• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cluster mean-field study of spinor Bose–Hubbard ladder:Ground-state phase diagram and many-body population dynamics?

    2021-03-11 08:33:32LiZhang張莉WenjieLiu柳文潔JiahaoHuang黃嘉豪andChaohongLee李朝紅
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張莉

    Li Zhang(張莉), Wenjie Liu(柳文潔), Jiahao Huang(黃嘉豪),?, and Chaohong Lee(李朝紅),?

    1Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing&School of Physics and Astronomy,

    Sun Yat-Sen University(Zhuhai Campus),Zhuhai 519082,China

    2State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-Sen University(Guangzhou Campus),Guangzhou 510275,China

    Keywords: spinor Bose gases,superfluid-Mott insulator phase transition,Landau–Zener dynamics

    1. Introduction

    The high degree of tunability of ultracold atoms in period optical potentials enables it to be an excellent platform for simulating the Bose–Hubbard(BH)models.[1–5]The quantum phase transition from a superfluid(SF)phase to a Mott insulator(MI)phase has been widely studied after its realization in scalar Bose–Einstein condensate(BEC)trapped in cubic optical lattice.[2,6–9]It is a second order phase transition for spinless bosons confined in optical lattices,which is characterized by a continuous change of the SF order parameter with the system parameters.[10,11]

    As an important fundamental problem, the Landau–Zener (LZ) dynamics has attracted much attention for a long time.[12–22]The original single-particle LZ problem describes the non-adiabatic transition when a two-level system is linearly driven across an avoided level crossing.[23,24]The transition probability is independent of the initially occupied level and given by the celebrated LZ formula.[23,24]The many-body generalization of the LZ problem has been explored in scalar BECs within double-well potentials and its extension, a twochain optical ladder, where population dynamics is studied through linearly sweeping the bias energy between the double wells and the two chains respectively.[12–18,20]Unlike the single-particle LZ process,adiabaticity breaks down in the inverse sweep from the highest level while avoided level crossing remains in the ground-state sweep from the ground state level. This is ascribed by the interparticle interaction which induces a characteristic swallow-tail-shaped loop structure in the high energy levels.[12–15,17,18]

    Bosons can possess spin degree of freedom when confined in optical traps.Different from scalar BECs,when spinor BECs are loaded into an optical lattice, the spin-dependent interaction comes to play a role. It can change the spins of two interacting bosons while conserving the total magnetization, which leads to a range of phenomena that are absent in the scalar BECs.[25–30]One important aspect is the change of the nature of the SF–MI phase transition. While the SF–MI phase transition remains second order in ferromagnetic interacting BECs in optical lattice, it can be first order in antiferromagnetic interacting ones.[31–34]The SF–MI phase diagrams for both ferromagnetic and antiferromagnetic interacting BECs have been given by Monte Carlo and mean-field(MF) calculations.[31–34]Recently, the first order nature of the SF–MI phase transition has been experimentally demonstrated in cubic lattice trapped sodium antiferromagnetic interacting BECs.[35]On the other hand, spinor bosons in optical lattices serve as a good candidate to study many-body dynamics.[4,29,36–42]The main dynamical studies have focused on the spin-mixing oscillations in a single site of deep optical lattice,[37,38]nonequilibrium dynamics by quenching the lattice depth or the magnetic field,[39–41]and the coupled dynamics of few atoms in double well.[42]The adiabatic dynamics of the lattice confined spinor BECs, to our knowledge, is rarely uncovered.

    The cluster MF approach,as an extension of conventional single-site MF approach, provides an alternative way to simulate BH models.[20,43–48]It decouples the whole system as clusters of multiple lattice sites, where intracluster couplings remain and the clusters interact with the surrounding ones through mean fileds. Thus, it preserves most merits of the spatial correlations but costs relatively small amount of computational resources. The cluster MF approach has been successfully applied to solve the ground-state and many-body LZ problems for bosons trapped in superlattices.[20,43–46]

    In this article, we present a theoretical study on the ground-state properties and many-body population dynamics of spin-1 bosons confined in a two-chain lattice ladder by the cluster MF approach. In the framework of our cluster MF treatment, each rung of the ladder is treated as a coherent whole,in which the intra-rung correlation is reserved,and the inter-rung tunneling is decoupled by the MF approximation. For unbiased ladder,we find that the ground states(GSs)include SF phase and integer filling MI (IntMI) phase, the transition between which can be first order at a part of the phase boundary curves. For biased ladder, in addition to the SF phase and IntMI phase, we find a half-integer filling MI(HIntMI)phase, and the transition between the SF phase and the HIntMI phase is always second order. Tuning the bias energy continuously,we report on a change of the SF–MI phase transition nature, accompanied by the variation of the filling number in the MI phase. Furthermore, we analyze the population dynamics by linearly sweeping the inter-chain bias with different sweep rate and initial states,namely,the equilibrium initial states which are the eigenstates of the initial system and the nonequilibrium initial states. We find that, for the equilibrium initial state,the adiabaticity breaks down if the atoms initially occupy the higher chain while it is kept if they initially occupy the lower chain. For nonequilibrium initial states,the spin-dependent interaction leads to rich population dynamics,but does not affect the adiabaticity of the population transfer.

