• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu–Zn alloy?

    2021-03-11 08:33:34YouJunYe葉有俊LeQin秦樂JingLi李京LinLiu劉麟andLingKangWu吳凌康
    Chinese Physics B 2021年2期

    You-Jun Ye(葉有俊), Le Qin(秦樂), Jing Li(李京), Lin Liu(劉麟),?, and Ling-Kang Wu(吳凌康)

    1National Quality Supervision and Inspection Center of Pressure Pipe Components,

    Special Equipment Safety Supervision Inspection Institute of Jiangsu Province,Nanjing 210036,China

    2School of Mechanical Engineering,Changzhou University,Changzhou 213164,China

    3Jiangsu Power Equipment Co.,Ltd,Changzhou 213000,China

    4School of Material Science and Engineering,Georgia Institute of Technology,Atlanta,Georgia 30332-0245,USA

    Keywords: atomistic simulation,nano-indentation,wear behavior

    1. Introduction

    In the past twenty years, micro-electro-mechanical systems (MEMSs) and nano-electro-mechanical systems(NEMSs) have exhibited enormous potential applications.[1]With excellent abrasion resistance and electrical conductivity,Cu and its alloys have great potential to be applied to MEMS and NEMS devices.[2]The contact and wear, which lead the device life to degrade, thus restricting the application of the Cu and its alloys in MEMS and NEMS.Moreover,contact and wear are the main sources of material loss on a nanoscale.[3,4]Therefore, the investigation of the contact and wear behavior for copper and its alloys on a nanoscale is one of the key approaches to optimizing the design and reduce the material loss of MEMS and NEMS devices.

    As a classical contact model, the GW contact model is based on continuum theory to investigate the contact process,revealing the contact mechanism of the bonding surface on a microscale.[5]The GW model has been quite successful in describing contact behavior on a microscale.[6]The continuum theory is not well applicable for the contact behavior of discrete atomic systems at nanoscale.[7]In addition,for the basic mechanism of contact behavior on a nanoscale,no consensus has been reached. Therefore,revealing the contact mechanism on a nanoscale in depth is essential to exploring the complex phenomenon of the contact surfaces.Some novel experimental methods, such as nano-indentation, atomic force microscope(AFM),have been employed to investigate the friction process and wear mechanism on a nanoscale.[8]These experimental methods are not easy to analyze the characters of the atom,therefore the wear mechanisms on a nanoscale have not been understood well so far. As a novel analysis method,MD simulation is increasingly applied to atomic scale studies.[9–11]Considering the surface energy on an atomic scale, the contact and friction behavior exhibit size-dependent differences from on a macroscale. The atomistic simulation method is an effective method to explore the contact phenomena and wear mechanism on a nanoscale. Shen and Sun[12]conducted a series of MD simulations to delve into the friction behaviors of copper and diamond surfaces.Mojumder and Datta[13]studied the effect of copper percentage on the plasticity of Al–Cu alloy by the compressive load. However,the deformation and wear mechanism of Cu and its alloys, especially on a nanoscale,have not been fully explored.

    In this study, the atomistic simulations are carried out to investigate the contact behavior of a single rough peak, in order to explore the fundamental mechanisms of contact behavior and the applicability of the theoretical model of single rough peak on a nanoscale. Additionally,the simulations of a diamond tip sliding against Cu–Zn alloy with different Zn content values(in mol%)are performed to investigate the effects of Zn atoms on wear behaviors.

    2. Contact model of single rough peak

    Under the micro contact assumption and with continuum theory,Greenwood[5]established the GW model that describes the linear relationship between normal load and contact area. On a microscale,a large number of rough peaks exist on the contact surface,which suggests that the real contact is comprised of a lot of single rough peaks that contact each other. Considering the randomness of interface phenomenon,Greenwood simplified the contact between two rough surfaces into the contact between a rough surface and a smooth rigid plane. When the two rough surfaces are in contact, the number of contact micro-bulges n can be obtained from

    where A is the nominal contact area,η is the micro-bulge density, z is the height distribution, and g(z) is the probability density function of rough surface micro-bulges along with the height distribution.

