• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sr-doping effects on conductivity,charge transport,and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films?

    2021-03-11 08:34:04QiangLi李強DaoWang王島YanZhang張巖YuShanLi李育珊AiHuaZhang張愛華RuiQiangTao陶瑞強ZhenFan樊貞MinZeng曾敏GuoFuZhou周國富XuBingLu陸旭兵andJunMingLiu劉俊明
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張巖國富愛華

    Qiang Li(李強), Dao Wang(王島), Yan Zhang(張巖), Yu-Shan Li(李育珊),Ai-Hua Zhang(張愛華),?, Rui-Qiang Tao(陶瑞強), Zhen Fan(樊貞), Min Zeng(曾敏),Guo-Fu Zhou(周國富), Xu-Bing Lu(陸旭兵),?, and Jun-Ming Liu(劉俊明)

    1Institute for Advanced Materials,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China

    2Guangdong Provincial Key Laboratory of Optical Information Materials,South China Academy of Advanced Optoelectronics,South China Normal University,Guangzhou 510006,China

    3National Center for International Research on Green Optoelectronics,South China Normal University,Guangzhou 510006,China

    4Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210009,China

    Keywords: Sr-doping,transport mechanism,BSLTO thin film,ferroelectric metal

    1. Introduction

    As typical perovskite oxide materials,BaTiO3(BTO)and SrTiO3(STO)have been most extensively studied and utilized as capacitors, transducers, and nonvolatile memories.[1–3]Their stoichiometric compounds are band-gap insulators.When doped with donor ions or deposited in an oxygendeficient atmosphere, the n-type semiconductive or metallic conduction can be obtained, resulting in various intriguing physical properties and broad application prospects.[4–6]For example,the ferroelectric semiconducting BTO oxide materials have received wide attention for their applications in photovoltaic solar cell[7]and resistive memory.[8]Moreover,the superconductivity is even observed in the rare-earth substituted STO film,which implies broad application prospect in reducing the energy consumption of electronic devices.[9]

    Although both BTO and STO have a simple perovskite structure and similar electronic band structures,significant differences exist among their conductive compounds. For example, small substitution of pentavalent ions for Ti4+ions or trivalent ions for Sr2+ions can tune the conventional insulating STO from an insulating to semiconducting or even metallic state.[10,11]In contrast to Sr-based compounds, BTO undergoes those transitions at much higher doping levels.[12]In addition, the carrier concentration in the obtained metallic BTO(n ≈1021cm?3)[13]is almost two orders higher than that in STO (n ≈1019cm?3).[14]Another interesting observation is that the conductive STO exhibits weak temperature dependence of Hall effect and resistivity,whereas the BTO system is opposite.[13]Such differences should be related to their local structures. The ferroelectric BTO has a polar structure,which would cause the itinerant electrons to be localized. Nevertheless,such a polar structure is absent for the paraelectric STO,and the localized electrons are greatly reduced.[15]It is quite interesting to know how the carrier transport characteristics of polar BTO will change when it is doped with paraelectric STO.

    The undoped BTO is a well-known classical ferroelectric material. The introduction of electron into this material will screen long-range Coulomb interaction, thus destroying its ferroelectricity.[16]The coexistence of metallic conduction and ferroelectric ordering are believed to be two incompatible physical effects. The study on their coexistence is desirable to discover novel physical phenomena and corresponding mechanisms embedded in it and develop its applications in future microelectronic and optoelectronic devices. Recently,Ladoped BTO films were particularly intriguing. It is reported that the polar phase and experimental metallic conduction can be obtained in those films.[17]As is well known,the ferroelectric polarization in BTO originates from the displacement of Ti ion in the Ti–O octahedron. The replacement of Sr2+at the Ba2+site in BSLTO film will not damage the displacement of Ti ion,which means that the ferroelectricity of the BSLTO film will not be deteriorated.

    In this work, we prepare Ba0.7?xSrxLa0.3TiO3(BSLTO)epitaxial thin films, and systematically study their microstructures,conductivities,ferroelectricity,and carrier transport mechanisms. It is generally believed that the increase of material conductivity should be achieved by doping higher- or lower-valence ions into lattice site. Our work demonstrates that the equivalent valence doping of Sr2+(non-electron doping) can also increase electrical conductivity of BSLTO thin films while not deteriorating its ferroelectricity, which provides a novel idea to increase the material conduction and obtain ferroelectric metal for other perovskite oxides.