    The article structure is as follows. In Section 2, we give the Hamiltonian for our physical system. In Section 3, we present the cluster MF ground-state phase diagrams. In Section 4, we study the population dynamics and analyze the effect of the spin-dependent interaction. In the last section, we summarize our results.

    2. Spinor bosons in two-chain ladder

    We consider an ensemble of F = 1 bosons confined in a two-dimensional optical lattice created by two pairs of counterpropagating linearly polarized laser waves running in two orthogonal directions. The laser waves form left- and right-polarized standing waves with Rabi frequency ?ν(rν)=?0νcos(kLrν), where ν =x, y represents the propagation direction, and kLis the wave vector of the laser beams. The mF= ±1 sublevels are coupled indirectly by the V and Λ transitions to the excited states caused by the two polarized standing waves. When the detunings are sufficiently large,the effective potential for the atoms in the three degenerate GSs reads as[31,32]

    The two lowest Bloch eigenmodes of this potential,denoted by 0 and Λ,can be well seperated from the others.Thus,the tightbinding model in the lowest-band approximation can be reduced to a two-component Bose–Hubbard Hamiltonian.[31,32]Imposing an additional standing wave with wave vector kL/2 along the y direction, we can obtain a series of parallel two-chain ladders. If the barrier between neighboring ladders is sufficiently high, the ladders are decoupled into individual ones. The Hamiltonian for a single ladder, see Fig.1, can be described by a spinor Bose–Hubbard ladder(BHL)

    We first consider the unbiased case with ?= 0. Due to the absence of asymmetry, the two chains are equivalent and the order parameters of both chains are always equivalent ψ=ψL=ψR. The phase diagram in this case is shown in Fig.2(a).The SF phase appears when the system is dominated by the tunneling terms. Otherwise, when the on-site interaction term dominates,the IntMI phase appears. Our cluster MF calculation shows that the SF–IntMI phase transition can be first order at a part of the boundaries for each Mott lobe, as indicated by the jump and hysteresis behavior of the order parameters when sweeping the tunneling strength forwards and backwards,see the green and yellow dashed lines in Fig.2(c)for μ/U =0.4. The hysteresis behavior of the order parameters suggests that there exist metastable SF and metastable MI phases in the system. The true SF–MI critical points should be determined by considering the GS properties. Our result contrasts with the case in the simple optical lattice,where the first order phase transition may occur only between IntMI phase with even filling number and SF phase,acquired by single-site MF approach.[31–33,35]

    When the spinor BHL is biased, the two chains are no longer equivalent, so the order parameters ψLand ψRmay have different values. However,since the two chains are coupled by interchain tunneling, ψLand ψRchange to zero or nonzero simultaneously as the system parameters vary, see the dotted and dot-dashed black lines in Fig.2(d), where we plot ψLand ψRas functions of J/Usat ?/Us= ?0.5 andμ/Us=0.4. Thus,we can define the phase diagram according to either of the order parameters.

    The phase diagram for ?/Us= ?0.5 is shown in Fig.2(b). In the Mott limit,the intervals ofμ/Usfor different nRon the right chain move upwards by an amount of ??/Us,compared to the corresponding ones on the left chain. Thus,besides IntMI phase, there will appear HIntMI phase where the total particle number is odd. The chemical potential intervals for filling number n and n+1/2 are respectively given by

    if n is even,and

    if n is odd. As J/Usincreases, we find that while the phase transition between the IntMI phase and the SF phase can be first order, that between the HIntMI phase and the SF phase must be second order. The order parameters continuously change from zero in the HIntMI phase to finite in the SF with no hysteresis,see Fig.2(d)withμ/Us=0.4.

    Fig.2. (a)and(b)Ground-state phase diagrams for the unbiased and biased spinor BHL with ?/Us=0 and ?/Us=?0.5,respectively. The IntMI and HIntMI phases are denoted by the filling number n. The blue lines are the true boundaries between the MI and SF phases in the GSs. First order phase transitions are accompanied by the appearance of metastable MI and metastable SF phases. The dashed green and yellow lines denote the MI-metastable SF and metastable MI–SF phase boundaries. (c)The order parameters as functions of J/Us atμ/Us=0.4,and ?/Us=0. First order phase transition accompanied by jump and hysteresis of the order parameters appears when sweeping J/Us forwards(dashed yellow lines)and backwards(dashed green lines). Arrows indicate the sweep direction. The true phase transition point is denoted by the solid blue line. (d)The order parameters ψL and ψR as functions of J/Us atμ/Us=0.4 and ?/Us=?0.5. Second order phase transition appears with no hysteresis. ψL(dotted black line)and ψR(dot-dashed black line)vanish continuously at the same value of J/Us. (e)The critical point Jc/Us as a function of ?/Us atμ/Us=0.4. Whenμ/Us+?/Us <0,the filling number in the MI phase is 1/2,and the SF–MI phase transition is always second order. Whenμ/Us ??/Us>0,the filling number in the MI phase is 1,and the first order phase transition may appear.