    The total contact area Asumis calculated from

    where ω is the normal deformation of micro-bulge,R is the radius of the surface micro-bulge. The sum of contact load Psumis obtained from

    where E?is the composite elastic modulus.[5]

    From Eqs.(2)and(3)it follows that the relationship between the contact area A and the contact load P is a linear distribution, which is reasonable for the assumption and calculation due to the applicability of continuum theory on a macroscale and microscale. According to the assumption of GW model,some researchers made corrections to single rough peak.[14]During elastic contact and plastic contact,the contact area,and the contact force are as follows:

    where Aeand Feare the contact area and the contact force during the elastic contact, and Apand Fpduring the plastic contact;H is the Brinell hardness of soft material;R?is the radius of the single rough peak. Based on Eqs. (4) and (5), for the single rough peak,the contact area A and the contact force F are both proportional to the normal deformation ω.[14]

    It is questionable that the A is the contact area of the single rough peak. The actual contact area Arealis different from the A calculated by the continuum theory,thus the theory may not be applicable on a nanoscale. Moreover,it is difficult to obtain the atomic interaction of the contact interface experimentally.In this work, to better understand the interaction of the contact, MD simulations are employed to explore the nanoscale interface contact.

    3. Simulation details

    3.1. Initial configuration setup

    Fig.1. Atomistic model of nano-indentation and sliding. Threedimensional (3D) model the indenter tip of (a) diamond and (b) substrates of single crystal copper and Cu(brown)–Zn(red)alloy. (c)Twodimensional (2D) view of atomistic model. Thermostat layer colored blue is adjacent to fixed layer colored black.

    Fig.2. Contact force versus indentation time.

    In Ref. [26], the contact atoms between the contact surfaces are defined as the atoms that are in a finite range. The finite range is called the interactive radius, which is defined in the potential mentioned in Section 3 of this work. Based on the definition of contact status in GW model, two kinds of atoms,which are within the interactive radius and thus the normal force between them is negative, do not contact each other. During the simulation of the indentation process,when the atom on one surface is in the interactive radius of any atom on the other surface, the contact phase is considered on a nanoscale. In this status, each atom occupies a certain part of contact area. As shown in Fig.3, the total contact area is the sum of the areas of all the contact atoms on the contact surface. It can be expressed as

    where Arealis the contact area of total atoms,Aatomis the contact area of a single atom, and Natomis the total number of atoms in the contact surface.

    According to the Hertz theory and GW model, at the indentation depth in this research,the deformation is completely plastic.[5,14]Figure 4(a) shows the curves of the contact area versus indentation depth,which are obtained from the contact theory based on the GW model and MD simulation, respectively. In the case of a single rough peak, the curves show obviously the discrepancy between the theoretical model and the simulations. It can be seen that the contact area increases monotonically with indentation depth increasing. It is worth mentioning that the contact area obtained by the MD method is larger than that from the contact theory due to the adhesive interaction on an atomic scale. Furthermore, the relationship between the contact force and the indentation depth is shown in Fig.4(b).It can be seen that the contact force increases with the growth of indentation depth, and similarly, the value of contact force calculated by MD simulation is larger than that calculated from the contact theory. The two results show significant discrepancy between contact scenarios on a nanoscale and on a macroscale.

    As no new definition for the contact force is available,the calculation method of the contact force in the contact theory is the same as that of in the MD simulation. The relationship between the contact force and the contact area is shown in Fig.4(c). The MD results show a strong linear relationship with the contact theory results except for numerical difference.The discrepancy in contact force indicates the rationality of the redefinition for the contact area on a nanoscale. Due to the expansion of the contact area, the value of the contact force calculated by MD is higher than that by the contact theory.Moreover, it is worth noting that as shown in Figs. 4(a) and 4(b), neither the contact area nor the contact force rises linearly with indentation depth increasing any more. The results deviate from the results calculated from the contact theory.

    Fig.6. (a)Friction coefficient and(b)elastic modulus versus Zn content.

    Fig.7. Definition of lost atoms, showing (a) cross-sectional view and (b)top view,with sliding direction arrowed.

