• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst?

    2021-03-11 08:33:20JiaShi史佳LeiWang王蕾andQiangGu顧強
    Chinese Physics B 2021年2期
    關(guān)鍵詞:王蕾

    Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顧強)

    Department of Physics,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: first-principles theory,electron density of states and band structure of crystalline solids,III–V and II–VI semiconductors

    1. Introduction

    Since 1972 Fujishima and Honda discovered that TiO2electrodes would split water into hydrogen and oxygen regarding photocatalytic effect,[1]semiconductor-based photocatalyst received extensive attention for being the promising material to solve environmental pollution and energy-short issues,including various metal oxide.[2–5]Similar to TiO2, ZnO is an excellent candidate for photochemistry applications due to its high photosensitivity,[6]nontoxicity, and low cost.[7]ZnO possesses the direct band gap and higher photo-generated carriers mobility than TiO2.[8]Photocatalysis in practice deeply depends on efficient light absorption and carriers mobility,but ZnO only can utilize the UV region(~2%of solar energy)of solar energy owing to its large band gap about 3.4 eV.[9,10]Besides, doping single defect into ZnO probably has limitations for efficient carries transfer. Hence,tackling this challenge to find a feasible approach for tuning the energy band structure of ZnO for efficiently utilizing visible light (~45% of solar energy)is an urgent affair.

    Very recently, numerous experimental and theoretical studies of non-metal doping in ZnO with better photocatalytic activity have been reported, i.e., N, S, C.[6,11–18]Owing that non-metal elements have closer atom radius to replace O atom, it is much easier to fascinate in experiments than metal incorporated into ZnO lattice, and avoid inducing Shockley junction. The C-doping in ZnO can significantly improve its porosity which demonstrates a larger specific surface applied for higher visible-light respond for photoelectrochemical applications.[11]Nowadays, the research proves that Cdoping ZnO narrows the direct band gap, leading to red shift of light absorption region,meanwhile easily give rise to structural defect appearance.[16]Besides,the experimental investigations emphasis that native defect in ZnO such as Vzn (Zn vacancy) or Vo can evidently suppress the photo-generated carries recombination and improve the visible-light absorption,which offers the excellent enhancement of photocatalytic efficiency.[17]Furthermore,it is worth noting that exceptional catalytic activity is attributed to co-doped the different arrangements for pairs of various dopants which attracted more attention as reported nowadays, such as (Al, Ni) co-doped ZnO,(P,N)co-doped TiO2.[19,20]It has suggested that the coeffect of various defects has compensated effect to remediate the shortcoming caused by the individual dopant within experiments and theoretical work,[4,21]whereby we present discussion towards photocatalytic hydrogen generation regarding the co-effect of C-doping and Vo in ZnO. Accordingly,there are some essential questions existed in catalytic reaction progress the ZnO participated. First,the porosity of C-doping ZnO caused by the occurrence of Vo would result in photoinduced holes and electrons recombination.[11,21]It is crucial to clarify the role of C and Vo respectively if they co-effect in ZnO simultaneously, the origin of light response as well. On the other hand,different concentrations of Vo in visible-lightdriven photocatalyst have a high possibility to induce various effects of the catalytic reaction.[22]Discovering the underlying physical mechanism of the co-effect of C-doping and Vo in ZnO is a fundamental pathway to interpret experimental results, then, it is also important to explore the appropriate amount of Vo in C-doping ZnO for obtaining desired ability upon photocatalytic applications.

    In this work, we carry out first-principles calculations to investigate the electronic structure, density of states (DOS),and effective masses of carriers, absorption spectrum of ZnOxC0.0625(x = 0.9375, 0.875, 0.8125). The co-effect of extensive defects in ZnO may improve the photocatalytic performance and provide guidance to devise new optical and optoelectronic materials.

    2. Theoretical method and models

    Frist-principles calculations as the predictive means of theoretical study for decades, it is widely used to make a connection between experimental observations and theoretical understanding, and further manufacture models for giving clues to predict new desired materials. We perform first-principles calculations using Vienna ab initio simulations package (VASP)[23]based on density functional theory(DFT). The electron–ion interaction of element is described by the projector augment wave(PAW).[24,25]Pseudo-potential selected is the Perdew–Burke–Ernzerof (PBE) exchange–correlation functional within the generalized gradient approximation(GGA).[26]The valance configuration of Zn is 4s23d10,and O is 2s22p4,respectively.

    The supercell of 2×2×2 established consists of 32 atoms,which can facilitate the calculations of the co-effect of Cdoping and Vo in ZnO with various conditions, that is,ZnOxC0.0625(x =0.9375, 0.875, 0.8125) systematically analyzed. C atom replaces one O atom formed the C-dopant,the Vo is made by removing an interior O atom from the supercell. Wave functions are expanded by a plane-wave with a cutoff energy of 500 eV and Monkhorst–Pack grids within the Brillouin zone is selected using a 4×4×4 mesh with a structure optimized,then add to a 7×7×7 mesh when we proceed accurate DOS simulations. The lattice constant of wurtzite ZnO with fully relaxed atomic positions are a=3.25 ?A and c = 5.21 ?A, which are in agreement with the experimental value.[27,28]The self-consistent convergence to the tolerance is set as 1×10?6eV/?A,and the maximal force of total energy convergence is set as 0.001 eV/?A on atoms.