    2. Experimental details

    We fabricated BSLTO films with Sr=0.00, 0.20, 0.30,and 0.40 on(001)MgO single crystal substrates at 650?C by using the pulsed laser deposition(PLD)technique. During the deposition,a KrF excimer laser with a wavelength of 248 nm was operated at 2 Hz and the laser fluence was fixed to be 1.7 J·cm?2. The crystal structures of the films were studied by using x-ray diffraction(XRD)equipped with a PANalytical X’Pert Pro diffractometer, including 2θ scans and reciprocal space mapping (RSM) measurement. The force strength between ions was characterized by Raman spectroscopy with a 532-nm excitation laser(RAMAN INVIA,RENISHAW).The temperature dependence of electrical resistivity and Hall effect for each of the BSLTO thin films were measured by the van der Pauw method with a physical property measurement system(PPMS9,Quantum Design).

    3. Results and discussion

    Figure 1(a) shows the XRD patterns of the BSLTO thin films with Sr=0.00,0.20,0.30,and 0.40 grown on the MgO(001) substrate. Only (00l) diffraction peaks appear, and no other oriented peaks can be observed, indicating that all the films are grown epitaxially on the MgO(001)substrate. In order to obtain the precise lattice constants of the BSLTO thin films,the reciprocal space around the(113)reflection is measured (see Fig.A1 in Appendix A), and the corresponding in-plane (a) and out-of-plane (c) lattice constants calculated from their RSM results are shown in Fig.1(b). It can be seen from Fig.1(b) that each of all the thin films has a tetragonal structure. Furthermore, as the Sr content increases, both of the lattice parameters decrease, implying that the introduction of Sr leads the unit cell of BSLTO thin film to contract. This is because Sr2+ion radius (1.44 ?A) is smaller than Ba2+ion radius (1.61 ?A).[18]In order to explore the influence of lattice shrinkage on the force strength between ions,the Raman spectra of BSLTO films with Sr=0.00,0.20,0.30, and 0.40 in a frequency range of 100 cm?1–850 cm?1are recorded. The main Raman peaks for BSLTO films can be assigned to A1(TO), B1,E(TO+LO), E(TO),A1(TO), and A1(LO),E(LO),[19]as shown in Fig.1(c). The phonon modes around 320 cm?1and 720 cm?1(marked by arrows)are specific to the tetragonal phase of the BaTiO3,[20]which are consistent with the XRD results. In addition, the frequency of the A1(LO)/E(TO) mode around 720 cm?1increases monotonically as Sr content increases. The upward shift reflects the tighter bonding between the cations and anions,caused by lattice shrinkage, which could result in the increase of phonon energy in the film.[21]

    Figure 2(a) shows temperature-dependent resistivity for BSLTO thin film with Sr=0.00, 0.20, 0.30, and 0.40. It can be seen that the resistivity of the thin film shows a clear dependence on Sr-doping content, exhibiting that the resistivity decreases markedly as Sr content increases. For Sr=0.00,0.20,the resistivity decreases with the increase of temperature over the entire measurement temperature range,demonstrating typical semiconductive conduction behavior. When Sr content reaches to 0.30,an interesting semiconductor–metal transition begins to occur. As shown in Fig.2(b), this transition is observed at 330 K.For Sr=0.40,there is still a semiconductor–metal transition as shown in Fig.2(c), and the corresponding temperature position moves to a lower location at 295 K.The BTO films can become increasingly conductive as the content of donor doping ions increases, because donor doping introduces electron into the films.[4,22]The clear increase of the conductivity of the BSLTO thin films by an equivalent valence doping of Sr2+(non-electron doping) into the A-site is worthy to be further discussed. Figure 2(d) shows temperaturedependent Hall coefficient RHcurves for the BSLTO films.The negative Hall coefficient indicates that the carriers in the films are mainly composed of electrons. The electron concentration is calculated from the formula: RH=1/en,and the results are shown in Fig.2(e), where it can be seen that the electron concentration increases with temperature increasing at low temperature, indicating that the electrons in the films are in a localized state.[17]As the temperature increases, the localized electrons are gradually to be released, and finally at one certain high temperature the electron concentrations of all the films with different Sr contents will reach almost the same level. For the present BSLTO thin films with the same La content,the carriers in these films originate from the donor effect that La3+enters into the A-site and provides extra electrons.[22]Therefore, it is observed that when the electron releasing is completed,the electron concentration in each film is not obviously changed. Figure 2(f)shows the variations of temperature of carrier mobility with temperature for BSLTO thin films. It can be clearly seen from Fig.2(f)that the Sr doping can improve the mobility. As mentioned above, the electron concentration in each film does not change significantly,implying that the decreasing of resistivity of the film is mainly ascribed to the increasing of carrier mobility.The intrinsic carrier transport mechanism of the films should be related to the increase of carrier mobility and will be discussed below.