    The anti-wear ability of Zn atoms is analyzed by the mean square displacement (MSD), which can be used to describe the diffusion behaviors of atoms. The formula is given as follows:[29]

    where N is the total number of atoms for MSD calculation,ri(t)is the corresponding displacement of atom i at time t,and ri(0)refers to the initial displacement of atom i.

    Fig.8. Sliding-time-dependent total number of atoms lost from substrates with different Zn content.

    Figure 9 shows the MSD results in all directions of Cu atoms in the surface layer. It can be seen that a large number of atoms are extruded out of the surface layer and tend to return to their original location,which leads the MSD results to fluctuate. Meanwhile,from the numerical results of MSD,we can also obtain the displacement of Cu and Zn atoms in the friction process. It is obvious that the substrate with higher Zn content exhibits lower MSD value,and the overall displacement of Cu atoms is greater than that of Zn atoms, which also suggests that Cu atoms move faster than Zn atoms. In other words,the substrates with higher Zn content are more stable. The atoms’combination is stronger in the substrate with higher Zn content. With the same shear force,the stronger combination leads the atoms in the surface layers to less move. For the substrates with higher Zn content, most of the energy produced by shear force is used to overcome the stronger combination between atoms, while the remaining energy converts into the kinetic energy of atoms to generate movement,which exhibits less diffusion and leads to lower MSD results.

    Fig.9. Variations of MSD with sliding time for substrates with different Zn contents.

    During the sliding,the MSD results of Cu and Zn atoms in the substrate with Zn content of 20%mol are shown in Fig.10.The MSD values of Cu atoms are much higher than those of Zn atoms at the same time points. It is illustrated that the Cu atoms have higher diffusion capability than Zn atoms. Comparing the diffusion of the Cu atoms with that of Zn atoms,the substrate structure is a face centered cubic(fcc)structure,where the Cu atoms are in self-diffusion. Meanwhile, Zn is of hcp structure,which blocks the Zn atoms from diffusing in substrate. In the same condition,it needs more energy to pass over the potential barrier caused by dissimilar atoms, which means less energy converts into kinetic energy to generate movement. Briefly, in the same condition, the substrate with higher Zn content loses less atoms during sliding. In addition,higher elastic modulus and lower friction coefficient are observed in simulations,which reveal the anti-wear ability of Zn atoms in Cu–Zn alloy during sliding.

    Fig.10. Variations of MSD with sliding time for (a) Cu atoms and (b) Zn atoms.

    5. Conclusions

    Due to the adhesive interaction between the contacted atoms, the contact area and contact force calculated by MD are sublinear and deviate from those from the contact theory which is based on GW model. The effect of adhesive interaction decreases with roughness dropping. Lower roughness leads the calculated results from the MD and the theoretical model to be in better consistence.

    The elastic modulus of the substrate increases with the Zn content rising,and the higher elastic modulus of the substrate can offset some part of shear force to reduce friction force on the contact surface. The Zn atoms can improve the atom combination of the substrate,thereby inhibiting the diffusion of the atoms. The anti-wear ability of Zn atoms is due to the (hcp)structure of Zn substance, which blocks the diffusion movements of Zn atoms in substrate.