    Conventional local density approximation (LDA)[29]or GGA is employed to investigate the energy band of materials contained open-shell electrons, i.e., transition metal oxide, which deviates from experimental evidence. Those approaches only describe well the valence band of ZnO which is strongly correlated material, but underestimate Coulomb interaction of conduction band and overestimate the interplay of the Zn–O bond. In order to solve this deviation, the GGA+U method is used to correct the conduction band by adding the Hubbard-U to restore the real potential between electrons of narrow bands. Comparing with other theoretical beyond DFT scheme, such as Heyd–Scuseria–Ernzerh(HSE)[30]screened hybrid density functional or GW[31]approximation,those methods will spend more time in calculating dozens of atom systems than GGA+U[32,33]and still have an improper description of the band structure. The main problem lies in the underestimation of Coulombic interactions of 3d orbital electrons on Zn. Previous work suggested that the optimum choices are Ud=10.0 eV on Zn and Up=7.0 eV on O which were systemically investigated with geometry optimized or fixed atoms positions.[33]The optical properties of Ce-doping ZnO obtained by the GGA+U using this Hubbard U pairs had proven to work well.[34]In short,the investigation of the electronic structure of the co-effect of C-doping and Vo in Zn photocatalyst within GGA+U method is a fast and effective means of revealing its profound theoretical understanding in our work.

    3. Results and discussion

    3.1. Structural optimization and formation energy

    The crystal structure of ZnO is the hexagonal wurtzite phase with space group p63mc which has thermodynamic stabilities under ambient environment. According to previous work,Vo was always discussed alone by standard DFT or beyond DFT calculations,[25,31–35]rarely concerned co-effect of dopant and Vo on ZnO. Vo as the native defect is easily induced by incorporating heterogeneous elements into ZnO. In C-doping ZnO,experiments observed that the lattice parameter of C-doping ZnO is smaller than that of pure ZnO due to the presence of Vo.[16]Also, Vo plays a role to maintain system neutrality.Hence,we firstly investigate the structure properties of ZnO with the coexistence of C-doping and Vo. To gain the stable crystal structure,we concern that the C-doping with different Vo concentrations affect geometry optimization of ZnO.The supercell was chosen to module the lattice structure of ZnOxC0.0625(x=0.9375, 0.875, 0.8125), the x refers to the percent of oxygen atoms, namely, the 1 ?x represents Vo concentrations in system. The possible doping regions are listed below: I.body; II.face,III.edge. The body region has four possible sites that can be substituted by C atom due to the crystal symmetry of the hexagonal phase(see Fig.1(a)),illustrated that the formation energies of those doping configurations are basically same. The stable structure of C-doped ZnO contained Vo is obtained by the optimization of the supercell of ZnO0.875C0.0625(remove one oxygen atom from supercell)and ZnO0.8125C0.0625(remove two oxygen atoms from supercell) are shown in Figs. 1(b) and 1(c). The oxygen atom is removed one by one after C atom located in a stable position.For the case of Zn0.875C0.0625, forming five possible configurations: (i) C-doping + body atom II, (ii) C-doping + body atom III,(iii)C-doping+body atom IV,(iv)C-doping+face atom, (v) C-doping + edge atom. It is found that the system energy of ground states favors(i)and(ii)configurations whose energies are the same as each other. In this paper,the research of Zn0.875C0.0625is based on the(ii)configurations. The crystal structure which contains the higher Vo concentrations will have four possible doping positions, which are marked as: i)C-doping+Vo+body atom II,ii)C-doping+Vo+body atom IV,iii)C-doping+Vo+face atom,iv)C-doping+Vo+edge atom. The iv) configuration is chosen as the stable configuration for Zn0.8125C0.0625due to its lowest energy. The lattice constants relaxed with different doping configurations are listed in Table 1,showing that the crystal date is in good agreement with the experimental measurements.16,33,34In the case of Zn0.9375C0.0625,C anion has a greater radius than O,therefore, it is reasonable to infer that the co-effect of C-doping and Vo in ZnO has a smaller lattice constant and cell volume because of the occurrence of Vo.

    In the following works, we focus on the co-effect of Cdoping and Vo in ZnO based on this lattice structure. The crystal structure of ZnO0.875C0.0625optimized is shown in Fig.2. C atom is the center of the tetrahedron whose vertexes composed of four Zn atoms. Substitution of O by C bonded with adjacent Zn atom yields length about 1.94 ?A,which is shorter than 1.98 ?A of the original O–Zn bond. Zn atoms from the basal plane of tetrahedron move forward to C atom, thereby, the geometry structure is affected by the enhanced interaction between Zn and C. Besides, the existence of Vo leads to the chemical internal pressure changed and slightly squeeze C atom towards the basal plane. There is volumetric shrinkage and stronger bonding interactions than both pure Zn and ZnO0.8125C0.0625. The higher Vo concentrations in ZnO0.8125C0.0625will influence the stable crystal symmetry due to the more Zn–O bonds broken, the crystal structure prefers to the deformation which further impacts the electronic structure. More importantly,Vo will improve the porosity that is reasonably attributed to inter-particle slits.It has a great possibility that the co-effect of C-doping and Vo provides more free carries to benefit photochemical applications.

