• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coercivity and microstructure of sintered Nd–Fe–B magnets diffused with Pr–Co,Pr–Al,and Pr–Co–Al alloys?

    2021-03-11 08:33:58LeiJin金磊ZheHuanJin金哲歡JinHaoZhu朱金豪GuangFeiDing丁廣飛BoZheng鄭波ShuaiGuo郭帥RenJieChen陳仁杰RuYan閆阿儒andXinCaiLiu劉新才
    Chinese Physics B 2021年2期

    Lei Jin(金磊), Zhe-Huan Jin(金哲歡), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁廣飛), Bo Zheng(鄭波) ,Shuai Guo(郭帥),3,?, Ren-Jie Chen(陳仁杰),3, A-Ru Yan(閆阿儒),3, and Xin-Cai Liu(劉新才)

    1School of Materials Science and Chemical Engineering,Ningbo University,Ningbo 315211,China

    2Key Laboratory of Magnetic Materials and Devices,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Nd–Fe–B,coercivity,Pr–Co–Al alloys,grain boundary diffusion

    1. Introduction

    Sintered Nd–Fe–B permanent magnets have a wide range of applications due to their excellent magnetic properties at room temperature. However, their magnetic properties deteriorate seriously at high temperatures due to poor thermal stability. This limits their application in some fields such as the traction motors of hybrid electric vehicles and wind generators.[1,2]Thus, it is necessary to improve the coercivity of Nd–Fe–B magnets. A common method for coercivity enhancement is to form (Nd,Tb/Dy)2Fe14B grains of higher anisotropy field HAthrough addition of heavy rare earth (HRE) (e.g., Tb and Dy) in Nd–Fe–B alloys.[3,4]However, this way may result in reduction of remanence due to anti-ferromagnetic coupling between Fe and HRE.[5]In recent years, the increase of Tb/Dy price leads to an increase in the cost. Therefore, the grain boundary diffusion (GBD) process has attracted more and more attention. In this method, the consumption of HRE is limited, the matter containing HRE coated on the magnet surface is diffused into the magnet along the grain boundary (GB) through the heat treatment, to form the HRE-rich shell with a higher HAand thin GB phases.The main reason for the coercivity enhancement is the magnetic hardening effect of the HRE-rich shell and the exchangedecoupling of the GB phases.[6,7]

    Recently, in order to save Tb/Dy resources, the coercivity enhancement by GBD with HRE-free diffusion source has successfully applied to the sintered Nd–Fe–B magnets, such as Pr–Al–Cu, Pr–Cu and Nd70Cu30.[8–10]The coercivity enhancement of the HRE-free diffusion source GBD magnets is mainly attributed to the formation of continuous GB phases.This can effectively improve the exchange-decoupling between adjacent grains.[1,11–15]The HRE-free diffusion source is mainly composed of light rare earth(LRE)phase and nonrare earth phase. In order to obtain higher coercivity, the LRE phase usually chooses Pr because the HAof Pr2Fe14B is higher than that of Nd2Fe14B.[4]The choice of non-rare earth elements is also crucial. Because the main function of non-rare earth elements is to promote GBD and the formation of continuous GB phases. Al has been widely used in diffusion sources because it can effectively improve the wettability of GB phase.[6,16,17]In the preparation of Nd–Fe–B alloy, a small amount of Co is usually added to improve the magnetic properties.[18–21]Chen et al.[22]reported that the coercivity and remanence at high temperatures can be increased simultaneously due to the formation of the Dy and Co enriched shell structure,when the commercial sintered Nd–Fe–B magnet diffused with Dy60Co40alloy. In addition,Lee et al.[23]reported that the coercivity of magnets can be further enhanced when the mixed powder of DyCo and Al is used as the diffusion sources. This indicates that the addition of Co and Al in the diffusion source is helpful for the coercivity enhancement.Thus,in order to achieve the coercivity enhancement through the HRE-free diffusion source GBD,we design Pr70Co30(PC),Pr70Al30(PA)and Pr70Co15Al15(PCA)diffusion sources and conduct GBD for the commercial 42M Nd–Fe–B magnet. In this work, the mechanism of coercivity enhancement in the GBD magnets and the effects of Co and Al on the magnetic properties are investigated based on the microstructural observation.