    Fig.1. (a)The 2θ scan patterns,(b)lattice parameters,and(c)Raman spectra of BSLTO films with Sr=0.00,0.20,0.30,and 0.40.

    Fig.2. Temperature-dependent resistivities of BSLTO films (a) with Sr=0.00, 0.20, 0.30, and 0.40, (b) with Sr=0.30 (300 K–400 K), (c) with Sr=0.40(260 K–400 K);temperature-dependent(d)Hall coefficient,(e)carrier density and(f)Hall carrier mobility for BSLTO films with Sr=0.00,0.20,0.30,and 0.40.

    Fig.3. Fitting results using (a) VRH model and (b) SPH model for BSLTO films with Sr=0.00, 0.20, 0.30, and 0.40; (c) thermal phonon scattering mode for the BSLTO film with Sr=0.30;(d)thermal phonon scattering mode for the BSLTO film with Sr=0.40.

    To reveal the carrier transport mechanisms of the BSLTO films with Sr=0.00, 0.20, 0.30, and 0.40, their R–T curves from low temperature to high temperature are fitted by various models.In particular,R–T curves for the films with Sr=0.30,0.40 can be divided into semiconducting and metallic regime,while the corresponding carrier transport mechanisms are discussed separately. For the present films that exhibit semiconducting behaviors,the transport model changes from variable range hopping (VRH) to small polaron hopping (SPH) when the measurement temperature increases, and the results are shown in Figs. 3(a) and 3(b), respectively. The metalic conductive behaviors in the films with Sr=0.30,0.40 all conform to thermal phonon scattering mode as shown in Figs.3(c)and 3(d),respectively. The various transport models and their corresponding temperature ranges are summarized in Table 1. In our previous researches, it has been put forward that the carrier transport mechanism of La-doped BTO thin films is dominated by electron–phonon coupling.[23,24]When it is at low temperature, the weak electron–phonon coupling is hard to form small polarons,the electron can absorb energy to hop to a remote location with lower potential barriers to realize charge transport. This kind of charge transport is characterized by the variable range hopping mode: ln(ρ)∝T?1/4.[25]As the temperature rises to a certain value, the enhanced electron–phonon coupling can form small polarons,and then the charge transport follows the small polaron transition mode: ln(ρ)∝T3/2exp(WH/KBT),where WHis the activation energy,and kBis the Boltzmann constant.[26]With the introduction of Sr,the enhanced phonon energy can provide more energy to promote the hopping of small polarons. Thus, the calculated activation energy of small polarons in the film with Sr=0.00,0.20,0.30, and 0.40 sequentially decrease, and their WHvalues are 0.055,0.046,0.038,and 0.032 eV,respectively. The lower activation energy is responsible for the higher mobility,causing the resistivity of the film with non-electron doping to decrease.In addition,Mott and Ihrig pointed out that the polaron binding energy Wpwould be approximately twice the activation energy WH(Wp≈2WH).[27,28]Thus, the small polarons with low activation energy are easy to be thermally dissociated. For films with Sr <0.30,their activation energy values are smaller than those of the films with Sr=0.30, 0.40. Consequently,slightly lower carrier concentration is observed. In addition,lower carrier mobility values are also observed for the films with Sr=0.00, 0.20 due to different electron–phonon interactions. We propose that the low carrier concentration and carrier mobility should be the two dominant reasons which are responsible for the non-metallic conduction behaviors of films with Sr=0.00,0.20. When temperature is increased to 350 K,the film with Sr=0.30 begins to exhibit metallic conductive behavior due to the dissociated small polarons. As to film with Sr=0.40, the same metalic conductive behavior occurs at a lower temperature (295 K), which is attributed to lower activation energy caused by the enhanced phonon energy. The conduction behavior of the dissociated electrons is dominated by thermal phonon scattering, and the associated transport mechanism conforms to the model: ρ ∝T3/2.[26]