    Our results can return to the case of a single ladder in large detuning limit. When|?|is sufficiently large,the spinor BHL can be regarded as two decoupled chains (the potential energy of one chain is much lower than the other). Thus, the GS phase diagrams would recover the ones of a single chain,where the filling number is twice the definition here and only the even-filling MI phases support the metastable states.[31–34]Correspondingly, only integer filling MI phases support the metastable states here.

    The above results suggest that one can tune the nature of the SF–MI phase transition by changing the bias energy between the two chains. In Fig.2(e),we show the critical points of the SF–MI phase transition as a function of the bias energy at μ/Us=0.4. When ?/Us=0, the IntMI phase is at unit filling, and the transition to the SF phase is first order. As?/Usdecreases before reaching ?μ/Us,the filling number is unchanged, and the SF–MI phase transition remains first order. After ?/Usdecreases beyond ?μ/Us, the filling number decreases to 1/2,and the SF–MI phase transition becomes second order. Thus,it provides a new approach to control the nature of the SF–MI phase transition by tuning the bias energy.

    4. Population dynamics

    In this section,we analyze the many-body population dynamics in the spinor BHL.The interchain energy bias ?(t)is linearly swept from negative to positive or vice versa, which is described by ?(t)=?0+vt, with ?0being the initial bias and v denoting the sweeping rate. We consider two typical sweep processes: the direct and the inverse sweeps, and two typical initial states: the equilibrium and the nonequilibrium initial states. In the direct sweep,all the particles are prepared in the lower chain,and the initial bias is set as ?0=?50 and then it is linearly increased from ?0to ?Twith the sweep rate v=(?T??0)/T >0. In the inverse sweep, all the particles are prepared in the higher chain, and the initial bias is set as?0=50 and then ?(t) is linearly decreased from ?0to ?Twith the sweep rate v=(?T??0)/T <0. Here T is the total sweep time, and the particles are initial prepared on the left chain for both sweep processes. We consider two typical initial states for the initial condition: the equilibrium initial state |N,0;0,0〉s(for even N) or |N,±1/2;0,0〉s(for odd N),which is a product of the left-chain GS and the right-chain vacuum state; and the nonequilibrium initial state |N,0;0,0〉For|0,N;0,0〉Fwith all particles being either component on the left chain, which makes no qualitative difference. To show the population dynamics, we calculate the fraction of transferred components to the right chain nα,R(t)=〈?nα,R〉(t)/N and the fraction of components remained on the left chain nα,L(t) = 〈?nα,L〉(t)/N. The total particle number is set as N = 10. The interaction and tunneling strengths are set as Us=1 and J =2, respectively. Below, we study the population dynamics for different initial states and sweep rates. The details of the cluster MF algorithm for calculating the population dynamics can be referred to Ref.[20].

    We first consider the equilibrium initial state|10,0;0,0〉s,for which n0,L(0)=nΛ,L(0)=0.5. Independent of the sweep rate,the two components transferred to the right chain and/or remained on the left chain are always equal,see Fig.3,where n0,R(t) and n0,L(t) collapse with nΛ,R(t) and nΛ,L(t), respectively. Significant population transfer occurs around ?(t)=0,at which the potential energies of the two chains match. The transfer fractions n0(Λ),Rdepend on the sweep process and rate sensitively. For large sweep rate, both the direct sweep and the inverse sweep are nonadiabatic. The transfer fractions increase rapidly around ?(t) = 0 and keep a specific value which is lower than 0.5,see Figs.3(a)and 3(b)with|v|=50.For small sweep rate, the direct sweep is adiabatic, while the inverse sweep remains nonadiabatic, see Figs. 3(c) and 3(d)with |v|=25. In the direct sweep (v=25), the final transfer fractions n0(Λ),Rreach the perfect limit 0.5 and the remained fractions are zero. In the inverse sweep (v = ?25), the final transfer fractions are still below 0.5 and keep oscillating around a particular value, which means the dynamic process is still nonadiabatic. This adiabaticity breakdown in the inverse sweep has already presented in the LZ dynamics of the many-body scalar BHL,[15–17,20]which is a result of the spinindependent interaction that causes a swallow-tail-shaped loop structure in the energy spectrum.[12–15,17,18]