    Fig.1. The energies as a function of volume for various doping configurations in(a)ZnO0.9375C0.0625,(b)ZnO0.875C0.0625,and(c)ZnO0.8125C0.0625.

    Table 1. The comparison between the calculation results and experimental results regarding the ZnOxC0.0625 (x=0.9375,0.875,0.8125)on both lattice parameters and energy band gap.

    Fig.2. Optimized structure of ZnO0.875C0.0625,illustrating that co-effect of C-doping(one oxygen atom replaced by carbon atom)and Vo(remove one oxygen atom from supercell)in ZnO.

    3.2. Electronic properties

    Fig.3.The calculated valence–electron density on the(100)plane in(a)pure ZnO,(b)ZnO0.9375C0.0625,(c)ZnO0.875C0.0625,and(d)ZnO0.8125C0.0625.

    Taking the underlying understanding of the co-effect of C-doping and Vo in ZnO into consideration, here we need to clarify the role of C-doping and Vo separately. The charge densities of ZnO,ZnOxC0.0625(x=0.9375,0.875,0.8125)are shown in Fig.3. The picture of Fig.3(a)illustrated that pure ZnO has a neat charge density distribution calculated on the(100)plane. Each of Zn atom is formed a stable bond with the nearest O atom. By comparison, the non-equilibrium charge distribution at C–Zn is depicted in Fig.3(b) which refers to ZnO0.9375C0.0625, C bonded with the nearest Zn forming π–π bond has a stronger interplay than Zn–O bond, meanwhile excluding the chance to form chemical bonds with others Zn.Furthermore, four Zn–O bonds are broken immediately once one Vo appeared,the charge is redistributed to form the chemical bonding states in ZnO0.875C0.0625as shown in Fig.3(c).The dangling bonds remain partially filled by two electrons and hence can accommodate six more. This simple chemical picture dictates Vo acts as a deep donor. Unfilled C-2p orbital direct connects with Zn-3d electrons. We present the charge redistribution in Fig.3(d)concerned the absence of two oxygen atoms. The enlarged defect region makes more dangling bonds between C and Zn. It is supposed to have more trapping sites to capture itinerant electrons or holes resulting in the negative effect on the catalysis efficiency.Although the C–Zn bond possesses stronger covalence nature than Zn bonding with O,Vo dose as a donor for the system charge distribution equilibrium. And that volumetric shrinkage with high porosity gains lager specific surface in ZnO on the account of Vo emerged.

    Photocatalysis properties are typically associated with the band structure and density of states (DOS). Herein, the band structure and DOS of ZnOxC0.0625(x=0.9375, 0.875,0.8125)are systemically investigated. Based on the GGA+U band structure of pure ZnO,ZnOxC0.0625(x=0.9375, 0.875,0.8125) are shown in Figs. 4(a), 4(b), 4(c), and 4(d), respectively. The band gap of pure ZnO calculated by standard DFT scheme is about 0.78 eV as the Zn-3d orbital located in the higher energy states.[16,30,31]Adopting the U value correction, the energy band gap of ZnO enlarges to about 2.2 eV.The calculated band gap is also listed in Table 1. From the fold Brillouin zone of a supercell, this makes it more reasonable to lead to computational results in small differences with 3.4 eV of experimental observations.[33,36]The direct band gap at Gamma point in the Brillouin zone determines the scope of solar energy and facilitates that photoexcited carries from valence band transit to conduction band. In the case of ZnO0.9375C0.0625,the band gap can be essentially narrowed without changing curvatures of band structure,suggesting that the C dopant expands absorption range to visible light spectrum without affecting the mobility of carriers. According to previous work, Vo as the donor can release electrons to narrow the band gap and reconstruct the shape of the band edge,for improving the possibility of carries which reach the surface of a semiconductor to participate in chemical reaction.[34]Considering the co-effect of C-doping and Vo in ZnO,valence band edge shifts up while the conduction band edge moves down, leading to evident reduction of bandgap with curve almost unchanged in ZnO0.875C0.0625. There is indicated that the absorption spectrum will red shift towards visible region concerned the effect of various defects on the electronic structure. Meanwhile, even though the higher Vo proportion of ZnO brings about the smaller energy band gap, the curves of band structure nearing by Fermi level tend to be flat, and the charges near the Fermi level tend to be localized as illustrated in Fig.4(d)in terms of ZnO0.8125C0.0625.Therefore,it is worth noting that the existence of Vo can contribute electrons to the system for improving photocatalytic activity. Theoretical investigations suggest that ZnO0.875C0.0625has a higher visible light response for photocatalytic applications than other two compositions.