    The present films have so high electron concentration that it is difficult to obtain macroscopic ferroelectric reversal signals. In this experiment, the piezoelectric force microscopy(PFM)is adopted to explore the micro-region ferroelectricity.After ±9 V writing in the two adjacent areas, figure 4 shows the room-temperature measurements of out-of-plane PFM amplitudes (Figs. 4(a)–4(d)) and phase images (Figs. 4(e)–4(h))of the BSLTO films with Sr=0.00, 0.20, 0.30, and 0.40, respectively. The clear contrast of the PFM amplitudes and phase images of all samples demonstrate that the current films have obvious characteristics of ferroelectricity. In particular,the BSLTO film with Sr=0.40 is in metallic conduction state at room temperature, implying that the coexistence of ferroelectricity and metalic conductivity can be realized in BSLTO film with Sr=0.40. For the present films, after Sr doping,the polar tetragonal structure could be maintained. Most importantly, Sr improves the carrier mobility by increasing the phonon energy, thereby obtaining the metallic BSLTO film with Sr=0.40. This way of achieving metalic conduction does not introduce extra electrons,thereby weakening the electrons to shield the long-range Coulomb effect,which is beneficial to the stability of ferroelectricity. Therefore, Sr doping provides a novel idea to obtain ferroelectric metal for other perovskite oxides.

    Table 1. List of various transport models and their corresponding temperature ranges and WH for the BSLTO films with Sr=0.00,0.20,0.30,and 0.40.

    Fig.4. (a)–(d)Out-of-plane PFM amplitude and(e)–(h)phase images for BSLTO films with Sr=0.00,0.20,0.30,and 0.40,respectively,and poling bias voltage of±9 V.

    4. Conclusions

    In the present research, the microstructure, electrical conduction, charge transport, and ferroelectricity of epitaxial BSLTO thin films with Sr=0.00,0.20,0.30,and 0.40 are systematically investigated. The introduction of Sr can make the unit cell of BSLTO films contracted,which is responsible for the enhanced phonon energy in the films. The R–T measurements show that the increase of Sr content in the BSLTO can gradually reduce electrical resistivity,and the metallic conduction can be found in films with Sr=0.30, 0.40. The Sr doping effects on carrier transport mechanisms of BSLTO films are clarified. The fitting results of R–T curves indicate that Sr increasing phonon energy is responsible for lower activation energy of small polaron hopping, higher carrier mobility, lower electrical resistivity. The PFM results demonstrate that the metalic conducting films with Sr=0.30, 0.40 could possess ferroelectricity, indicating that Sr doping provides a novel idea to explore ferroelectric metal materials for other perovskite oxides.

    Appendix A:Supporting information

    The reciprocal space maps around the(113)reflection are shown in the following figures.

    Fig.A1. Reciprocal space maps of BSLTO films with (a) Sr=0.00, (b)Sr=0.20,(c)Sr=0.30,(d)Sr=0.40.

