| 在线观看国产h片| 丝袜喷水一区| 街头女战士在线观看网站| 插阴视频在线观看视频| 看免费成人av毛片| 中文字幕最新亚洲高清| 国产免费又黄又爽又色| 美女国产视频在线观看| 熟妇人妻不卡中文字幕| 欧美精品一区二区免费开放| 午夜激情av网站| 久久久久久久久久久免费av| 人人妻人人添人人爽欧美一区卜| 午夜视频国产福利| 久久久久视频综合| av在线app专区| 国产一区二区三区av在线| 我要看黄色一级片免费的| 97超碰精品成人国产| www.色视频.com| 韩国高清视频一区二区三区| 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| 午夜免费男女啪啪视频观看| 国产成人精品婷婷| av黄色大香蕉| 日本wwww免费看| 青春草国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 边亲边吃奶的免费视频| 黄色毛片三级朝国网站| 人妻制服诱惑在线中文字幕| 国产综合精华液| 亚洲精品久久成人aⅴ小说 | 九九爱精品视频在线观看| 久久99蜜桃精品久久| 国内精品宾馆在线| 插逼视频在线观看| 精品卡一卡二卡四卡免费| 国产成人午夜福利电影在线观看| 亚洲综合色网址| 久久久久久久大尺度免费视频| 亚洲精品aⅴ在线观看| 18禁在线无遮挡免费观看视频| 97超碰精品成人国产| 中国三级夫妇交换| 美女视频免费永久观看网站| 91国产中文字幕| 日韩 亚洲 欧美在线| 黑丝袜美女国产一区| 国产国拍精品亚洲av在线观看| 久久精品夜色国产| 日本-黄色视频高清免费观看| 成人影院久久| 亚洲精品乱码久久久v下载方式| 久久久午夜欧美精品| 免费观看的影片在线观看| 精品酒店卫生间| 国产高清国产精品国产三级| 国产淫语在线视频| 亚州av有码| 欧美成人午夜免费资源| 成人国产麻豆网| 亚洲av综合色区一区| a级毛片在线看网站| 一本久久精品| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久小说| 韩国av在线不卡| 制服丝袜香蕉在线| 成人无遮挡网站| 国产精品一区二区三区四区免费观看| 久久青草综合色| kizo精华| 日韩强制内射视频| 考比视频在线观看| 国产精品免费大片| 日韩电影二区| 一边亲一边摸免费视频| 日韩电影二区| 色哟哟·www| 国产色爽女视频免费观看| 最新中文字幕久久久久| 飞空精品影院首页| 26uuu在线亚洲综合色| 性色av一级| 日韩av在线免费看完整版不卡| 一本一本综合久久| 午夜福利在线观看免费完整高清在| 91久久精品国产一区二区成人| 亚洲,欧美,日韩| 伦理电影免费视频| 18+在线观看网站| 亚洲精品国产色婷婷电影| 黄色欧美视频在线观看| 国产精品人妻久久久影院| 蜜桃久久精品国产亚洲av| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 黄片无遮挡物在线观看| 蜜桃国产av成人99| 国产熟女午夜一区二区三区 | 国产伦精品一区二区三区视频9| 国产无遮挡羞羞视频在线观看| 国产黄色免费在线视频| 99热全是精品| 亚洲美女黄色视频免费看| 麻豆精品久久久久久蜜桃| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 日韩av不卡免费在线播放| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 亚洲精品日本国产第一区| 成年美女黄网站色视频大全免费 | 汤姆久久久久久久影院中文字幕| 欧美xxxx性猛交bbbb| 日韩av不卡免费在线播放| 国产成人aa在线观看| av网站免费在线观看视频| 老司机影院成人| 永久网站在线| 美女国产高潮福利片在线看| 男的添女的下面高潮视频| 下体分泌物呈黄色| a级毛片在线看网站| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 日本黄色片子视频| 国产精品一国产av| 18禁动态无遮挡网站| 久久精品国产自在天天线| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 久久精品国产亚洲av天美| 少妇人妻 视频| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 成人综合一区亚洲| 国产亚洲午夜精品一区二区久久| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 国产在线视频一区二区| 免费观看无遮挡的男女| 国产精品.久久久| 卡戴珊不雅视频在线播放| 伊人久久精品亚洲午夜| 日日摸夜夜添夜夜爱| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 99精国产麻豆久久婷婷| 最后的刺客免费高清国语| av.