    Fig.4.Band structure of(a)pure ZnO,(b)ZnO0.9375C0.0625,(c)ZnO0.875C0.0625,(d)ZnO0.8125C0.0625 within the frame of GGA+U calculation,respectively. The Fermi level is set as 0 eV.

    Fig.5. The electronic DOS of(a)pure ZnO is obtained by GGA method. The DOS of(b)pure ZnO,(c)ZnO0.9375C0.0625,(d)ZnO0.875C0.0625,(e)ZnO0.8125C0.0625 obtained by GGA+U method.

    To figure out the influence of orbital electrons on the electronic structure of ZnOxC0.0625(x=0.9375, 0.875, 0.8125)in ZnO, the total density of states (TDOS) and partial density states (PDOS) are calculated separately and showed in Fig.5. Owing to GGA calculations underestimate interactions between transition metal 3d or 4f electrons, from Fig.5(a), it is found that Zn-3d states are located at about ?6.5 eV.Zn-3d states are corrected to about ?8.2 eV (experimental average value ~8.27 eV[33]) shown in Fig.5(b). The DOS of pure ZnO indicates that the valence band edge mainly consists of O-2p states and Zn-3d states along with some contributions from O-2s states,while the conduction band composes of Zn-3d and Zn-4s states. The DOS of Fig.5(c) presents that the valence band edge of ZnO0.9375C0.0625is mostly occupied by C-2p electrons. This observation affirms that C has significant contributions for the reduction of band gap instead of the strong hybridization of O and Zn orbitals. In the case of the ZnO0.875C0.0625, we identify DOS featured as having valence band dominated by C-2p, O-2p, at the same time, given the contributions from the Zn-3d. The conduction band is mainly attributed by Zn-4s electrons. The conduction band localized nearby the Fermi level is suggested that Vo as a donor plays the role of charge center in the n-type semiconductor. The weaker Zn–O covalent bond can be easily broken, which is reflected by the “pseudogap” of DOS. A higher DOS of O-2p states emerge in ZnO0.8125C0.0625, which originates from a larger number of broken bonds between Zn and O.Thereby,more carriers easily trapped by Vo leading to catalysis reacting passivation are generated.

    3.3. Carriers effective masses and absorption spectrum

    The effective masses of carriers are determined by the curvatures of valence bands and conduction bands. The mobility of electrons and holes photo-excited is inversely proportional to effective masses, which is closely related to the amounts of carriers involved chemical reactions for affecting photocatalytic activity. Photogenerated carriers usually undergo a redox reaction on the surface of a semiconductor,but it is also highly possible to cause electrons and holes recombination, thereby, reducing the redox reaction rate. There is speculation that Vo may be the recombination center for harvesting photogenerated carries. Besides,different dopant levels have different influences on the mobility of visible light drive carriers. Therefore, the effective masses of charges at first are essentially investigated in the terms of ZnOxC0.0625(x=0.9375, 0.875, 0.8125). The effective masses can fairly estimate charge carriers mobility fitting by parabolic portions of the CBM (conduction band minimum) and VBM (valence band maximum).[24]We evaluate the effective masses of electrons and holes along three directions in the Brillouin zone using the following equation:

    Table 2. The ratio value of effective masses between electronsand holes of ZnOxC0.0625 (x=0.9375, 0.875, 0.8125) and ZnOx(x=0.9375, 0.875) obtained from the edge of band gap by parabolic fitting along three directions in the Brillouin zone.

    Table 2. The ratio value of effective masses between electronsand holes of ZnOxC0.0625 (x=0.9375, 0.875, 0.8125) and ZnOx(x=0.9375, 0.875) obtained from the edge of band gap by parabolic fitting along three directions in the Brillouin zone.

    Direction [010] [001] [210]m?e/m?h m?e/m?h m?e/m?h ZnO0.8125C0.0625 0.48 1.02 0.58 ZnO0.875C0.0625 0.83 0.29 0.20 ZnO0.9375C0.0625 0.18 0.0009 0.48 ZnO 0.05 0.01 0.37 ZnO0.9375 0.13 7.44 0.21 ZnO0.875 0.06 0.008 0.07

    A further discussion we focused on the absorption spectrum, which manifests the relatively straightforward application of light absorption and is expected to clarify the role of C-doping and Vo separately upon visible-light-responsive catalysis. The results of the absorption spectrum are shown in Fig.6. The limitation of visible light absorption of ZnO originates from the wide band gap. The highlighted part of ZnO refers to energy from 1 eV to 2.8 eV, which is the most favorable range for photocatalysis. The ZnO0.9375C0.0625associated with this light behavior tends to be natural. Remarkably, ZnO0.8125C0.0625utilizes more photoluminescence than ZnO0.875C0.0625at the beginning of the favorable part, nevertheless, the absorb spectroscopy reverse to the latter. In the view of experiments, the most measuring band gap is around at 3.0 eV by controlling the dopants or vacancies.[16,33,34]That means the optical characterization of ZnO0.8125C0.0625is below our expectations. This is due to large Vo concentrations have more dangling bonds which would catch holes to enhance p–d hybrid and electrons localized, which is also confirmed by the results of effective masses ratio. ZnO0.8125C0.0625and ZnO0.875C0.0625have slightly different macroscopic phenomena under the visible light respond region. We concern the electronic structure and charge density on equal footing, the ZnO0.875C0.0625has moderate carries mobility, most importantly, it possesses the most prepared light absorption scope and larger specific surface originated from the porous structure. Herein, we believe that ZnO0.875C0.0625is the most promising candidate for improving the catalysis under illumination within our work.