    猜你喜歡
    張巖國富愛華
    把實事真正辦到群眾心坎里
    雷鋒(2022年2期)2022-04-12 00:08:12
    岜沙苗寨繡花女
    金秋(2020年12期)2020-12-03 23:04:07
    Investigation on pulsed discharge mode in SF6-C2H6 mixtures
    第一次拔牙
    神奇的光
    春天里的發(fā)現(xiàn) 等
    《工程力學》課程中PBL教學模式的應用探討
    新年獻詞
    茶博覽(2017年1期)2017-02-24 08:50:14
    在廈金胞張愛華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    李愛華:我希望過上這樣的生活
    男女午夜视频在线观看| 禁无遮挡网站| 淫妇啪啪啪对白视频| 成人国产综合亚洲| 亚洲精品美女久久久久99蜜臀| 久久亚洲精品不卡| 一个人观看的视频www高清免费观看| 国产精品久久视频播放| 免费在线观看成人毛片| 蜜桃亚洲精品一区二区三区| 亚洲精品乱码久久久v下载方式 | 国产亚洲精品久久久久久毛片| 久久久久久九九精品二区国产| 午夜福利在线在线| 搡老岳熟女国产| 十八禁网站免费在线| 免费观看人在逋| 日韩有码中文字幕| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 国产亚洲精品久久久久久毛片| 国产真实伦视频高清在线观看 | 天堂av国产一区二区熟女人妻| 亚洲无线观看免费| 国产高潮美女av| 亚洲熟妇中文字幕五十中出| 日韩有码中文字幕| 亚洲午夜理论影院| 国产av在哪里看| 国产精品三级大全| 中文字幕精品亚洲无线码一区| 国产欧美日韩精品一区二区| 亚洲精品亚洲一区二区| 亚洲狠狠婷婷综合久久图片| 成人av在线播放网站| 最新美女视频免费是黄的| 黄色成人免费大全| 精品国产美女av久久久久小说| 免费看美女性在线毛片视频| 久久草成人影院| 国产亚洲精品一区二区www| 国产三级中文精品| www.www免费av| 日本在线视频免费播放| 熟女电影av网| АⅤ资源中文在线天堂| 真人一进一出gif抽搐免费| 国产 一区 欧美 日韩| 欧美区成人在线视频| 久久这里只有精品中国| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9 | 白带黄色成豆腐渣| 精品国产三级普通话版| 国产精华一区二区三区| 成人欧美大片| 日韩欧美国产一区二区入口| 中文字幕熟女人妻在线| 中出人妻视频一区二区| 国产色婷婷99| 精品一区二区三区av网在线观看| 国产三级中文精品| 婷婷精品国产亚洲av在线| 一a级毛片在线观看| 麻豆国产97在线/欧美| 美女黄网站色视频| 日韩欧美三级三区| 久久中文看片网| 亚洲18禁久久av| 日本免费a在线| 成人av在线播放网站| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 啦啦啦韩国在线观看视频| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 欧美日韩精品网址| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 国产一区二区在线观看日韩 | 国产黄色小视频在线观看| 性色av乱码一区二区三区2| 18禁黄网站禁片午夜丰满| 99热这里只有是精品50| 亚洲无线观看免费| 一级黄色大片毛片| 国产精品综合久久久久久久免费| 2021天堂中文幕一二区在线观| 一区福利在线观看| 日韩av在线大香蕉| 午夜久久久久精精品| 欧美三级亚洲精品| 嫩草影院精品99| 女人被狂操c到高潮| 韩国av一区二区三区四区| 身体一侧抽搐| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久久久免 | 久久久成人免费电影| 一进一出好大好爽视频| 国产免费av片在线观看野外av| 99热只有精品国产| 国产亚洲欧美在线一区二区| 超碰av人人做人人爽久久 | 欧洲精品卡2卡3卡4卡5卡区| 欧美国产日韩亚洲一区| 亚洲av成人精品一区久久| 免费av观看视频| 天天一区二区日本电影三级| 精品人妻偷拍中文字幕| 深夜精品福利| 桃色一区二区三区在线观看| 欧美最新免费一区二区三区 | 国产一区二区三区在线臀色熟女| 久久伊人香网站| 亚洲人成网站在线播放欧美日韩| 老汉色av国产亚洲站长工具| 精品一区二区三区视频在线 | 亚洲精品在线观看二区| 美女免费视频网站| 国产91精品成人一区二区三区| 欧美激情在线99| 欧美乱妇无乱码| 日本黄色片子视频| 丁香六月欧美| 又紧又爽又黄一区二区| 嫩草影视91久久| 久久亚洲精品不卡| 久久久久久大精品| 一个人免费在线观看电影| 亚洲国产色片| 国产成人aa在线观看| 欧美丝袜亚洲另类 | 99久久久亚洲精品蜜臀av| 日韩免费av在线播放| 国产三级在线视频| 丰满的人妻完整版| 99国产综合亚洲精品| 国模一区二区三区四区视频| 国产亚洲精品久久久com| 精品一区二区三区视频在线 | 2021天堂中文幕一二区在线观| www.