    2. Experimental details

    The commercial 42M sintered Nd–Fe–B magnet of size 6 mm × 6 mm × 5 mm were used as the original sample.Pr70Co30(at%), Pr70Al30(at%) and Pr70Co15Al15(at%) alloys were prepared by arc-melting with industry raw materials Pr, Co and Al in high purity argon atmosphere. These alloys are cut into sheets in dimensions of 6 mm × 6 mm ×0.2 mm(thickness)with wire-electrode cutting. These sheets are ground to the same mass through abrasive papers in alcohol and then used as diffusion sources. The original magnet is located between two sheets and placed in a high temperature resistant mold,in which the interface between the magnet and the sheet is perpendicular to the c-axis. Finally,these samples were performed in the diffusion treatment at 800?C for 10 h and annealed at 500?C for 2 h. The magnetic properties were measured by pulsed field magnetometer (PFM14.CN). The microstructure,element concentration and elemental distribution were analyzed by scanning electron microscopy (SEM,FEI Quanta FEG 250)and energy-dispersive x-ray spectrometry(EDS).The local microstructure and elemental distribution were examined by a Talos F200X scanning/transmission electron microscope(S/TEM).

    3. Results and discussion

    Figure 1 shows the demagnetization curves of the original and GBD processed magnets by PC,PA and PCA alloys at 20?C.After diffusing treatment, the coercivity increase from original 1.63 T to 1.81 T,2.01 T and 2.15 T,respectively. The remanence reduced from 1.34 T to 1.33 T,1.28 T and 1.30 T,respectively. It can be seen that the coercivity enhancement of the PA GBD magnet is better than that of the PC GBD magnet. However, the coercivity enhancement of the PCA GBD magnet is most outstanding, reaching 0.52 T. This indicates that the alone addition of Al in the diffuser source is better than that of Co for the coercivity enhancement,while the joint addition of Co and Al in the diffusion source can further improve the coercivity.Moreover,it can be found that the decline of remanence is significantly reduced when Co is added to the diffusion source. In order to further analyze the mechanism of coercivity enhancement in the GBD magnets,the microstructure of the magnets after diffusion was observed.

    Fig.1. Demagnetization curves of the original magnet and the PC,PA and PCA GBD magnets.

    Figure 2 shows backscattered electron (BSE) SEM images of magnets by the PC, PA and PCA alloys’ diffusion at different depths from the surface of magnets, respectively.In the PC GBD magnet, the GB phases are mainly concentrated in the triple junctions. However, in the PA and PCA GBD magnets, the continuous GB phases (also known as the thin GB phases) with bright area in the SEM images can be clearly observed and uniformly distributed around the Nd2Fe14B grain with black area. This structure can effectively enhance the coercivity by reducing the exchange interaction of the adjacent grains.[1,11–13]It is worth noting that the continuous GB phases of the PCA GBD magnet is obviously wider than that of the PA GBD magnet at the same diffusion depth.In addition,the range of continuous GB phases is significantly deeper in the PCA GBD magnets. When the diffusion depth reaches 1200μm,the continuous GB phases are almost invisible in the PA GBD magnet. In the PCA GBD magnet, even at 1500 μm, the continuous GB phases can still be observed.This indicates that the alone addition of Co in the diffusion source cannot improve the continuity of GB phases,while Al can effectively improve the continuity of GB phases. However, the joint addition of Al and Co in the diffusion source can further promote the formation of continuous GB phases.Therefore, the coercivity of the PCA GBD magnet is higher than that of the PA GBD magnet, while the PC GBD magnet has the lowest coercivity.