    视频中文字幕在线观看| a 毛片基地| 久久99热6这里只有精品| 久久这里有精品视频免费| 国产av精品麻豆| 欧美bdsm另类| 国产黄片视频在线免费观看| 18禁动态无遮挡网站| 免费看不卡的av| 身体一侧抽搐| 色吧在线观看| 高清欧美精品videossex| 亚洲精品乱码久久久v下载方式| 亚洲久久久国产精品| 久久久午夜欧美精品| 色哟哟·www| 五月天丁香电影| 精品亚洲成国产av| 男女免费视频国产| 一级a做视频免费观看| 久久久色成人| 99热这里只有是精品50| 国产免费一级a男人的天堂| 日本vs欧美在线观看视频 | 高清欧美精品videossex| 色婷婷久久久亚洲欧美| videos熟女内射| 国产成人精品一,二区| 黑丝袜美女国产一区| 日韩精品有码人妻一区| av国产久精品久网站免费入址| 中文字幕亚洲精品专区| 国产成人午夜福利电影在线观看| 精品视频人人做人人爽| 香蕉精品网在线| av线在线观看网站| 日韩一区二区视频免费看| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 男女免费视频国产| 免费观看av网站的网址| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 亚洲成人一二三区av| 亚洲性久久影院| 亚洲精品,欧美精品| av一本久久久久| 免费黄色在线免费观看| 久久久久久久久久成人| 久久久久精品久久久久真实原创| 插阴视频在线观看视频| 在线观看免费视频网站a站| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 水蜜桃什么品种好| 人妻一区二区av| 久久99蜜桃精品久久| 亚洲国产精品一区三区| 超碰97精品在线观看| 亚洲国产精品999| 自拍偷自拍亚洲精品老妇| 在线观看国产h片| 日本黄色片子视频| 内射极品少妇av片p| 成人黄色视频免费在线看| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 尾随美女入室| 日本av免费视频播放| 超碰av人人做人人爽久久| 国产亚洲一区二区精品| 亚洲色图av天堂| 99久久精品热视频| 国产淫片久久久久久久久| 国产欧美日韩精品一区二区| 免费人妻精品一区二区三区视频| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 看十八女毛片水多多多| 中文精品一卡2卡3卡4更新| 国产精品嫩草影院av在线观看| 国产一区有黄有色的免费视频| 日本-黄色视频高清免费观看| 免费不卡的大黄色大毛片视频在线观看| 高清欧美精品videossex| 亚洲第一av免费看| 一区二区三区精品91| 深爱激情五月婷婷| 日本欧美视频一区| 在线看a的网站| 有码 亚洲区| 97精品久久久久久久久久精品| 黑丝袜美女国产一区| 免费久久久久久久精品成人欧美视频 | 亚洲高清免费不卡视频| 一级爰片在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 搡老乐熟女国产| 热re99久久精品国产66热6| 欧美人与善性xxx| 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频| 99久久人妻综合| 在线天堂最新版资源| 日韩中文字幕视频在线看片 | 欧美精品人与动牲交sv欧美| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 亚洲第一区二区三区不卡| 大片电影免费在线观看免费| 免费黄色在线免费观看| 女性生殖器流出的白浆| 欧美精品国产亚洲| 欧美精品亚洲一区二区| 亚洲图色成人| 成人午夜精彩视频在线观看| 日韩人妻高清精品专区| 色吧在线观看| 久久久久久久精品精品| 亚洲欧美清纯卡通| 男人狂女人下面高潮的视频| 久久av网站| 国产熟女欧美一区二区| 亚洲国产色片| 国产一级毛片在线| 蜜桃在线观看..| 亚洲精品亚洲一区二区| 亚洲精品国产色婷婷电影| 国产精品国产三级国产专区5o| 久久婷婷青草| 久久女婷五月综合色啪小说| 精品久久久久久久久亚洲| 久久青草综合色| 亚洲人成网站在线播| 久久久久久久久久人人人人人人| 99热网站在线观看| 一本一本综合久久| 联通29元200g的流量卡| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| 亚洲精品色激情综合| 婷婷色综合www| 蜜桃久久精品国产亚洲av| 成人高潮视频无遮挡免费网站| 久久久亚洲精品成人影院| 久久99精品国语久久久| 多毛熟女@视频| 一级毛片久久久久久久久女| 免费看日本二区| 免费看不卡的av| 人体艺术视频欧美日本| 日日撸夜夜添| 