色视频.com| or卡值多少钱| 偷拍熟女少妇极品色| 好男人在线观看高清免费视频| 中文字幕高清在线视频| 黄色女人牲交| 欧美成狂野欧美在线观看| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 亚洲天堂国产精品一区在线| 久久人人精品亚洲av| 久久亚洲真实| 少妇的逼水好多| www日本黄色视频网| 一边摸一边抽搐一进一小说| 成人欧美大片| 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 免费看光身美女| 国产精品免费一区二区三区在线| e午夜精品久久久久久久| 国产毛片a区久久久久| 久久中文看片网| 非洲黑人性xxxx精品又粗又长| www日本在线高清视频| 色吧在线观看| 首页视频小说图片口味搜索| 国产午夜福利久久久久久| 亚洲无线在线观看| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 久久久久九九精品影院| 久久精品亚洲精品国产色婷小说| 国产高清视频在线观看网站| 午夜福利成人在线免费观看| 日本黄大片高清| 舔av片在线| 国产久久久一区二区三区| 精品一区二区三区人妻视频| 91在线精品国自产拍蜜月 | or卡值多少钱| 精品一区二区三区av网在线观看| 在线观看一区二区三区| 国产成人av教育| 激情在线观看视频在线高清| 欧美性猛交黑人性爽| 99久国产av精品| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久一区二区三区 | 99久久无色码亚洲精品果冻| 丁香六月欧美| 国产精品一及| 欧美另类亚洲清纯唯美| 男人舔奶头视频| 亚洲五月天丁香| 国产av麻豆久久久久久久| 少妇丰满av| 久99久视频精品免费| 成人高潮视频无遮挡免费网站| 99精品欧美一区二区三区四区| 国产精品亚洲av一区麻豆| 国产老妇女一区| 成人特级av手机在线观看| 校园春色视频在线观看| 国内少妇人妻偷人精品xxx网站| 欧美成人性av电影在线观看| 小蜜桃在线观看免费完整版高清| 美女高潮喷水抽搐中文字幕| 日本黄色片子视频| 精品人妻偷拍中文字幕| 禁无遮挡网站| 婷婷精品国产亚洲av| 九色成人免费人妻av| 亚洲欧美精品综合久久99| 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 在线观看舔阴道视频| 黄片小视频在线播放| 97超级碰碰碰精品色视频在线观看| 免费av不卡在线播放| 国产精品爽爽va在线观看网站| 国产久久久一区二区三区| 波多野结衣高清无吗| 日韩欧美精品免费久久 | 村上凉子中文字幕在线| 精品欧美国产一区二区三| 久久久久国产精品人妻aⅴ院| 久久精品影院6| 精品日产1卡2卡| 久久国产精品影院| 一级a爱片免费观看的视频| 噜噜噜噜噜久久久久久91| 久久久国产成人精品二区| 免费看光身美女| 国产真实伦视频高清在线观看 | 午夜影院日韩av| 欧美成人一区二区免费高清观看| 午夜久久久久精精品| 国产成+人综合+亚洲专区| 精品人妻偷拍中文字幕| 国产精品 国内视频| 在线国产一区二区在线| 亚洲熟妇熟女久久| 黑人欧美特级aaaaaa片| 免费av毛片视频| aaaaa片日本免费| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 亚洲成av人片在线播放无| 久久久久久久久久黄片| 亚洲国产精品久久男人天堂| 啦啦啦免费观看视频1| 亚洲人与动物交配视频| 精品国产超薄肉色丝袜足j| 岛国在线免费视频观看| 中文资源天堂在线| 久久香蕉国产精品| 精品人妻一区二区三区麻豆 | 欧美日韩一级在线毛片| 午夜两性在线视频| 母亲3免费完整高清在线观看| 在线播放无遮挡| 99热只有精品国产| av黄色大香蕉| 午夜福利欧美成人| 欧美丝袜亚洲另类 | 又紧又爽又黄一区二区| 色播亚洲综合网| 亚洲成av人片在线播放无| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 99久久精品热视频| 亚洲国产中文字幕在线视频| 欧美在线黄色| 国产69精品久久久久777片| 91久久精品电影网| 精品一区二区三区视频在线 | 午夜激情欧美在线| av在线蜜桃| 中国美女看黄片| 免费看光身美女| 90打野战视频偷拍视频| 国产激情欧美一区二区| 长腿黑丝高跟| 黑人欧美特级aaaaaa片| 国产精品,欧美在线| 人妻久久中文字幕网| 国产av在哪里看| 