    Figure 3 shows the SEM images and the EDS mapping images of the PC,PA and PCA GBD magnets at 50μm from the surfaces close to the diffusion sources. In the PC GBD magnet,Pr and Co are mainly concentrated in the triple junction phases. In the outermost layer of the Nd2Fe14B grain,the Co-rich shells can be observed.However,in the PA GBD magnet,Pr is continuously distributed along the thin GB and presented a network structure surrounding the Nd2Fe14B grain.Al can also be observed at the thin GB phases and not concentrated in the triple junction phases like Co. It should be noted that the Al concentration in the outermost layer of the Nd2Fe14B grain is higher than that in the nearby GB,the Alrich shells can also be observed. This indicates that Al can improve the wettability of GB phases and promote Pr in the triple junctions flowing into the thin GB to form the continuous GB phases. Co cannot effectively improve the wettability of GB phases, so that Pr is mainly concentrated in the triple junctions. In addition, both Co and Al easily enter the Nd2Fe14B grain and form the shells. However, the small addition of Co in the sintered Nd2Fe14B can improve the remanence.[18,19]Therefore, the decline of remanence is the lowest in the PC GBD magnet.

    Fig.2. BSE-SEM images of the PC GBD magnet[(a1)50μm, (a2)300μm, (a3)500μm, (a4)800μm, (a5)1200μm, (a6)1500μm], PA GBD magnet[(b1)50μm,(b2)300μm,(b3)500μm,(b4)800μm,(b5)1200μm,(b6)1500μm],and PCA GBD magnet[(c1)50μm,(c2)300μm,(c3)500μm,(c4)800μm,(c5)1200μm,(c6)1500μm]at different depths from the diffused surface of magnet.

    Fig.3. BSE-SEM images and EDS mapping images of the PC GBD magnet[(a1)–(a6),(b1)–(b6)],the PA GBD magnet[(c1)–(c6),(d1)–(d6)],and the PCA GBD magnet[(e1)–(e6),(f1)–(f6)]at 50μm from the diffused surface.

    It is noted that Pr is also continuously distributed along the thin GB and presented a network structure in the PCA GBD magnet. However, the Pr concentration at the thin GB phases is obviously higher than that in the PA GBD magnet.This suggests that the joint addition of Al and Co in the diffusion source can make more Pr infiltrate into the thin GB to form the thin GB phases. Figure 4 is the concentration distribution of Pr in the GBD magnets with the increase of diffusion depth. In order to determine the concentration at different diffusion depths,we select a series of 100μm×100μm areas at 50–1850 μm from the diffused surface and calculate qualitatively the concentration of Pr for each area by EDS.Within the diffusion depth of 50–1250μm,it is noted that the PCA GBD magnet has the highest Pr concentration,the Pr concentration in the PA GBD magnet is second, while the Pr concentration is lowest in the PC GBD magnet. This indicates that the diffusion effect of Al on Pr is better than that of Co, while the joint addition of Al and Co in the diffusion source can further promote Pr diffusion into the magnet. Thus,in the PCA GBD magnet,a wide range of continuous GB phases can be formed and the width of the thin GB phases is also wider. In order to further analyze the effect of Co and Al on Pr in the GBD,the element distribution of the diffused magnet is characterized by TEM.

    Figure 5 shows the HAADF-STEM images of the PC,PA and PCA GBD magnets near the diffused surface,respectively.It can be found that Pr is mainly concentrated in the triple junction phases and only a few parts are distributed in the thin GB phases in the PC GBD magnet. However, in the PA and PCA GBD magnets,Pr exists extensively at the triple junction phases and the thin GB phases. This indicates that the wettability of GB phases in the PA and PCA GBD magnets is better than that of the PC GBD magnets. Through the distribution of Co and Al, it can be observed that Co is mainly concentrated in the triple junction phases and the distribution at the thin GB phases is not obvious in the PC GBD magnet. In the PA GBD magnet,Al is distributed at the triple junction phases and the thin GB phases. Co can be observed in the PA GBD magnet due to the presence of Co in the commercial 42M sintered Nd–Fe–B magnet. However,in the PA GBD magnet,the change of the magnet structure after diffusion is mainly caused by the Pr and Al in the diffusion source. Through the comparison between the PC GBD magnet and the PA GBD magnet,it can also be inferred that the wettability of GB phases cannot be effectively improved by Co,whereas can be effectively improved by Al.

    Fig.4. The concentration distribution of Pr in the PC, PA and PCA GBD magnets with the increase of diffusion depth from the diffused surface.

    Fig.5. The HAADF-STEM images of the PC GBD magnet (a1)–(a6), the PA GBD magnet (b1)–(b6) and the PCA GBD magnet (c1)–(c6)near the diffused surface.