    Fig.6. The light absorption spectra of pure ZnO,ZnOxC0.0625 (x=0.9375,0.875, 0.8125)are obtained by GGA+U method, respectively. The yellow part refers to the region in which ZnO-based materials are easy to absorb.

    4. Conclusions

    The present studies reveal that the co-effect of Cdoping and Vo indeed have enhanced photocatalytic performance in ZnO by calculating the electronic properties of the ZnOxC0.0625(x=0.9375,0.875,0.8125). The method we carried out is the GGA+U formula based on density functional theory. It is indicated that the optimal system of co-existence is the ZnO0.875C0.0625, which has a controllable band gap in the visible light region with an improved absorbed application, and lower ratio value of effective masses of carries to avoid recombination between holes and electrons. Such electronic behavior driven by the illumination is of benefit to have the expected photocatalysis activity for generating hydrogen.Also, we found that Vo in ZnOxC0.0625(x=0.9375, 0.875,0.8125) acts as a donor to equilibrate localized charge distribution and gives aid to bond C with Zn. Generally,C-doping domains the valence band lifted to have the narrower band gap in ZnO,and the improved visible-light absorption is mainly attributed to the presence of Vo with light concentrations simultaneously. We predicted the optimal configurations of the coexistence of both C-doping and Vo with more effective on photocatalytic application, but also elucidated the distinguished roles between C-doping and Vo upon the collectively effects on photocatalyst ZnO.