国内精品宾馆在线| av专区在线播放| 国产成人freesex在线| 久久热精品热| 久久久国产一区二区| 深爱激情五月婷婷| 下体分泌物呈黄色| 少妇精品久久久久久久| 国产高清不卡午夜福利| 一区在线观看完整版| 色视频在线一区二区三区| 少妇 在线观看| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看| 亚洲美女视频黄频| 久久人人爽av亚洲精品天堂 | 国产精品人妻久久久久久| 亚洲精品aⅴ在线观看| 中国三级夫妇交换| videossex国产| 欧美成人午夜免费资源| 免费大片黄手机在线观看| 欧美精品一区二区免费开放| 久久久久人妻精品一区果冻| 精品99又大又爽又粗少妇毛片| 一级毛片黄色毛片免费观看视频| 国产精品精品国产色婷婷| 欧美高清性xxxxhd video| 国产女主播在线喷水免费视频网站| 偷拍熟女少妇极品色| 99久久人妻综合| 日韩人妻高清精品专区| 毛片一级片免费看久久久久| 国产成人午夜福利电影在线观看| 97超视频在线观看视频| 18禁动态无遮挡网站| 国产免费福利视频在线观看| 国产精品秋霞免费鲁丝片| 国产黄片视频在线免费观看| 免费少妇av软件| 91aial.com中文字幕在线观看| 18禁在线无遮挡免费观看视频| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 色综合色国产| 一级a做视频免费观看| 中文字幕亚洲精品专区| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久av不卡| 欧美日本视频| 一级片'在线观看视频| 久久久久久久大尺度免费视频| 亚洲第一区二区三区不卡| 青青草视频在线视频观看| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说| 国模一区二区三区四区视频| 亚洲性久久影院| 亚州av有码| 成人二区视频| 亚洲av国产av综合av卡| 99久久综合免费| 日韩欧美一区视频在线观看 | av卡一久久| av专区在线播放| 国产精品av视频在线免费观看| a 毛片基地| 一个人看的www免费观看视频| 欧美另类一区| 亚洲人成网站高清观看| 日本wwww免费看| 亚洲人与动物交配视频| 久久女婷五月综合色啪小说| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 国产男人的电影天堂91| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久| 久久午夜福利片| 97超碰精品成人国产| 亚洲av.av天堂| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 超碰av人人做人人爽久久| 日本欧美视频一区| 99久久中文字幕三级久久日本| 婷婷色av中文字幕| 国产高潮美女av| 卡戴珊不雅视频在线播放| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 亚洲熟女精品中文字幕| a级毛色黄片| 国产男女超爽视频在线观看| av在线播放精品| 国产伦精品一区二区三区四那| www.色视频.com| 久久99热6这里只有精品| 身体一侧抽搐| 我要看黄色一级片免费的| 一个人看视频在线观看www免费| 九色成人免费人妻av| 日日啪夜夜爽| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免| 蜜臀久久99精品久久宅男| 热99国产精品久久久久久7| 女性生殖器流出的白浆| 国产高清有码在线观看视频| 国产精品国产av在线观看| www.色视频.com| 嘟嘟电影网在线观看| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 一级爰片在线观看| 精品国产三级普通话版| 国产欧美日韩一区二区三区在线 | 日本黄大片高清| 欧美成人a在线观看| 国产精品人妻久久久久久| 精品午夜福利在线看| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 亚洲四区av| 黄色日韩在线| 91精品伊人久久大香线蕉| 熟女av电影| 有码 亚洲区| 一个人免费看片子| 亚洲av.av天堂| 纯流量卡能插随身wifi吗| 午夜福利在线在线| 韩国av在线不卡| 成人毛片60女人毛片免费| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 久久久久视频综合| 丝袜喷水一区| 爱豆传媒免费全集在线观看| 亚洲不卡免费看| 国产一区二区三区av在线| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 