    In the PCA GBD magnet,there are three kinds of the thin GB phases (1, 2 and 3), as shown in Fig.5(c1). Compared with the thin GB phase 3, the content of Pr and Co is higher and the content of Al is lower in the thin GB phases 1 and 2.This phenomenon can also be observed in Figs. 3(e1)–3(e6)and 3(f1)–3(f6). As shown in Fig.3(f1), there are two kinds of the thin GB phases(1 and 2)in the PCA GBD magnet. The width of the thin GB phases 1 is obviously wider than that of the thin GB phases 2. Compared with the thin GB phases 2,the character of element distribution in the thin GB phases 1 is rich-Pr,rich-Co and poor-Al. However,Co has been shown to be unable to effectively enhance the the wettability of GB phases through the PC GBD magnet,the improvement of GB phases wettability mainly depends on Al. However,the width of the thin GB phases in the PA GBD magnet is obviously narrower than that in the PCA GBD magnet. This indicates that the formation of the wider thin GB phases in the PCA GBD magnet is the combined action of Co and Al. It can be inferred that,in the PCA diffusion sources,the main effect of Al is to improve the wettability of the GB phases, while the addition of Co can further improve the fluidity of Pr, so that more Pr flows into the thin GB from the triple junctions and then forms the wider thin GB phases.

    In addition,it can be found that the Pr concentration at the outermost layer of the Nd2Fe14B grain is significantly higher than that at the grain inner in the PA and PCA GBD magnets from Figs. 3(c4), 4(d4), 4(e4), 4(f4) and Figs. 5(b4) and 5(c4). In the outermost layer of the Nd2Fe14B grain, the Nd concentration is obviously lower than that of the grain inner.This indicates that the Pr-rich shells are formed in the PA and PCA GBD magnets. The effect of the Pr-rich shell on the magnetic properties of the Nd–Fe–B magnet[8,24,25]has been reported, which can further improve the coercivity of magnet because the HAof the Pr2Fe14B is higher than that of Nd2Fe14B.[4]Through micromagnetic simulation, Oikawa et al.[26]have shown that the Nd–Fe–B magnet with Pr-rich shells has a higher coercivity at 27?C. Thus, the existence of the Pr-rich shells in the PA and PCA GBD magnets is also helpful for the coercivity enhancement.

    4. Conclusions

    The magnetic properties and microstructure have been investigated in the sintered Nd–Fe–B magnet by grain boundary diffusion with Pr70Co30, Pr70Al30and Pr70Co15Al15alloys, respectively. The coercivity is enhanced from 1.63 T to 1.81 T, 2.01 T and 2.15 T by grain boundary diffusion with Pr70Co30,Pr70Al30and Pr70Co15Al15alloys,respectively.The microstructure analysis shows that Al can effectively improve the wettability of GB phases, while Co can further improve the fluidity of Pr. Thus, when Pr70Co15Al15alloy is used as a diffusion source, more Pr can diffuse into the magnet to form the wider thin GB phases, and the depth of continuous GB phases is also enhanced. This results in the obvious coercivity enhancement in the Pr70Co15Al15GBD magnet,mainly due to fact that the exchange-decoupling effect is obviously strengthened. The Pr-rich shell is also helpful for the coercivity enhancement. In addition, the addition of Co in the diffusion source inhibits the deterioration of remanence to a certain extent. In general, in the GBD process, the magnetic properties of the sintered Nd–Fe–B magnet can be effectively improved when Pr70Co15Al15alloy is used as the diffusion source,which provides a certain reference for the subsequent diffusion source design.