    We then consider the nonequilibrium initial state|10,0;0,0〉Fby preparing ten 0-particles on the left chain. In this case, the spin-dependent interaction plays a role in the population dynamics. We focus on the direct sweep,with the results of the inverse sweep differentiating only by the lower transfer efficiency. Dependent on the sweep rate, different dynamic processes occur. For fast sweep, the transfer of the particles to the right chain is nonadiabatic, see Fig.4(a) with v=50. The 0-particles first partially transfer to the right chain around ?(t)=0,and then interconvert with Λ-particles on individual chains due to the spin-dependent interaction Ua. For slow sweep,the transfer of particles to the right chain is adiabatic,see Fig.4(b)with v=25. The 0-particles transfer to the right chain completely around ?(t)=0,and then interconvert with the Λ-particles on the right chain, which is governed by the dynamics led by the spin-dependent interaction. When the sweep is slow enough that Uais comparable with v/2π, the 0-particles can interconvert with the Λ-particles in time before they are adiabatically transferred to the right chain, see Fig.4(c) with v=1, where n0(Λ),Loscillate with time before?(t)reaches 0. Around ?(t)=0, the two components transfer to the right chain completely and then keep oscillating with time on the right chain. These results imply that while the spin-dependent interaction influences the details of the population dynamics, it has little impact on the transfer efficiency and even nonequilibrium state can be adiabatically transferred to the other chain by tuning the interchain bias.

    Fig.3. Many-body population dynamics in the spinor BHL for equilibrium initial state|10,0;0;0〉s and different sweep rate. n0(Λ),R(t)and n0(Λ),L denote the fractions transferred to the right chain and remained on the left chain, respectively. The solid red line and the dashed green line denote n0,L(t) and nΛ,L(t), respectively, and collapse with each other. The dotted blue line and the dot-dashed yellow line denote n0,R(t)and nΛ,R(t),respectively, and collapse with each other. The top panel stands for fast sweep:(a) v=50 and ?0 =?50 for direct sweep and (b) v=?50 and ?0 =50 for inverse sweep. The bottom panel stands for slow sweep: (c)v=25 and?0=?50 for direct sweep and(d)v=?25 and ?0=50 for inverse sweep.The system parameters are set as Us=1 and J=2.

    Fig.4. Many-body population dynamics in the spinor BHL for nonequilibrium initial state |10,0;0,0〉F with sweep rate: (a) v=50, (b) v=25,and(c)v=1. The initial bias is set as ?0=?50. n0,L(t),nΛ,L(t),n0,R(t),and nΛ,R(t)are denoted by the solid red,dashed green,dotted blue,and dot-dashed yellow lines,respectively. The system parameters are set as Us=1 and J=2.

    To further understand the population dynamics, we calculate the energy spectrum of the system. The entire energy spectrum can be obtained by diagonalizing the Hamiltoian(8)with the order parameters obtained by the self-consistent procedure.[17]In Fig.5, we show the eigenergies as a function of the bias energy for total particle number N = 10.The other system parameters are set as Us= 1 and J = 2.It is clear that there are N+1 bands, each of which features nL= n0,L+nΛ,Land N ?nLparticles on the left and right chains, respectively. When ???1, nLis an integer and decrease from N to zero with the band index; by contrary,it increases from zero to N when ??1. In the lower part of the spectrum, there is an avoided level crossing point between the lowest and the second bands. In the upper part of the spectrum, there forms a loop structure. Thus, for the direct sweep,in which both the equilibrium and nonequilibrium initial states are prepared in the lowest band, the states can cross the avoided crossing point adiabatically without exciting to the second band as far as the sweep rate is small enough.For the inverse sweep,in which the equilibrium and nonequilibrium initial states are prepared in the highest band, adiabaticity breaks down,as indicated by the loop structure.

    Fig.5. Energy spectrum for total particle number N =10. The color denotes the number of particles on the left chain. Insets on the left lower and right top corners: the magnifications of the lower and upper parts of the energy spectrum around ?=0,respectively. Only the lowest and highest two bands are shown for visualization purpose. The system parameters are set as Us=1 and J=2.

    5. Summary

    In conclusion,we present a cluster MF study of the static and dynamic properties of spinor sodium atoms confined in a two-chain ladder. For unbiased ladder,the ground-state phase diagram includes the SF phase and the IntMI phase with integer filling number,the phase transition between which can be first order at a part of the boundaries around each Mott lobe.For biased ladder, in addition to the SF phase and the IntMI phase,the HIntMI phase with half-integer filling number may appear. The transition between the SF phase and the HIntMI phase is always second order. Thus,we can change the nature of the SF–MI phase transition by continuously tuning the bias energy.