成人性生交大片免费视频hd| 欧美日韩黄片免| 一区二区三区免费毛片| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 搞女人的毛片| 日韩欧美免费精品| 亚洲成av人片在线播放无| 人妻久久中文字幕网| 嫩草影视91久久| 毛片女人毛片| 国产午夜福利久久久久久| 最近最新免费中文字幕在线| 99久久九九国产精品国产免费| 免费大片18禁| 在线观看舔阴道视频| 亚洲国产欧美人成| av专区在线播放| 深夜精品福利| 夜夜躁狠狠躁天天躁| 香蕉av资源在线| 亚洲avbb在线观看| 久久亚洲精品不卡| 国产久久久一区二区三区| 18禁黄网站禁片免费观看直播| 少妇人妻精品综合一区二区 | 18禁黄网站禁片免费观看直播| x7x7x7水蜜桃| 此物有八面人人有两片| x7x7x7水蜜桃| 亚洲精品一区av在线观看| 久99久视频精品免费| 精品一区二区三区人妻视频| 好男人在线观看高清免费视频| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女| 18美女黄网站色大片免费观看| 少妇熟女aⅴ在线视频| 偷拍熟女少妇极品色| 18+在线观看网站| 国产国拍精品亚洲av在线观看 | 久久这里只有精品中国| 日韩欧美在线二视频| 欧美bdsm另类| 校园春色视频在线观看| 国产精品av视频在线免费观看| 最新在线观看一区二区三区| 日本与韩国留学比较| 久久久久性生活片| 亚洲乱码一区二区免费版| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 无人区码免费观看不卡| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 无人区码免费观看不卡| 女人高潮潮喷娇喘18禁视频| 女人被狂操c到高潮| 久久人人精品亚洲av| e午夜精品久久久久久久| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产 | 亚洲中文字幕一区二区三区有码在线看| 久久精品91无色码中文字幕| 麻豆成人av在线观看| 欧美成人a在线观看| 老司机在亚洲福利影院| 色精品久久人妻99蜜桃| 亚洲中文字幕日韩| 日韩亚洲欧美综合| 亚洲专区中文字幕在线| 在线免费观看不下载黄p国产 | 我的老师免费观看完整版| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 国产亚洲精品久久久com| 一区二区三区激情视频| 久久久国产成人免费| 国产高潮美女av| 日韩有码中文字幕| 日本五十路高清| 亚洲欧美激情综合另类| 亚洲国产精品sss在线观看| 久久草成人影院| 美女免费视频网站| 亚洲不卡免费看| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 老汉色av国产亚洲站长工具| 久久久久久久久中文| 中文字幕熟女人妻在线| 99国产精品一区二区三区| 男女之事视频高清在线观看| 网址你懂的国产日韩在线| 色播亚洲综合网| 免费av不卡在线播放| www.www免费av| 麻豆成人av在线观看| 男人的好看免费观看在线视频| 国产精品久久久久久久电影 | 午夜福利在线在线| 久久精品国产99精品国产亚洲性色| 午夜福利18| 久久草成人影院| 国产精品香港三级国产av潘金莲| 国内久久婷婷六月综合欲色啪| 国产伦精品一区二区三区视频9 | 久久婷婷人人爽人人干人人爱| 内地一区二区视频在线| 欧美在线黄色| 97超级碰碰碰精品色视频在线观看| 黄色日韩在线| 国产精品一区二区三区四区久久| 成人鲁丝片一二三区免费| 久久久久久九九精品二区国产| 久久6这里有精品| 亚洲人成网站高清观看| 12—13女人毛片做爰片一| 在线观看午夜福利视频| 国内精品美女久久久久久| 亚洲人成电影免费在线| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 午夜免费观看网址| 美女被艹到高潮喷水动态| 噜噜噜噜噜久久久久久91| 国产精品99久久久久久久久| 亚洲五月天丁香| 一区二区三区激情视频| 女警被强在线播放| 日本与韩国留学比较| 亚洲av不卡在线观看| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 国产精品,欧美在线| 啦啦啦韩国在线观看视频| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 日韩欧美精品免费久久 | 亚洲片人在线观看| 日本一二三区视频观看| 国产伦在线观看视频一区| 少妇的逼好多水| 午夜日韩欧美国产| 天美传媒精品一区二区| 免费无遮挡裸体视频| 男插女下体视频免费在线播放| 国内精品美女久久久久久| 美女 人体艺术 gogo| 国产成人系列免费观看| 亚洲最大成人手机在线| 