    猜你喜歡
    王蕾
    Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure
    母愛流長
    歌海(2022年4期)2022-11-27 05:57:32
    Hamiltonian Bi-integrable Couplings for the Counterpart of the AKNS Soliton Hierarchy
    你那么好,卻帶著暗戀的疤
    幸?!傋x(2020年2期)2020-05-09 10:45:32
    Physicochemical Properties of Poly (Vinyl Alcohol)/Chitosan/Soluble Starch Composite Hydrogel
    百鳥衣圖案
    大東方(2018年3期)2018-09-10 14:16:16
    終點
    上海交通大學醫(yī)學院附屬瑞金醫(yī)院 王蕾教授簡介
    例談數(shù)學解題之構(gòu)造法
    重新認識肩關(guān)節(jié)骨折脫位
    亚洲第一av免费看| 91国产中文字幕| 久久草成人影院| 免费一级毛片在线播放高清视频 | 精品人妻在线不人妻| 黑丝袜美女国产一区| 麻豆国产av国片精品| 制服人妻中文乱码| 午夜两性在线视频| 免费av毛片视频| 国产成人精品无人区| 色婷婷av一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区二区三区色噜噜 | 两人在一起打扑克的视频| 日日爽夜夜爽网站| 999久久久国产精品视频| 男女床上黄色一级片免费看| 中文欧美无线码| 高清在线国产一区| 在线观看免费视频日本深夜| 男女做爰动态图高潮gif福利片 | 操出白浆在线播放| 真人做人爱边吃奶动态| 少妇粗大呻吟视频| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 一级毛片精品| 国产深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 久久这里只有精品19| 啦啦啦在线免费观看视频4| 欧美日韩国产mv在线观看视频| 女性被躁到高潮视频| 妹子高潮喷水视频| 精品国产一区二区三区四区第35| 交换朋友夫妻互换小说| 夫妻午夜视频| 欧美成人午夜精品| 美女高潮喷水抽搐中文字幕| 国产熟女午夜一区二区三区| 麻豆一二三区av精品| 每晚都被弄得嗷嗷叫到高潮| 五月开心婷婷网| 亚洲人成电影免费在线| 精品高清国产在线一区| 男女午夜视频在线观看| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区久久| 在线观看一区二区三区激情| 欧美在线一区亚洲| 成人影院久久| 超碰97精品在线观看| 亚洲av美国av| 久99久视频精品免费| 夜夜躁狠狠躁天天躁| 超碰97精品在线观看| 亚洲熟妇中文字幕五十中出 | 亚洲色图av天堂| 久久中文字幕一级| 亚洲色图 男人天堂 中文字幕| 级片在线观看| 亚洲一区二区三区色噜噜 | 很黄的视频免费| 9色porny在线观看| 午夜视频精品福利| 久久久久久大精品| 少妇的丰满在线观看| 一本大道久久a久久精品| 新久久久久国产一级毛片| 天堂动漫精品| 18禁黄网站禁片午夜丰满| 91精品国产国语对白视频| 欧美一区二区精品小视频在线| 国产午夜精品久久久久久| 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区久久| 国产真人三级小视频在线观看| 高清黄色对白视频在线免费看| 精品欧美一区二区三区在线| 曰老女人黄片| 亚洲av美国av| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 精品国产一区二区三区四区第35| 男人的好看免费观看在线视频 | 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| av免费在线观看网站| 国产精品国产av在线观看| 这个男人来自地球电影免费观看| 亚洲 欧美一区二区三区| 日韩免费av在线播放| 国产精品日韩av在线免费观看 | 好看av亚洲va欧美ⅴa在| 日韩欧美国产一区二区入口| 51午夜福利影视在线观看| 国产单亲对白刺激| 9热在线视频观看99| 国产蜜桃级精品一区二区三区| 18美女黄网站色大片免费观看| 亚洲欧洲精品一区二区精品久久久| 久热爱精品视频在线9| 免费av毛片视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产99白浆流出| 黄片小视频在线播放| 制服诱惑二区| 99久久99久久久精品蜜桃| 亚洲美女黄片视频| 亚洲五月天丁香| 成人18禁高潮啪啪吃奶动态图| 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 正在播放国产对白刺激| 三上悠亚av全集在线观看| 淫秽高清视频在线观看| 欧美另类亚洲清纯唯美| 超碰97精品在线观看| 成人免费观看视频高清| 高清av免费在线| 91精品国产国语对白视频| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 欧美在线一区亚洲| 成熟少妇高潮喷水视频| 无限看片的www在线观看| 久久欧美精品欧美久久欧美| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 三上悠亚av全集在线观看| 精品电影一区二区在线| 国产91精品成人一区二区三区| 国产有黄有色有爽视频| 在线观看免费午夜福利视频| 婷婷丁香在线五月| 人人澡人人妻人| 不卡av一区二区三区| 99久久久亚洲精品蜜臀av| 男女午夜视频在线观看| 午夜福利,免费看| 日韩欧美免费精品| 国产成人影院久久av| 久久久国产成人免费| 91麻豆av在线| 淫妇啪啪啪对白视频| 国产免费男女视频| 欧美日韩黄片免| 日本欧美视频一区| 亚洲久久久国产精品| 久久精品国产亚洲av高清一级| 亚洲色图 男人天堂 中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| xxxhd国产人妻xxx| 久热爱精品视频在线9| 免费看a级黄色片| 国产精品国产av在线观看| 午夜福利在线观看吧| 国产精品久久电影中文字幕| 丝袜美足系列| 亚洲熟女毛片儿| 亚洲成人精品中文字幕电影 | 嫩草影院精品99| 久久久久久亚洲精品国产蜜桃av| 一级毛片高清免费大全| 精品一区二区三区视频在线观看免费 | av欧美777| 男女之事视频高清在线观看| 国产成人av教育| 久久国产精品人妻蜜桃| 亚洲午夜精品一区,二区,三区| 99久久人妻综合| 长腿黑丝高跟| 男人的好看免费观看在线视频 | 一本大道久久a久久精品| 老司机靠b影院| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 