    In the study of many-body population dynamics,we have considered two different kinds of initial states to study the effect of the spin-dependent interaction: the equilibrium and the nonequilibrium initial states. For the equilibrium initial state,the spin-dependent interaction does not influence the dynamic process. The adiabaticity breaks down in the inverse sweep,as in scalar BHL. For the nonequilibrium initial state, the spindependent interaction leads to rich dynamic processes, but does not affect the efficiency of the particle transfer. Even nonequilibrium initial state can be transferred from the lower chain to the higher chain adiabatically.Our results open an avenue to study the dynamics of spinor bosons in optical lattices.

    Our findings of the bias tuned SF–MI phase transition and the population dynamics can be observed feasibly in experiments of spinor Bose gases in two-chain ladder.

    Acknowledgment

    We thank Yongguan Ke and Zhoutao Lei for useful discussion and suggestions.

    猜你喜歡
    張莉
    Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with L′evy flight
    BLOW-UP SOLUTIONS OF TWo-COUPLEDNONLINEAR SCHRODINGER EQUATIONS IN THE RADIAL CASE*
    熟人好辦事
    故事會(2022年20期)2022-10-20 09:21:56
    追尋兩份立功喜報背后的故事
    黨史縱覽(2022年4期)2022-04-25 22:49:42
    是講述,也是辨認(外一篇)
    作品(2021年6期)2021-07-29 14:08:51
    教與學(xué)
    金秋(2021年18期)2021-02-14 08:25:40
    幼兒圖畫
    完美少婦欲出軌:你可知道放縱的代價多沉重
    冬天里的溫暖
    冬天里的溫暖
    東方劍(2017年4期)2017-06-19 16:25:32
    无遮挡黄片免费观看| 亚洲第一青青草原| 大码成人一级视频| 一级,二级,三级黄色视频| 日韩三级视频一区二区三区| 欧美老熟妇乱子伦牲交| av在线老鸭窝| 亚洲少妇的诱惑av| 欧美日韩av久久| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲中文日韩欧美视频| av福利片在线| 男人操女人黄网站| 嫁个100分男人电影在线观看| 大型av网站在线播放| 亚洲av电影在线进入| 久久久久精品人妻al黑| 日本欧美视频一区| 精品亚洲成国产av| 纯流量卡能插随身wifi吗| 999精品在线视频| 亚洲熟女毛片儿| 亚洲欧美日韩另类电影网站| 手机成人av网站| a级毛片黄视频| 美女国产高潮福利片在线看| av电影中文网址| 9191精品国产免费久久| 在线观看舔阴道视频| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 国精品久久久久久国模美| 久久综合国产亚洲精品| 久久综合国产亚洲精品| 日本av手机在线免费观看| av在线播放精品| 美女福利国产在线| 99九九在线精品视频| 亚洲精品国产av成人精品| 免费在线观看视频国产中文字幕亚洲 | 一级毛片电影观看| 国产高清videossex| 国产高清videossex| 国产日韩一区二区三区精品不卡| 国产人伦9x9x在线观看| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 久久久久久久精品精品| 亚洲精品av麻豆狂野| 国产1区2区3区精品| 99国产精品99久久久久| 色播在线永久视频| 咕卡用的链子| 亚洲自偷自拍图片 自拍| 免费日韩欧美在线观看| 久久久久网色| 97人妻天天添夜夜摸| 国产视频一区二区在线看| 天堂俺去俺来也www色官网| 999精品在线视频| 亚洲全国av大片| 十八禁高潮呻吟视频| 一个人免费看片子| 欧美97在线视频| 久久久精品免费免费高清| 欧美激情 高清一区二区三区| 精品人妻熟女毛片av久久网站| 日本黄色日本黄色录像| 一个人免费在线观看的高清视频 | 热99re8久久精品国产| 日本一区二区免费在线视频| 一区二区av电影网| 日本wwww免费看| 成年女人毛片免费观看观看9 | 国产日韩欧美视频二区| 一级a爱视频在线免费观看| 国产精品1区2区在线观看. | 