在线天堂| 国产精品嫩草影院av在线观看| 91久久精品电影网| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 99热全是精品| 日韩中字成人| 午夜福利视频在线观看免费| 久久人人爽人人爽人人片va| 国产av一区二区精品久久| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 亚洲久久久国产精品| 久久青草综合色| 国产精品国产av在线观看| 激情五月婷婷亚洲| 人人妻人人爽人人添夜夜欢视频| 高清不卡的av网站| 亚洲成色77777| 最近手机中文字幕大全| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 午夜福利在线观看免费完整高清在| 老司机亚洲免费影院| 日韩一本色道免费dvd| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 日日啪夜夜爽| 免费久久久久久久精品成人欧美视频 | 丝瓜视频免费看黄片| 美女国产视频在线观看| 一级毛片aaaaaa免费看小| 国产日韩一区二区三区精品不卡 | 夫妻午夜视频| 国产精品人妻久久久久久| 视频中文字幕在线观看| 免费大片黄手机在线观看| 18禁在线无遮挡免费观看视频| 亚洲欧美一区二区三区黑人 | 久久99热这里只频精品6学生| 黄色配什么色好看| 一本久久精品| 女的被弄到高潮叫床怎么办| 菩萨蛮人人尽说江南好唐韦庄| 国产成人精品一,二区| 国产精品三级大全| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 久久国产精品大桥未久av| 美女cb高潮喷水在线观看| 满18在线观看网站| 天堂俺去俺来也www色官网| 又大又黄又爽视频免费| 乱码一卡2卡4卡精品| 一级片'在线观看视频| 成人午夜精彩视频在线观看| 国产综合精华液| .国产精品久久| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 久久亚洲国产成人精品v| 啦啦啦视频在线资源免费观看| 99精国产麻豆久久婷婷| 亚洲国产色片| 亚洲色图 男人天堂 中文字幕 | 青春草视频在线免费观看| 亚洲av电影在线观看一区二区三区| 国产一区二区三区综合在线观看 | av黄色大香蕉| 午夜久久久在线观看| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 天堂中文最新版在线下载| 一边摸一边做爽爽视频免费| 少妇丰满av| 久久久a久久爽久久v久久| 一级片'在线观看视频| av专区在线播放| 亚洲情色 制服丝袜| .国产精品久久| 午夜激情av网站| 国产精品无大码| av在线app专区| 日本猛色少妇xxxxx猛交久久| 久久久久久久久久成人| 午夜老司机福利剧场| 交换朋友夫妻互换小说| 蜜桃国产av成人99| 日日撸夜夜添| 日韩在线高清观看一区二区三区| 99九九在线精品视频| 中文天堂在线官网| 丝袜在线中文字幕| 日韩制服骚丝袜av| 午夜视频国产福利| av卡一久久| 伊人亚洲综合成人网| 国产无遮挡羞羞视频在线观看| 日韩制服骚丝袜av| 赤兔流量卡办理| 嫩草影院入口| 日韩av在线免费看完整版不卡| 如何舔出高潮| 黑人高潮一二区| 热99久久久久精品小说推荐| 91精品伊人久久大香线蕉| 伊人亚洲综合成人网| 成人二区视频| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 国产精品久久久久成人av| 日韩av不卡免费在线播放| 18禁动态无遮挡网站| 久久久久视频综合| 久久久久久久久久成人| 美女cb高潮喷水在线观看| 最新的欧美精品一区二区| 亚洲av不卡在线观看| 亚州av有码| 欧美激情国产日韩精品一区| 国产精品嫩草影院av在线观看| 久久99蜜桃精品久久| 97在线人人人人妻| 久久影院123| 熟女电影av网| 久久精品久久久久久久性| 亚洲国产av影院在线观看| 免费人成在线观看视频色| 久久97久久精品| 伊人亚洲综合成人网| 久久久久久久大尺度免费视频| 精品久久蜜臀av无| 久久久久久久久久成人| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 大又大粗又爽又黄少妇毛片口| 日韩成人av中文字幕在线观看| 午夜福利在线观看免费完整高清在| 免费看av在线观看网站| 日韩中文字幕视频在线看片| 不卡视频在线观看欧美| 免费观看的影片在线观看| 制服诱惑二区| 中文字幕久久专区| 黄色怎么调成土黄色| 久久99一区二区三区| 91精品国产九色| 亚洲国产欧美在线一区| 黄色配什么色好看| 狂野欧美激情性bbbbbb| 国产伦精品一区二区三区视频9| 日韩欧美一区视频在线观看| 嫩草影院入口| 亚洲精品,欧美精品| 亚洲欧美色中文字幕在线| 国产综合精华液| 三级国产精品欧美在线观看| 国产欧美日韩一区二区三区在线 | www.av在线官网国产| 我要看黄色一级片免费的| 男人操女人黄网站| 在线观看免费视频网站a站| 毛片一级片免费看久久久久| 成人毛片a级毛片在线播放| 午夜精品国产一区二区电影| 国产亚洲欧美精品永久| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 一区二区av电影网| 久久毛片免费看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品成人在线| 一级爰片在线观看| 啦啦啦视频在线资源免费观看| 婷婷色麻豆天堂久久| 中文字幕免费在线视频6| 国产成人精品婷婷| www.av在线官网国产| 最近的中文字幕免费完整| 国产精品国产三级国产av玫瑰| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 观看av在线不卡| 赤兔流量卡办理| 精品久久久精品久久久| 亚洲天堂av无毛| 80岁老熟妇乱子伦牲交| 一本久久精品| av福利片在线| 久久婷婷青草| 在线观看免费高清a一片| 欧美亚洲 丝袜 人妻 在线| 国产免费又黄又爽又色| 精品少妇内射三级| 日产精品乱码卡一卡2卡三| 免费少妇av软件|