亚洲av熟女| 精品无人区乱码1区二区| 人人澡人人妻人| 一二三四在线观看免费中文在| 精品人妻1区二区| 黄色视频不卡| 一区二区三区精品91| 精品日产1卡2卡| 亚洲专区字幕在线| 大型黄色视频在线免费观看| 欧美午夜高清在线| 免费观看人在逋| 色婷婷av一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 女性被躁到高潮视频| 自线自在国产av| 精品乱码久久久久久99久播| av在线天堂中文字幕 | 国产在线精品亚洲第一网站| 两性午夜刺激爽爽歪歪视频在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 动漫黄色视频在线观看| 国产在线观看jvid| 亚洲中文av在线| 久久久久九九精品影院| 亚洲avbb在线观看| 看黄色毛片网站| 亚洲成人久久性| 亚洲第一青青草原| 久久精品国产亚洲av高清一级| 很黄的视频免费| 日韩大尺度精品在线看网址 | 精品福利观看| 亚洲国产精品999在线| 精品久久久久久久毛片微露脸| 国产熟女午夜一区二区三区| 搡老乐熟女国产| 国产伦一二天堂av在线观看| 999久久久国产精品视频| 亚洲精品美女久久久久99蜜臀| 成人手机av| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| avwww免费| 日日干狠狠操夜夜爽| 亚洲免费av在线视频| 看片在线看免费视频| 在线观看66精品国产| 国产真人三级小视频在线观看| 国产伦人伦偷精品视频| 欧美黄色淫秽网站| 搡老熟女国产l中国老女人| 国产av在哪里看| 国产精品自产拍在线观看55亚洲| 国产精品秋霞免费鲁丝片| 看免费av毛片| 精品国产超薄肉色丝袜足j| 免费在线观看完整版高清| 这个男人来自地球电影免费观看| 久久伊人香网站| 激情在线观看视频在线高清| 在线视频色国产色| 日韩视频一区二区在线观看| 操出白浆在线播放| 窝窝影院91人妻| 日韩免费av在线播放| 99国产精品免费福利视频| 高清毛片免费观看视频网站 | 欧美国产精品va在线观看不卡| 国产男靠女视频免费网站| 成年人免费黄色播放视频| 成年人黄色毛片网站| 多毛熟女@视频| 亚洲精品成人av观看孕妇| av在线播放免费不卡| а√天堂www在线а√下载| 99香蕉大伊视频| xxxhd国产人妻xxx| 每晚都被弄得嗷嗷叫到高潮| 男女床上黄色一级片免费看| 国产精品 国内视频| 级片在线观看| 亚洲三区欧美一区| 他把我摸到了高潮在线观看| 99riav亚洲国产免费| 亚洲在线自拍视频| 纯流量卡能插随身wifi吗| videosex国产| 欧美日韩一级在线毛片| 色综合婷婷激情| 一级a爱片免费观看的视频| 免费观看人在逋| 在线播放国产精品三级| 一进一出抽搐gif免费好疼 | tocl精华| 黄色怎么调成土黄色| 日韩免费av在线播放| 90打野战视频偷拍视频| 操美女的视频在线观看| 亚洲av五月六月丁香网| 两个人免费观看高清视频| 国产精品成人在线| 人妻丰满熟妇av一区二区三区| av中文乱码字幕在线| 大型av网站在线播放| 精品日产1卡2卡| 少妇 在线观看| 天堂√8在线中文| 午夜精品在线福利| 91精品国产国语对白视频| 91成人精品电影| 欧美在线一区亚洲| 成人影院久久| 午夜精品国产一区二区电影| 精品久久久久久久毛片微露脸| 国产成人欧美在线观看| 国产精品国产高清国产av| 精品人妻在线不人妻| 国产色视频综合| 久久青草综合色| 久久久久亚洲av毛片大全| av在线天堂中文字幕 | 成年版毛片免费区| 亚洲片人在线观看| 一区二区三区精品91| 一区二区三区国产精品乱码| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 在线观看www视频免费| 国产午夜精品久久久久久| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 脱女人内裤的视频| 乱人伦中国视频| 亚洲国产精品一区二区三区在线| 丰满迷人的少妇在线观看| 欧美+亚洲+日韩+国产| 91av网站免费观看| 高清在线国产一区| 每晚都被弄得嗷嗷叫到高潮| av在线天堂中文字幕 | 国产成+人综合+亚洲专区| 精品一区二区三卡| 国产成人影院久久av| 在线观看免费高清a一片| 亚洲第一av免费看| 黄片大片在线免费观看| 日韩大尺度精品在线看网址 | 日韩精品免费视频一区二区三区| 欧美日韩乱码在线| 极品人妻少妇av视频| 日韩国内少妇激情av| 国产欧美日韩一区二区三| 99香蕉大伊视频| 两性午夜刺激爽爽歪歪视频在线观看 | 女人被躁到高潮嗷嗷叫费观| 亚洲av电影在线进入| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 在线天堂中文资源库| 少妇的丰满在线观看| av免费在线观看网站| 亚洲熟妇中文字幕五十中出 | 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品永久免费网站| 亚洲精品国产区一区二| 久久久久久大精品| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| 91老司机精品| 国产三级在线视频| 又大又爽又粗| 亚洲午夜理论影院| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 99国产精品一区二区三区| 宅男免费午夜| 久9热在线精品视频| 欧美人与性动交α欧美软件| 欧美老熟妇乱子伦牲交| 99久久精品国产亚洲精品| 麻豆成人av在线观看| 国产精品爽爽va在线观看网站 | 国产高清视频在线播放一区| 亚洲七黄色美女视频| av天堂久久9| av天堂在线播放| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 欧美在线黄色| 视频在线观看一区二区三区| 一级毛片精品| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 岛国在线观看网站| 日本黄色日本黄色录像| 欧美中文日本在线观看视频| 美女国产高潮福利片在线看| 天堂√8在线中文| 美女扒开内裤让男人捅视频| 精品电影一区二区在线| 满18在线观看网站| 精品久久久久久久久久免费视频 | 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 久久久国产欧美日韩av| 欧美乱妇无乱码| 不卡av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 亚洲一区高清亚洲精品| 久久久久久免费高清国产稀缺| 俄罗斯特黄特色一大片| 丰满迷人的少妇在线观看| 亚洲国产精品999在线| 欧美乱妇无乱码| 亚洲一区中文字幕在线| 国产精品一区二区三区四区久久 | 激情视频va一区二区三区| 亚洲七黄色美女视频| 成人影院久久| 亚洲第一av免费看| 在线观看免费午夜福利视频| 久久国产精品影院| 黄频高清免费视频| 亚洲精品久久午夜乱码| 国产真人三级小视频在线观看| 69精品国产乱码久久久| 不卡av一区二区三区| 十八禁网站免费在线| 色综合欧美亚洲国产小说| 亚洲 国产 在线| 免费人成视频x8x8入口观看| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 热99re8久久精品国产| 一区二区三区激情视频| 大陆偷拍与自拍| 精品一区二区三区av网在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 亚洲午夜精品一区,二区,三区| 亚洲狠狠婷婷综合久久图片| 久久人人爽av亚洲精品天堂| 国产真人三级小视频在线观看| 午夜精品久久久久久毛片777| 国产精品1区2区在线观看.