99国产精品一区二区蜜桃av | 91成人精品电影| 巨乳人妻的诱惑在线观看| 男女无遮挡免费网站观看| 亚洲精品一二三| 国产在线免费精品| 亚洲九九香蕉| 国产福利在线免费观看视频| 一区二区三区精品91| 免费观看a级毛片全部| 亚洲一卡2卡3卡4卡5卡精品中文| 国产麻豆69| 日韩大片免费观看网站| 成年女人毛片免费观看观看9 | 少妇精品久久久久久久| 日韩电影二区| 1024香蕉在线观看| 美女视频免费永久观看网站| 精品亚洲成a人片在线观看| 欧美变态另类bdsm刘玥| 久久久水蜜桃国产精品网| 91成年电影在线观看| 视频在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 一级片'在线观看视频| 色视频在线一区二区三区| 又黄又粗又硬又大视频| 亚洲精品成人av观看孕妇| 男人舔女人的私密视频| 日韩精品免费视频一区二区三区| 国产一区二区三区综合在线观看| 日韩欧美免费精品| 亚洲美女黄色视频免费看| 亚洲免费av在线视频| 91大片在线观看| 又黄又粗又硬又大视频| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 黄片小视频在线播放| 久久中文字幕一级| 桃红色精品国产亚洲av| 首页视频小说图片口味搜索| 国产成人av激情在线播放| 老司机影院成人| 久久久久久人人人人人| 美女午夜性视频免费| 日韩三级视频一区二区三区| av网站免费在线观看视频| 日韩有码中文字幕| √禁漫天堂资源中文www| 热re99久久国产66热| 国产精品1区2区在线观看. | 女警被强在线播放| 国产精品欧美亚洲77777| 王馨瑶露胸无遮挡在线观看| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 日本黄色日本黄色录像| 亚洲av欧美aⅴ国产| 精品国产乱码久久久久久小说| www.精华液| 午夜日韩欧美国产| 欧美成人午夜精品| 丁香六月天网| 老汉色av国产亚洲站长工具| 大型av网站在线播放| 日韩制服骚丝袜av| 久久人人爽av亚洲精品天堂| 欧美激情久久久久久爽电影 | 欧美激情久久久久久爽电影 | 九色亚洲精品在线播放| 涩涩av久久男人的天堂| 免费在线观看完整版高清| av网站免费在线观看视频| 两人在一起打扑克的视频| 久久热在线av| 欧美国产精品va在线观看不卡| 999久久久精品免费观看国产| 精品国产一区二区三区四区第35| 亚洲中文av在线| 国产成人影院久久av| 亚洲精品乱久久久久久| 亚洲精品av麻豆狂野| 亚洲五月色婷婷综合| 国产野战对白在线观看| 99精品欧美一区二区三区四区| 久久99一区二区三区| 极品人妻少妇av视频| 精品国产乱子伦一区二区三区 | 午夜福利在线观看吧| 久久久久视频综合| 美女福利国产在线| 婷婷成人精品国产| 他把我摸到了高潮在线观看 | 国产一区二区三区av在线| 多毛熟女@视频| 在线 av 中文字幕| 精品人妻1区二区| www.av在线官网国产| 这个男人来自地球电影免费观看| 777米奇影视久久| 91精品伊人久久大香线蕉| 999久久久精品免费观看国产| 两个人免费观看高清视频| 91av网站免费观看| 一区二区av电影网| 精品少妇久久久久久888优播| 国产亚洲av高清不卡| 啦啦啦免费观看视频1| 国产精品av久久久久免费| 视频区图区小说| 欧美大码av| 黄色视频在线播放观看不卡| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区久久久樱花| 国产欧美日韩综合在线一区二区| 中国国产av一级| 国产精品免费视频内射| 少妇精品久久久久久久| 老司机影院毛片| 69精品国产乱码久久久| 人人澡人人妻人| 久久久久国产精品人妻一区二区| 国产亚洲精品第一综合不卡| 亚洲久久久国产精品| 久久久久国内视频| 欧美另类亚洲清纯唯美| svipshipincom国产片| svipshipincom国产片| 色婷婷久久久亚洲欧美| 国产精品影院久久| 欧美激情极品国产一区二区三区| 黄片大片在线免费观看| 国产精品免费大片| 欧美 亚洲 国产 日韩一| 精品人妻1区二区| 精品久久久久久久毛片微露脸 | 在线观看免费高清a一片| 啦啦啦啦在线视频资源| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区字幕在线| 国产亚洲av片在线观看秒播厂| 亚洲性夜色夜夜综合| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美| 十八禁网站网址无遮挡| 国产精品成人在线| 我的亚洲天堂| 韩国高清视频一区二区三区| 精品乱码久久久久久99久播| 中国美女看黄片| 国产精品欧美亚洲77777| 97人妻天天添夜夜摸| 午夜免费观看性视频| 亚洲av欧美aⅴ国产| 午夜久久久在线观看| 欧美日韩精品网址| 国产淫语在线视频| 国产成人精品久久二区二区91| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 日本欧美视频一区| 久久99一区二区三区| 一级片'在线观看视频| 亚洲国产精品成人久久小说| 久久国产精品男人的天堂亚洲| 亚洲av日韩在线播放| av网站在线播放免费| 亚洲午夜精品一区,二区,三区| av欧美777| 1024视频免费在线观看| 精品一区在线观看国产| 97精品久久久久久久久久精品| 亚洲视频免费观看视频| 亚洲人成电影观看| 黄片播放在线免费| 亚洲精品中文字幕在线视频| 老汉色av国产亚洲站长工具| 中文字幕人妻熟女乱码| 一区二区三区四区激情视频| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| bbb黄色大片| 