    久久精品国产自在天天线| 热99在线观看视频| a级毛片a级免费在线| 69人妻影院| aaaaa片日本免费| 九色国产91popny在线| 特级一级黄色大片| 搡老岳熟女国产| 久久久久久大精品| 久9热在线精品视频| 级片在线观看| 亚洲电影在线观看av| 日本 av在线| 在线观看美女被高潮喷水网站| 亚洲成人久久爱视频| 又黄又爽又刺激的免费视频.| 白带黄色成豆腐渣| 精品久久久久久,| 久久精品综合一区二区三区| 国产人妻一区二区三区在| 观看免费一级毛片| 全区人妻精品视频| 精品一区二区免费观看| 亚洲欧美清纯卡通| 男女那种视频在线观看| 国产精品一区二区性色av| 丰满的人妻完整版| 免费观看的影片在线观看| 国产精品永久免费网站| 亚洲最大成人中文| 国产主播在线观看一区二区| 毛片一级片免费看久久久久 | 国产精品久久久久久久电影| 国产精品一及| 亚洲av免费高清在线观看| 十八禁国产超污无遮挡网站| 久久香蕉精品热| 久久精品国产亚洲av香蕉五月| 最近视频中文字幕2019在线8| 亚洲成人久久爱视频| 成人美女网站在线观看视频| 午夜福利高清视频| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清专用| a级一级毛片免费在线观看| 三级国产精品欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区| 熟女人妻精品中文字幕| 日韩在线高清观看一区二区三区 | 亚洲最大成人手机在线| 免费人成在线观看视频色| 亚洲中文字幕一区二区三区有码在线看| 亚洲av.av天堂| 久久天躁狠狠躁夜夜2o2o| 99热这里只有精品一区| 99视频精品全部免费 在线| 91麻豆精品激情在线观看国产| 一区二区三区免费毛片| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 18禁在线播放成人免费| 免费看av在线观看网站| 伦理电影大哥的女人| 日本与韩国留学比较| 亚洲最大成人av| 在线免费观看不下载黄p国产 | 久久久久久久精品吃奶| 久久国产精品人妻蜜桃| 久久精品91蜜桃| 日韩欧美三级三区| 亚洲av免费高清在线观看| 久久久精品大字幕| ponron亚洲| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 国语自产精品视频在线第100页| 日韩精品有码人妻一区| 性色avwww在线观看| 中文在线观看免费www的网站| 全区人妻精品视频| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 欧美潮喷喷水| 国产精品福利在线免费观看| 亚洲黑人精品在线| 内地一区二区视频在线| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 一级毛片久久久久久久久女| 韩国av在线不卡| 男女那种视频在线观看| h日本视频在线播放| 香蕉av资源在线| a在线观看视频网站| 亚洲第一电影网av| 免费在线观看影片大全网站| av在线天堂中文字幕| 欧美丝袜亚洲另类 | 中国美女看黄片| 高清在线国产一区| 99久久久亚洲精品蜜臀av| 精品久久国产蜜桃| 成人二区视频| 小说图片视频综合网站| 床上黄色一级片| 日韩 亚洲 欧美在线| 亚洲中文日韩欧美视频| 日本色播在线视频| a在线观看视频网站| 亚洲三级黄色毛片| 亚洲乱码一区二区免费版| 天美传媒精品一区二区| 又爽又黄a免费视频| 国产极品精品免费视频能看的| 久久人人爽人人爽人人片va| 最新在线观看一区二区三区| 国产精品一区二区三区四区免费观看 | 不卡视频在线观看欧美| 搡老岳熟女国产| 毛片一级片免费看久久久久 | 成人三级黄色视频| 俺也久久电影网| 精品一区二区三区av网在线观看| 免费看a级黄色片| 我要搜黄色片| 亚洲图色成人| 精品人妻偷拍中文字幕| 极品教师在线免费播放| 久久人妻av系列| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 国产视频内射| 又紧又爽又黄一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲精品乱码久久久v下载方式| 网址你懂的国产日韩在线| 日本 av在线| 啪啪无遮挡十八禁网站| 久久久久久久亚洲中文字幕| 国产午夜福利久久久久久| 亚州av有码| 国产精华一区二区三区| netflix在线观看网站| 国产精品无大码| 欧美一区二区亚洲| 亚洲久久久久久中文字幕| 国内精品一区二区在线观看| 国产精品一及| 99热6这里只有精品| 国产午夜精品论理片| 欧美bdsm另类| 美女cb高潮喷水在线观看| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 99久久中文字幕三级久久日本| 亚洲va在线va天堂va国产| 