| 一个人免费在线观看的高清视频| 久久人妻av系列| 国产一区在线观看成人免费| 免费在线观看黄色视频的| 亚洲人成网站在线播放欧美日韩| 午夜亚洲福利在线播放| 啦啦啦在线免费观看视频4| 国产国语露脸激情在线看| 手机成人av网站| 淫秽高清视频在线观看| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 青草久久国产| 欧美精品亚洲一区二区| 一个人免费在线观看的高清视频| 50天的宝宝边吃奶边哭怎么回事| 男女下面进入的视频免费午夜 | 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影 | 亚洲情色 制服丝袜| 国产在线精品亚洲第一网站| 国产真人三级小视频在线观看| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久| 欧美成人性av电影在线观看| 在线观看免费高清a一片| 免费在线观看完整版高清| 日本三级黄在线观看| 嫩草影视91久久| 久久久久九九精品影院| 国产精品乱码一区二三区的特点 | 国产一区二区三区在线臀色熟女 | 欧美黑人精品巨大| av片东京热男人的天堂| 黄色 视频免费看| 高清黄色对白视频在线免费看| 一区二区三区国产精品乱码| 岛国视频午夜一区免费看| 老司机福利观看| 日本五十路高清| 日韩有码中文字幕| 丰满饥渴人妻一区二区三| 高清黄色对白视频在线免费看| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 国产成人啪精品午夜网站| 欧美日本亚洲视频在线播放| 欧美日韩福利视频一区二区| 日本黄色视频三级网站网址| 中亚洲国语对白在线视频| 不卡av一区二区三区| 国产亚洲欧美在线一区二区| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看| 欧美激情高清一区二区三区| 亚洲情色 制服丝袜| 久久精品国产亚洲av香蕉五月| 中文欧美无线码| netflix在线观看网站| 亚洲精品美女久久av网站| 免费在线观看黄色视频的| 欧美 亚洲 国产 日韩一| 久久久久久大精品| 欧美久久黑人一区二区| 午夜a级毛片| 大码成人一级视频| 午夜影院日韩av| 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区mp4| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 国产精品国产av在线观看| 精品欧美一区二区三区在线| 亚洲精品在线观看二区| 欧美日韩福利视频一区二区| 亚洲精品在线美女| a在线观看视频网站| 国产精品免费视频内射| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 午夜免费成人在线视频| 久久天躁狠狠躁夜夜2o2o| 国产高清国产精品国产三级| 亚洲人成网站在线播放欧美日韩| 久久中文看片网| 国产麻豆69| 激情在线观看视频在线高清| av网站免费在线观看视频| 国产精品免费视频内射| 免费看十八禁软件| 激情视频va一区二区三区| 69精品国产乱码久久久| 一进一出抽搐gif免费好疼 | 国产视频一区二区在线看| 国产精品偷伦视频观看了| 国产99白浆流出| 老鸭窝网址在线观看| 亚洲欧美一区二区三区久久| 1024香蕉在线观看| 操出白浆在线播放| 一边摸一边抽搐一进一出视频| 精品国产美女av久久久久小说| 欧美精品一区二区免费开放| 欧美日韩精品网址| 亚洲七黄色美女视频| 欧美 亚洲 国产 日韩一| 性色av乱码一区二区三区2| 香蕉久久夜色| 国产av精品麻豆| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 欧美乱色亚洲激情| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| videosex国产| 精品高清国产在线一区| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 大陆偷拍与自拍| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| 俄罗斯特黄特色一大片| 午夜福利影视在线免费观看| 久久中文字幕人妻熟女| 精品久久久精品久久久| 午夜亚洲福利在线播放| 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 欧美不卡视频在线免费观看 | 国产区一区二久久| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9| 日本欧美视频一区| 美女扒开内裤让男人捅视频| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 欧美最黄视频在线播放免费 | 美女 人体艺术 gogo| 91字幕亚洲| 国产亚洲欧美98| 丁香欧美五月| 国产精品 欧美亚洲| 丰满的人妻完整版| 怎么达到女性高潮| 国产精品日韩av在线免费观看 | 国产又色又爽无遮挡免费看| 高清在线国产一区| 午夜福利,免费看| 久久 成人 亚洲| 91成年电影在线观看| 午夜福利影视在线免费观看| 狠狠狠狠99中文字幕| 一级a爱视频在线免费观看| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费 | 国产一区二区激情短视频| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 搡老熟女国产l中国老女人| 51午夜福利影视在线观看| 欧美日韩精品网址| 国产精品偷伦视频观看了| 99久久久亚洲精品蜜臀av| 国产成人一区二区三区免费视频网站| 亚洲国产精品999在线| 日韩欧美在线二视频| 美女高潮喷水抽搐中文字幕| 窝窝影院91人妻| 黑丝袜美女国产一区| 成人永久免费在线观看视频| 欧美在线一区亚洲| 一级黄色大片毛片| 99香蕉大伊视频| 国产精品久久久av美女十八| 91麻豆av在线|