搡老熟女国产l中国老女人| 午夜福利视频在线观看免费| 黄频高清免费视频| 大码成人一级视频| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看| 亚洲精品日韩在线中文字幕| 久久影院123| 欧美日韩黄片免| 亚洲国产日韩一区二区| 黄色片一级片一级黄色片| 精品少妇内射三级| 午夜免费成人在线视频| 久久人妻福利社区极品人妻图片| 少妇的丰满在线观看| 五月天丁香电影| 午夜福利一区二区在线看| 1024视频免费在线观看| 久久国产精品人妻蜜桃| 悠悠久久av| 人人妻人人澡人人爽人人夜夜| 桃花免费在线播放| 五月天丁香电影| 久久毛片免费看一区二区三区| 国产色视频综合| 国产1区2区3区精品| 国产精品影院久久| 免费观看av网站的网址| 午夜激情久久久久久久| 国产精品1区2区在线观看. | 91大片在线观看| 久久久久久人人人人人| 国产精品自产拍在线观看55亚洲 | 亚洲av电影在线进入| 狂野欧美激情性xxxx| av免费在线观看网站| 男女床上黄色一级片免费看| 国产国语露脸激情在线看| 人妻人人澡人人爽人人| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 我的亚洲天堂| 人人妻,人人澡人人爽秒播| 狠狠狠狠99中文字幕| 男女高潮啪啪啪动态图| 12—13女人毛片做爰片一| 性高湖久久久久久久久免费观看| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 国产亚洲精品一区二区www | 国产成+人综合+亚洲专区| 一区二区日韩欧美中文字幕| 久久九九热精品免费| 国产成人免费无遮挡视频| 国产亚洲av片在线观看秒播厂| 久久久久久久久久久久大奶| 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 国产伦人伦偷精品视频| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 国产成人系列免费观看| 香蕉丝袜av| 国产男人的电影天堂91| 丁香六月欧美| 亚洲成人免费av在线播放| av超薄肉色丝袜交足视频| 免费在线观看日本一区| 交换朋友夫妻互换小说| 国产高清国产精品国产三级| 婷婷成人精品国产| 久久中文字幕一级| 高清在线国产一区| 欧美日韩黄片免| 丝袜美腿诱惑在线| 午夜久久久在线观看| 999精品在线视频| 国产有黄有色有爽视频| 男女国产视频网站| 18禁观看日本| 肉色欧美久久久久久久蜜桃| av一本久久久久| 少妇的丰满在线观看| 亚洲专区字幕在线| 久久久精品免费免费高清| 欧美日韩福利视频一区二区| 不卡av一区二区三区| 一本一本久久a久久精品综合妖精| 在线观看免费午夜福利视频| 热99国产精品久久久久久7| 蜜桃在线观看..| 国产麻豆69| 水蜜桃什么品种好| 国产一区二区三区综合在线观看| 国产97色在线日韩免费| 一级a爱视频在线免费观看| 国产在线免费精品| 成人国语在线视频| 日韩一区二区三区影片| 五月开心婷婷网| 欧美一级毛片孕妇| 国产视频一区二区在线看| 大香蕉久久网| av又黄又爽大尺度在线免费看| 亚洲欧美精品综合一区二区三区| 国产一区二区激情短视频 | 国产真人三级小视频在线观看| 中文字幕人妻丝袜制服| 国产一区二区 视频在线| 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| 99国产精品99久久久久| 国产主播在线观看一区二区| 99久久国产精品久久久| 亚洲精品一卡2卡三卡4卡5卡 | 精品久久蜜臀av无| 亚洲成人手机| 亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 久久久久久免费高清国产稀缺| 日韩视频一区二区在线观看| 欧美大码av| 在线观看人妻少妇| 青草久久国产| 在线十欧美十亚洲十日本专区| 久热这里只有精品99| 精品一区二区三区四区五区乱码| 亚洲精品一卡2卡三卡4卡5卡 | 国产男人的电影天堂91| 国产欧美日韩一区二区三区在线| 欧美精品一区二区大全| 美女福利国产在线| 91麻豆精品激情在线观看国产 | 国产精品熟女久久久久浪| 亚洲精品粉嫩美女一区| 午夜成年电影在线免费观看| www.自偷自拍.com| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| av视频免费观看在线观看| 99久久国产精品久久久| 日韩 亚洲 欧美在线| videosex国产| 久久国产精品人妻蜜桃| 美女午夜性视频免费| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区mp4| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 亚洲一区中文字幕在线| 午夜福利在线免费观看网站| 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲美女黄色视频免费看| 亚洲一区中文字幕在线| 亚洲人成77777在线视频| 亚洲精品国产一区二区精华液| 亚洲全国av大片| 黄片大片在线免费观看| www日本在线高清视频| 国产在线视频一区二区| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线| 伊人亚洲综合成人网| 国产亚洲精品一区二区www | 色婷婷久久久亚洲欧美| 人人妻人人澡人人爽人人夜夜| 久久人人爽av亚洲精品天堂| 啦啦啦免费观看视频1| 精品国产一区二区久久| 亚洲精品国产区一区二| 大型av网站在线播放| 亚洲国产欧美网| 亚洲视频免费观看视频| 青草久久国产| 国产精品久久久久久精品电影小说| 