久久久精品大字幕| 国产精品久久久久久亚洲av鲁大| 成人午夜高清在线视频| 精品一区二区三区av网在线观看| 免费看a级黄色片| 69人妻影院| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 国产成人一区二区在线| 国产真实伦视频高清在线观看 | 内射极品少妇av片p| 午夜福利18| 亚洲av一区综合| 欧美3d第一页| 麻豆成人av在线观看| 国产精品人妻久久久影院| 欧美色视频一区免费| 黄色欧美视频在线观看| 国产 一区精品| 嫩草影院入口| 十八禁国产超污无遮挡网站| av在线观看视频网站免费| 91在线精品国自产拍蜜月| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 免费大片18禁| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 亚洲av一区综合| 亚洲不卡免费看| 日本成人三级电影网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清性xxxxhd video| 国产精品一区二区三区四区免费观看 | 精品国产三级普通话版| 国产人妻一区二区三区在| 日韩,欧美,国产一区二区三区 | 亚洲av中文字字幕乱码综合| 国产蜜桃级精品一区二区三区| av女优亚洲男人天堂| 国产免费男女视频| 哪里可以看免费的av片| 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩av片在线观看| 久久久久久久亚洲中文字幕| 又黄又爽又刺激的免费视频.| 赤兔流量卡办理| 国产黄片美女视频| 91av网一区二区| 俄罗斯特黄特色一大片| 极品教师在线视频| 国产毛片a区久久久久| 欧美又色又爽又黄视频| 久久精品夜夜夜夜夜久久蜜豆| 一个人免费在线观看电影| 亚洲欧美激情综合另类| 中文字幕av在线有码专区| 人人妻,人人澡人人爽秒播| 精品久久国产蜜桃| 成人性生交大片免费视频hd| 欧美最黄视频在线播放免费| 日韩欧美 国产精品| 国产成人福利小说| 能在线免费观看的黄片| 赤兔流量卡办理| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 啦啦啦啦在线视频资源| 免费看光身美女| 久久精品久久久久久噜噜老黄 | АⅤ资源中文在线天堂| 69av精品久久久久久| 国产美女午夜福利| 日韩大尺度精品在线看网址| 免费在线观看影片大全网站| 九色成人免费人妻av| 1024手机看黄色片| 国产伦精品一区二区三区四那| ponron亚洲| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲网站| 在线观看舔阴道视频| 午夜影院日韩av| 日本免费a在线| 91精品国产九色| 国产精品一区二区三区四区免费观看 | 国产一级毛片七仙女欲春2| 极品教师在线免费播放| 成人欧美大片| 国产精品国产三级国产av玫瑰| 亚洲va日本ⅴa欧美va伊人久久| 亚州av有码| 精品午夜福利视频在线观看一区| 国产高潮美女av| 校园人妻丝袜中文字幕| 在线国产一区二区在线| 亚洲av成人av| 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 全区人妻精品视频| 中国美女看黄片| 国产精品99久久久久久久久| a级毛片免费高清观看在线播放| 国产综合懂色| 免费av毛片视频| 桃色一区二区三区在线观看| 波多野结衣高清无吗| 久久久久九九精品影院| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 国产久久久一区二区三区| 人人妻,人人澡人人爽秒播| 给我免费播放毛片高清在线观看| 波野结衣二区三区在线| 欧美成人性av电影在线观看| 国产精品野战在线观看| 变态另类丝袜制服| 日本一本二区三区精品| 国产高清激情床上av| 桃色一区二区三区在线观看| av天堂在线播放| 国内精品宾馆在线| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 欧美+日韩+精品| 九色成人免费人妻av| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 亚洲黑人精品在线| 国产精品国产高清国产av| 淫秽高清视频在线观看| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 人妻丰满熟妇av一区二区三区| 午夜a级毛片| 麻豆精品久久久久久蜜桃| 国内精品美女久久久久久| 嫩草影院新地址| 波多野结衣巨乳人妻| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 国产一区二区三区av在线 | 