大陆偷拍与自拍| 91在线精品国自产拍蜜月| 熟女av电影| 夫妻午夜视频| 国产欧美日韩精品一区二区| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 亚洲精品色激情综合| 久久精品国产a三级三级三级| 精华霜和精华液先用哪个| 青春草国产在线视频| 久久热精品热| 51国产日韩欧美| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 日韩免费高清中文字幕av| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 国产精品人妻久久久久久| 有码 亚洲区| 亚洲三级黄色毛片| 国产成人精品婷婷| 中文字幕久久专区| 777米奇影视久久| 精品亚洲成国产av| 黑人高潮一二区| 涩涩av久久男人的天堂| 高清日韩中文字幕在线| 一个人免费看片子| 777米奇影视久久| 免费黄频网站在线观看国产| 黑人高潮一二区| 老女人水多毛片| 日韩制服骚丝袜av| 高清在线视频一区二区三区| 日日撸夜夜添| 亚洲人成网站高清观看| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美三级亚洲精品| 免费观看的影片在线观看| 成人亚洲欧美一区二区av| 久久 成人 亚洲| 精品酒店卫生间| 国精品久久久久久国模美| 伊人久久精品亚洲午夜| 亚洲,一卡二卡三卡| 国产精品99久久久久久久久| 色视频在线一区二区三区| 亚洲,欧美,日韩| 在线观看国产h片| 日韩在线高清观看一区二区三区| 一级二级三级毛片免费看| 亚洲欧美成人精品一区二区| 中国国产av一级| 欧美老熟妇乱子伦牲交| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 日韩av在线免费看完整版不卡| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 亚洲国产最新在线播放| 日本-黄色视频高清免费观看| 毛片女人毛片| 午夜福利网站1000一区二区三区| 亚洲人与动物交配视频| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 在线观看免费日韩欧美大片 | 国产人妻一区二区三区在| 国产成人精品久久久久久| 在现免费观看毛片| 亚洲av欧美aⅴ国产| 在线免费十八禁| 午夜福利网站1000一区二区三区| 久久精品夜色国产| 国产精品偷伦视频观看了| 韩国高清视频一区二区三区| 一区在线观看完整版| 18禁动态无遮挡网站| 日韩伦理黄色片| 欧美高清性xxxxhd video| 亚洲欧美成人综合另类久久久| 亚洲图色成人| 亚洲自偷自拍三级| 成人午夜精彩视频在线观看| 偷拍熟女少妇极品色| 亚洲在久久综合| 亚洲,一卡二卡三卡| 成人免费观看视频高清| 婷婷色综合www| 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 日日啪夜夜撸| 晚上一个人看的免费电影| 精品国产乱码久久久久久小说| 国产91av在线免费观看| 亚洲综合色惰| 国产免费又黄又爽又色| 夫妻午夜视频| 久久久久久久久久成人| 男男h啪啪无遮挡| av福利片在线观看| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 97精品久久久久久久久久精品| 免费高清在线观看视频在线观看| 国产v大片淫在线免费观看| 少妇丰满av| 97在线人人人人妻| 亚洲自偷自拍三级| 国产成人午夜福利电影在线观看| 观看美女的网站| 国产精品.久久久| 18禁在线无遮挡免费观看视频| 国产有黄有色有爽视频| 国产成人aa在线观看| 日韩一本色道免费dvd| 一级黄片播放器| 黄片无遮挡物在线观看| 国产91av在线免费观看| 久久久久视频综合| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 色综合色国产| 日本欧美国产在线视频| 2022亚洲国产成人精品| 18禁动态无遮挡网站| 日本vs欧美在线观看视频 | 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 18禁动态无遮挡网站| 日本vs欧美在线观看视频 | 亚洲av欧美aⅴ国产| 国产乱来视频区| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 亚洲综合色惰| 久久久久久久久久久丰满| 少妇人妻 视频| 老女人水多毛片| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美 | 蜜臀久久99精品久久宅男| 国产精品久久久久久久久免| 七月丁香在线播放| 赤兔流量卡办理| 午夜免费鲁丝| 色网站视频免费| av女优亚洲男人天堂| 久久久午夜欧美精品| 国产精品蜜桃在线观看| 97超视频在线观看视频| kizo精华| 亚洲,一卡二卡三卡| 在线天堂最新版资源| 久久久久精品性色| 黄片无遮挡物在线观看| 国产深夜福利视频在线观看| 久久久久久久久大av| h视频一区二区三区| 国产精品精品国产色婷婷| 国产精品.