99久久久亚洲精品蜜臀av| 老司机午夜十八禁免费视频| 国产一区在线观看成人免费| 天堂影院成人在线观看| 琪琪午夜伦伦电影理论片6080| 成人永久免费在线观看视频| 一区二区三区免费毛片| av在线蜜桃| 日本撒尿小便嘘嘘汇集6| 欧美bdsm另类| 午夜精品一区二区三区免费看| 午夜福利免费观看在线| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| 国产爱豆传媒在线观看| 91麻豆av在线| 日本精品一区二区三区蜜桃| 中文资源天堂在线| 精品久久久久久久末码| www日本黄色视频网| 中文在线观看免费www的网站| 久久香蕉国产精品| 成人高潮视频无遮挡免费网站| 高清毛片免费观看视频网站| 国产高潮美女av| 午夜激情福利司机影院| 国产成人系列免费观看| 成人18禁在线播放| 美女黄网站色视频| 国产av麻豆久久久久久久| 噜噜噜噜噜久久久久久91| 熟妇人妻久久中文字幕3abv| 亚洲黑人精品在线| 国产毛片a区久久久久| 最近最新免费中文字幕在线| 国产一级毛片七仙女欲春2| 99在线视频只有这里精品首页| 91字幕亚洲| 国产精品亚洲av一区麻豆| av国产免费在线观看| 国产精品永久免费网站| 久久久久久久久久黄片| 亚洲午夜理论影院| 欧美激情在线99| 在线观看免费视频日本深夜| tocl精华| 午夜免费成人在线视频| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 免费观看精品视频网站| 淫秽高清视频在线观看| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 老熟妇乱子伦视频在线观看| 日本免费a在线| 一区二区三区国产精品乱码| 性色av乱码一区二区三区2| 99国产精品一区二区三区| 乱人视频在线观看| 亚洲国产欧美网| 欧美成人性av电影在线观看| 午夜两性在线视频| 国产麻豆成人av免费视频| 欧美av亚洲av综合av国产av| 久久久久精品国产欧美久久久| 亚洲国产欧洲综合997久久,| 欧美日本视频| 嫩草影院入口| 91久久精品电影网| 久久久国产成人精品二区| 九九久久精品国产亚洲av麻豆| 国产在线精品亚洲第一网站| 久久久精品欧美日韩精品| 国产毛片a区久久久久| 嫁个100分男人电影在线观看| 日韩欧美国产一区二区入口| 精品99又大又爽又粗少妇毛片 | 一个人看视频在线观看www免费 | 亚洲国产高清在线一区二区三| 操出白浆在线播放| 午夜福利欧美成人| 国产精品一区二区免费欧美| 嫩草影院精品99| 免费av不卡在线播放| 午夜激情欧美在线| 欧美午夜高清在线| 91在线观看av| 久久性视频一级片| 美女免费视频网站| 成人一区二区视频在线观看| 国产精品久久久久久人妻精品电影| 一进一出抽搐gif免费好疼| 亚洲av不卡在线观看| 亚洲内射少妇av| 国产伦一二天堂av在线观看| 高清毛片免费观看视频网站| 在线视频色国产色| 看免费av毛片| 亚洲欧美日韩卡通动漫| 亚洲专区中文字幕在线| 高清在线国产一区| 亚洲狠狠婷婷综合久久图片| 夜夜看夜夜爽夜夜摸| 又爽又黄无遮挡网站| 亚洲精品美女久久久久99蜜臀| 日韩精品中文字幕看吧| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 91在线观看av| 成年人黄色毛片网站| 国产真人三级小视频在线观看| 国产欧美日韩精品一区二区| 亚洲精品影视一区二区三区av| 伊人久久大香线蕉亚洲五| 久久久久精品国产欧美久久久| 18禁在线播放成人免费| 国内精品美女久久久久久| 色av中文字幕| 久久久久久大精品| 夜夜看夜夜爽夜夜摸| 欧美一级毛片孕妇| 国产精品三级大全| 欧美日韩综合久久久久久 | 久久6这里有精品| 国内少妇人妻偷人精品xxx网站| 色尼玛亚洲综合影院| 欧美性感艳星| 老汉色∧v一级毛片| 亚洲人成网站在线播| or卡值多少钱| 亚洲中文字幕一区二区三区有码在线看| 精品日产1卡2卡| 久久久久久大精品| 精品国产亚洲在线| 欧美极品一区二区三区四区| 露出奶头的视频| 精品一区二区三区视频在线观看免费| 国产精品久久久久久久久免 | 色播亚洲综合网| 亚洲精品在线观看二区| 亚洲在线观看片| 久久亚洲真实| 日本与韩国留学比较| 精品国内亚洲2022精品成人| 亚洲精华国产精华精| 亚洲成人精品中文字幕电影| 久久人妻av系列| 日本a在线网址| 日韩精品青青久久久久久| 国产高清三级在线| 免费人成视频x8x8入口观看| 午夜福利在线在线| 亚洲欧美日韩高清在线视频| 国产精品 国内视频| 国产午夜精品久久久久久一区二区三区 | 亚洲国产高清在线一区二区三| 欧美成人免费av一区二区三区| 国产精品爽爽va在线观看网站| 国产极品精品免费视频能看的| 欧美中文综合在线视频| 欧美一区二区亚洲| 午夜福利高清视频| 国产又黄又爽又无遮挡在线|