18禁裸乳无遮挡免费网站照片| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 欧美高清成人免费视频www| 国产毛片a区久久久久| 欧美一区二区亚洲| 国产伦在线观看视频一区| 亚洲精品粉嫩美女一区| 黄色欧美视频在线观看| 国产欧美日韩精品亚洲av| 国产综合懂色| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久v下载方式| 亚洲国产精品sss在线观看| 很黄的视频免费| 国产爱豆传媒在线观看| 麻豆国产av国片精品| 在线a可以看的网站| 麻豆国产97在线/欧美| 夜夜夜夜夜久久久久| 日韩欧美 国产精品| 一个人免费在线观看电影| 黄色丝袜av网址大全| 国内揄拍国产精品人妻在线| 欧美极品一区二区三区四区| 欧美日韩精品成人综合77777| 亚洲人成伊人成综合网2020| 亚洲真实伦在线观看| 午夜精品在线福利| 永久网站在线| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 嫩草影院入口| 麻豆成人av在线观看| 国产精品久久久久久av不卡| 成人精品一区二区免费| 女生性感内裤真人,穿戴方法视频| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 中文字幕免费在线视频6| 日本与韩国留学比较| 久久久久性生活片| 国产三级在线视频| 桃色一区二区三区在线观看| 精品人妻视频免费看| 成年免费大片在线观看| 深夜a级毛片| 久久久国产成人精品二区| 午夜福利在线在线| 国产日本99.免费观看| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片| 日本成人三级电影网站| 99久久精品国产国产毛片| 国产亚洲精品久久久久久毛片| videossex国产| 亚洲av五月六月丁香网| 色播亚洲综合网| 亚洲性久久影院| 超碰av人人做人人爽久久| 国产成人一区二区在线| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 久久6这里有精品| 久久久久久久久久成人| 观看美女的网站| 亚洲精华国产精华液的使用体验 | 久久久久性生活片| 亚洲,欧美,日韩| 少妇人妻一区二区三区视频| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 久久精品影院6| 免费黄网站久久成人精品| 两个人的视频大全免费| av视频在线观看入口| 国产伦精品一区二区三区四那| 日本 av在线| 两人在一起打扑克的视频| 全区人妻精品视频| 日本a在线网址| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄 | 搡老熟女国产l中国老女人| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 不卡一级毛片| 少妇猛男粗大的猛烈进出视频 | 成年免费大片在线观看| 午夜激情福利司机影院| 大又大粗又爽又黄少妇毛片口| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 中文字幕久久专区| av国产免费在线观看| 久久午夜亚洲精品久久| 成人国产综合亚洲| 五月玫瑰六月丁香| 一级黄片播放器| 国产午夜福利久久久久久| 欧美zozozo另类| 久久久久久久久中文| 日日撸夜夜添| 婷婷丁香在线五月| 在线观看av片永久免费下载| 日本 欧美在线| 久久久久免费精品人妻一区二区| 白带黄色成豆腐渣| 久久久精品欧美日韩精品| 精品久久久噜噜| 久久久成人免费电影| 最新在线观看一区二区三区| 国内精品美女久久久久久| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱 | 亚洲三级黄色毛片| 亚洲综合色惰| 别揉我奶头 嗯啊视频| 国产私拍福利视频在线观看| 国产色婷婷99| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 国产成人影院久久av| 亚洲成人久久性| 亚洲人成伊人成综合网2020| 午夜福利欧美成人| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久黄片| 久久久久久久久中文| 一个人免费在线观看电影| 伦理电影大哥的女人| 俺也久久电影网| 99久久久亚洲精品蜜臀av| 久久精品国产亚洲网站| 午夜a级毛片| 久久国产精品人妻蜜桃| 久久久久久大精品| 国产精品国产高清国产av| 99riav亚洲国产免费| 91久久精品电影网| 国产精品伦人一区二区| 黄色女人牲交| av专区在线播放| 俄罗斯特黄特色一大片| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久国产a免费观看| 91在线观看av| 夜夜爽天天搞| 国产极品精品免费视频能看的| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 精品午夜福利视频在线观看一区| 国产精品免费一区二区三区在线| 少妇的逼水好多| 亚洲七黄色美女视频| .