久久久| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 亚洲av不卡在线观看| 日日撸夜夜添| 久久毛片免费看一区二区三区| 最近中文字幕高清免费大全6| 成人亚洲欧美一区二区av| 丝袜脚勾引网站| 只有这里有精品99| 久久精品国产a三级三级三级| 午夜激情久久久久久久| 亚洲久久久国产精品| 欧美日韩国产mv在线观看视频 | 国产无遮挡羞羞视频在线观看| 妹子高潮喷水视频| 看非洲黑人一级黄片| 久久久a久久爽久久v久久| 精品一区在线观看国产| 岛国毛片在线播放| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| 国产乱人偷精品视频| 国产亚洲午夜精品一区二区久久| 久久av网站| 91精品伊人久久大香线蕉| 国产精品一区二区性色av| 韩国高清视频一区二区三区| 久久久久久伊人网av| 日日啪夜夜爽| 国产成人免费观看mmmm| 国产精品一区www在线观看| 亚洲精品456在线播放app| 男人舔奶头视频| 亚洲欧美日韩另类电影网站 | 99久久中文字幕三级久久日本| 国产91av在线免费观看| 亚洲精品日韩av片在线观看| 欧美成人精品欧美一级黄| 最黄视频免费看| 国产深夜福利视频在线观看| 久久久久久久久大av| 亚洲精品一区蜜桃| 最近最新中文字幕免费大全7| 免费黄频网站在线观看国产| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 美女中出高潮动态图| 欧美一区二区亚洲| 欧美日韩一区二区视频在线观看视频在线| a级毛色黄片| 七月丁香在线播放| 久久毛片免费看一区二区三区| av卡一久久| 91午夜精品亚洲一区二区三区| 九九爱精品视频在线观看| 色哟哟·www| 女人久久www免费人成看片| 久久久久精品性色| 又大又黄又爽视频免费| 国产欧美日韩精品一区二区| 91久久精品国产一区二区成人| 欧美精品一区二区大全| 免费黄网站久久成人精品| 亚洲内射少妇av| 少妇高潮的动态图| 狂野欧美激情性bbbbbb| 一区二区av电影网| 日韩在线高清观看一区二区三区| 一级毛片我不卡| 日本与韩国留学比较| 国产 一区 欧美 日韩| 久久综合国产亚洲精品| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久丰满| 丰满人妻一区二区三区视频av| 免费看不卡的av| 欧美日韩国产mv在线观看视频 | 高清在线视频一区二区三区| 搡老乐熟女国产| 国产有黄有色有爽视频| 婷婷色av中文字幕| 大片电影免费在线观看免费| 亚洲中文av在线| 久久久久国产精品人妻一区二区| 99热网站在线观看| 久久亚洲国产成人精品v| 中文字幕精品免费在线观看视频 | 国产亚洲一区二区精品| 亚洲一级一片aⅴ在线观看| 欧美人与善性xxx| 亚洲四区av| 只有这里有精品99| 亚洲第一av免费看| 亚洲aⅴ乱码一区二区在线播放| 男的添女的下面高潮视频| 国产深夜福利视频在线观看| 久久久精品94久久精品| 亚洲成色77777| 麻豆乱淫一区二区| 国产欧美另类精品又又久久亚洲欧美| 日本黄色日本黄色录像| 国产成人aa在线观看| 亚洲av成人精品一二三区| 国产av一区二区精品久久 | 国产午夜精品一二区理论片| 97热精品久久久久久| 免费高清在线观看视频在线观看| 久久久久久久亚洲中文字幕| 天堂8中文在线网| 国产成人精品久久久久久| 纯流量卡能插随身wifi吗| 色哟哟·www| 欧美区成人在线视频| 免费看av在线观看网站| 国产国拍精品亚洲av在线观看| 日韩,欧美,国产一区二区三区| 亚洲国产精品成人久久小说| 少妇丰满av| 免费看不卡的av| av不卡在线播放| 看非洲黑人一级黄片| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 国产黄频视频在线观看| 联通29元200g的流量卡| 王馨瑶露胸无遮挡在线观看| 国产精品无大码| 久久这里有精品视频免费| 精品久久久精品久久久| 五月伊人婷婷丁香| 免费看不卡的av| 久久久色成人| 久久99热这里只有精品18| 国产成人一区二区在线| 中文乱码字字幕精品一区二区三区| 少妇人妻 视频| 欧美+日韩+精品| 久久久久精品性色| 高清日韩中文字幕在线| 人妻制服诱惑在线中文字幕| 国产中年淑女户外野战色| xxx大片免费视频| av福利片在线观看|