国产av精品麻豆| 窝窝影院91人妻| 午夜福利,免费看| 欧美国产精品一级二级三级| 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 亚洲欧美激情在线| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 日韩欧美一区二区三区在线观看 | 日韩中文字幕欧美一区二区| 国产精品一区二区在线观看99| 久久国产精品人妻蜜桃| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 国产高清视频在线播放一区 | 国产精品1区2区在线观看. | 亚洲欧美精品自产自拍| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 国产男女内射视频| av在线app专区| 视频区图区小说| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| 亚洲中文日韩欧美视频| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 久久精品熟女亚洲av麻豆精品| 国产成人欧美在线观看 | 高清av免费在线| 国产野战对白在线观看| 一进一出抽搐动态| 精品国产超薄肉色丝袜足j| a级毛片在线看网站| 亚洲欧美清纯卡通| 午夜福利免费观看在线| 一级毛片精品| 亚洲久久久国产精品| 欧美大码av| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 国产又爽黄色视频| 成年女人毛片免费观看观看9 | 黄色片一级片一级黄色片| 黄色 视频免费看| 成年人黄色毛片网站| 性色av一级| 免费人妻精品一区二区三区视频| 亚洲欧美精品综合一区二区三区| 交换朋友夫妻互换小说| 国产成人a∨麻豆精品| 黄色视频不卡| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 91老司机精品| 久久av网站| 9色porny在线观看| 国产欧美日韩一区二区三 | 久久国产精品影院| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 日韩人妻精品一区2区三区| 色老头精品视频在线观看| 久久99一区二区三区| 老司机影院成人| 99国产精品一区二区蜜桃av | e午夜精品久久久久久久| 午夜精品国产一区二区电影| 国产精品久久久久久人妻精品电影 | 国产一区二区在线观看av| 嫩草影视91久久| 亚洲国产av影院在线观看| 999久久久国产精品视频| 国产色视频综合| 欧美亚洲日本最大视频资源| tocl精华| 成人av一区二区三区在线看 | 午夜精品国产一区二区电影| 99香蕉大伊视频| 18禁观看日本| 亚洲欧美成人综合另类久久久| 18禁观看日本| 日韩制服骚丝袜av| 女人高潮潮喷娇喘18禁视频| 夜夜夜夜夜久久久久| 亚洲成人免费av在线播放| 一本色道久久久久久精品综合| 国产一区有黄有色的免费视频| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 久久狼人影院| 男女高潮啪啪啪动态图| 久久天堂一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 黄色a级毛片大全视频| 国产欧美日韩精品亚洲av| 久久 成人 亚洲| 亚洲人成77777在线视频| 国产在视频线精品| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看 | 天堂8中文在线网| 捣出白浆h1v1| 99久久综合免费| 免费观看av网站的网址| 老司机影院成人| 亚洲精华国产精华精| 亚洲三区欧美一区| 国产欧美日韩一区二区精品| 久久人人97超碰香蕉20202| 夜夜夜夜夜久久久久| 日韩视频在线欧美| 一级毛片电影观看| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 91成年电影在线观看| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区mp4| 国产色视频综合| 狠狠精品人妻久久久久久综合| 日本wwww免费看| 亚洲欧美色中文字幕在线| 午夜成年电影在线免费观看| 亚洲精品一二三| 窝窝影院91人妻| 国产av精品麻豆| 欧美激情久久久久久爽电影 | 性高湖久久久久久久久免费观看| 国产在视频线精品| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 如日韩欧美国产精品一区二区三区| 狠狠精品人妻久久久久久综合| 夜夜夜夜夜久久久久| 日韩精品免费视频一区二区三区| 91大片在线观看| 国产三级黄色录像| 高清欧美精品videossex| av超薄肉色丝袜交足视频| 婷婷色av中文字幕| 精品久久久久久电影网| av在线老鸭窝| 久久ye,这里只有精品| 亚洲精品国产精品久久久不卡| 女人爽到高潮嗷嗷叫在线视频| 欧美精品人与动牲交sv欧美| 热re99久久精品国产66热6| 一区二区av电影网| 免费少妇av软件| 91大片在线观看| 国产精品.久久久| 亚洲自偷自拍图片 自拍| 亚洲av国产av综合av卡| 欧美日韩亚洲高清精品| 各种免费的搞黄视频| 亚洲精品一二三| 国产成人a∨麻豆精品| 满18在线观看网站| 久久久精品区二区三区| 老司机午夜十八禁免费视频| 成年动漫av网址| 久久99热这里只频精品6学生| 黄色视频,在线免费观看| 欧美精品亚洲一区二区| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av| 亚洲国产中文字幕在线视频| 亚洲精品美女久久av网站|