国产精品久久| 给我免费播放毛片高清在线观看| 99国产极品粉嫩在线观看| 一卡2卡三卡四卡精品乱码亚洲| 免费av毛片视频| 国产欧美日韩精品一区二区| 国内毛片毛片毛片毛片毛片| 一级黄色大片毛片| 在线免费十八禁| 国产精品无大码| 黄色丝袜av网址大全| 九色成人免费人妻av| 伦精品一区二区三区| 男女视频在线观看网站免费| 91久久精品电影网| 精品午夜福利视频在线观看一区| 88av欧美| 伦精品一区二区三区| 欧美成人一区二区免费高清观看| 国产乱人视频| 男人狂女人下面高潮的视频| 丰满人妻一区二区三区视频av| 国产av麻豆久久久久久久| 天美传媒精品一区二区| 久久精品91蜜桃| 亚洲人成伊人成综合网2020| 久久婷婷人人爽人人干人人爱| 国产综合懂色| 听说在线观看完整版免费高清| 国产精品一区二区三区四区免费观看 | 九色成人免费人妻av| 十八禁国产超污无遮挡网站| 搞女人的毛片| 色5月婷婷丁香| 18禁在线播放成人免费| 尾随美女入室| 偷拍熟女少妇极品色| 久久久久免费精品人妻一区二区| 亚洲av.av天堂| 亚洲av成人精品一区久久| 亚州av有码| 日日夜夜操网爽| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 国产高清激情床上av| 亚洲美女搞黄在线观看 | 麻豆久久精品国产亚洲av| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播放欧美日韩| 日韩av在线大香蕉| 99视频精品全部免费 在线| 99久久无色码亚洲精品果冻| 欧美日韩综合久久久久久 | 色av中文字幕| 男女下面进入的视频免费午夜| 色视频www国产| 午夜福利18| 欧洲精品卡2卡3卡4卡5卡区| 国产主播在线观看一区二区| 级片在线观看| 亚洲精品色激情综合| 国产aⅴ精品一区二区三区波| 日本色播在线视频| 免费在线观看成人毛片| 亚洲精品在线观看二区| 在线看三级毛片| 午夜免费成人在线视频| 亚洲成a人片在线一区二区| 村上凉子中文字幕在线| 亚洲精品456在线播放app | 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频| 亚洲美女搞黄在线观看 | 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清在线视频| 亚洲精品粉嫩美女一区| a级一级毛片免费在线观看| or卡值多少钱| 欧美日本视频| 一级毛片久久久久久久久女| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| 久久久久国产精品人妻aⅴ院| 国产亚洲精品久久久久久毛片| 久久6这里有精品| 精品福利观看| videossex国产| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| 亚洲精品在线观看二区| 性欧美人与动物交配| 日韩中字成人| 免费黄网站久久成人精品| 我的女老师完整版在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品国产成人久久av| 国产伦一二天堂av在线观看| 69av精品久久久久久| 欧美区成人在线视频| 真人一进一出gif抽搐免费| 日本免费一区二区三区高清不卡| 国内精品久久久久久久电影| 搡老岳熟女国产| 欧美最黄视频在线播放免费| 性插视频无遮挡在线免费观看| 欧美又色又爽又黄视频| 午夜久久久久精精品| 欧美日韩乱码在线| 国产高清视频在线播放一区| 色尼玛亚洲综合影院| 极品教师在线免费播放| 身体一侧抽搐| 欧洲精品卡2卡3卡4卡5卡区| 舔av片在线| 国产亚洲精品久久久久久毛片| 男人狂女人下面高潮的视频| 有码 亚洲区| 麻豆成人av在线观看| 成人鲁丝片一二三区免费| 天堂√8在线中文| 亚洲av二区三区四区| x7x7x7水蜜桃| 在线免费观看的www视频| 人妻制服诱惑在线中文字幕| 三级毛片av免费| 在线免费观看的www视频| 黄色配什么色好看| 18禁黄网站禁片午夜丰满| 精品久久久久久久久亚洲 | 国产乱人伦免费视频| 最新中文字幕久久久久| 久久精品国产亚洲av天美| 久久欧美精品欧美久久欧美| 99久国产av精品| 亚洲av美国av| 欧美+日韩+精品| 在线观看午夜福利视频| 熟女电影av网| 久久久国产成人免费| 欧美又色又爽又黄视频| 一级av片app| 国产免费av片在线观看野外av| 亚洲av成人精品一区久久| 淫秽高清视频在线观看| 日本熟妇午夜| 日韩高清综合在线| 男女啪啪激烈高潮av片| 婷婷丁香在线五月| 亚洲av美国av| 欧美日本视频|