• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves

    2021-03-11 08:32:54Mitri
    Chinese Physics B 2021年2期

    F G Mitri

    Santa Fe,NM 87508,USA

    Keywords: radiation force,radiation torque,liquid compound cylinder,multiple scattering,acoustical standing waves

    1. Introduction

    Acoustical standing (or stationary) waves provide efficient means of particle entrapment and immobilization in acoustical tweezers applications, ever since the pioneering work[1]demonstrated that micron-sized latex beads and clusters of frog eggs can be trapped,moved and translated axially or laterally. Other geometries have been considered, and experiments dealing with the alignment of cylindrical elongated particles in acoustic standing waves have been also reported,such as carbon nanotubes[2,3]and fibers.[4–6]In the context of acoustofluidics applications,surface acoustic waves have been utilized[7]where standing waves enabled cell focusing and liquid droplet sorting and patterning.

    For experimental design purposes and instrumentation optimization, analyses have relied on theoretical formalisms for the time-averaged radiation force for cylindrical rigid,[8–11]fluid,[12]elastic,[12–16]and viscoelastic materials.[12,17,18]The effects of the host medium viscosity have been also considered,[19]and further generalizations taking into consideration the profile of the incident wavefront (unlike plane waves)[20,21]and particle shape[22–24]have been examined. Numerical computations for the radiation force of non-paraxial[25–28]wavefronts showed interesting capabilities from the standpoint of particle attraction, as well as linear,parabolic and reverse cylindrical particle movement dynamics.Although other analyses attempted to evaluate the acoustic radiation force on a circular cylindrical particle[29,30]in the field of a standing surface acoustic wave(SSAW),the reader is cautioned that the effect of the micro-channel bottom boundary was neglected in those studies. Earlier radiation force results for a(spherical)particle near a flat(porous)surface[31]demonstrated that significant changes leading to attraction,neutrality or repulsion emerge as a consequence of the multiple scattering and wave interference effects occurring between the particle and boundary/edge, which cannot be ignored. Other related contemporaneous researches[32–34]investigated such effects for a rigid[32]and liquid[34]cylindrical particle near a flat boundary[32,34]and a rigid(90?)corner-space.[33]

    A particular particle geometry is the eccentric compound cylinder (Fig.1), composed of an inner cylindrical core (of radius b), coated by another cylinder of larger radius a>b.In this configuration, the two cylinders are not necessarily concentric, and the distance d determines the eccentricity.With the increase of the eccentricity (i.e., d >0), the acoustical scattering by the compound cylinder can be enhanced or reduced;[35–37]specifically, branching and a shift in resonances occur,which amount to the degree of eccentricity.[38,39]

    Fig.1. Description for the acoustical interaction of standing waves (having an arbitrary angle of incidence α)with a compound non-viscous liquidcoated cylinder. The rotating arrow designates the axial torque component about the center of the compound cylinder of radius a,coating the one with radius b,while the distance d from the center denotes the eccentricity.

    An important question that arises from the standpoint of linear and angular acoustic momenta transfer theory and applications in trapping and immobilization using acoustical standing wave tweezers,is how eccentricity affects the acoustic radiation force and torque exerted on a compound layered cylindrical particle properties in acoustical standing waves as d >0? The purpose of this analysis is to address this question. Although the scientific literature is abundant with numerous radiation force studies, the previously developed formalisms are not applicable for the eccentric compound cylinder in acoustical standing waves, although a recent analysis has addressed the case of plane progressive waves.[40]It is therefore of some importance to devise a formalism to take into consideration the geometrical asymmetry and the emergent phenomena that arise from it. Particularly,in the present investigation, it is demonstrated that in addition to the radiation force phenomenon due to linear acoustic momentum transfer,a time-averaged(quadratic)radiation torque(causing particle rotation due to angular momentum transfer)occurs.In contrast with the results of a previous study,[25]the radiation torque is not associated with sound absorption as the eccentric fluid layered cylinder considered here is non-viscous. Rather,it emerges because of geometrical asymmetry with respect to the axis of the compound cylindrical particle of radius a. This effect cannot be overlooked and must be estimated in experimental design and optimization analyses.

    2. Theoretical analysis

    The analysis assumes an acoustical standing wave field in a lossless unbounded host fluid medium(assuming linear wave motion),interacting with an eccentric compound cylinder with inner core and outer layer liquid media as shown in Fig.1. As such,the effects of viscosity of the host liquid medium of wave propagation, acoustic streaming as well as surface tension at the liquid–liquid interfaces are not considered. The wave-field is composed of equi-amplitude plane standing waves with an arbitrary angle α in the polar plane with respect to the center. The incident field is expressed in a Cartesian system of coordinates(x,y,z)by its velocity potential,

    where ?0is the amplitude,k(=ω/c)is the wavenumber in the medium of wave propagation,ω is the angular frequency,c is the speed of sound for the compressional wave,and h is the distance from the center of the cylinder to the source.

    Equation (1) is expressed using a partial-wave series expansion in cylindrical coordinates, since the modal expansion method[41]provides adequate means to evaluate the scattering and other physical observables. Therefore, using the Jacobi–Anger expression,[42]the series-expansion of Eq.(1)is written as,

    where Jn(·)is the cylindrical Bessel function of the first kind.

    In the lossless medium of wave propagation,the scattered velocity potential field is expressed as,

    Denoting the internal non-viscous fluid-like cylindrical media composing the layer and core by medium 1 and medium 2,respectively,the corresponding scalar velocity potential fields are determined,respectively,as,

    leads to the mathematical expressions for the longitudinal and transverse dimensionless components as

    where the symbol Im{···}represents the imaginary part of a complex number.

    Similarly,the acoustic radiation torque vector is calculated based on the far-field scattering as,[46]

    Algebraic manipulation of the integral given by Eq.(16)using Eqs.(B2)–(B4)in Appendix B provides the exact equation for the axial component of the radiation torque vector in plane standing waves with arbitrary incidence,as

    3. Computational results

    The main results of this work are presented in Eqs. (13), (14), and (18) for the dimensionless longitudinal and transverse components of the radiation force vector as well as the axial component of the radiation torque vector. Clearly,these functions(or efficiencies) depend on the weighted coefficients Cnof the compound eccentric cylinder, coupled to those of the incident plane standing wave field. For accurate computational purposes, the partial-wave series equations are truncated at a maximum integer limit Nmax=round[ka+4.05(ka)1/3+12](exceeding ka)to warrant convergence.[47]

    Those series given by Eqs. (13), (14), and (18) and implemented in a MATLAB program code, are computed for a nonviscous liquid-filled eccentric cylinder submerged in water(ρ =1000 kg/m3, c=1500 m/s), and made of a high-density liquid,such as mercury (ρ1=13600 kg/m3, c1=1407 m/s), with its core cylindrical medium made of water (ρ2=ρ, c2=c) or air(ρ2=1.23 kg/m3, c2=340 m/s). Initially, the dimensionless size parameters for the inner cylinder kb and eccentricity kd have taken different fixed values to illustrate the analysis. To ensure the physicality of the computations, the calculations have been performed in the ranges determined by(kb+kd)<ka ≤5+(kb+kd),and 0 ≤α ≤180?. In other words,the condition a>(b+d)has been enforced throughout the computations such that the cylinder core cannot be external to the layer medium to warrant analytical continuation.In the simulations,the distance parameter h is chosen conveniently to depend on the wavenumber k such that h=π/(4k).

    Panels(a)and(b)of Fig.2 display the two-dimensional(2D)plots versus(ka,α)for the longitudinal and transverse radiation force functions, respectively. The inner core cylindrical material is composed of water while the outer layer is made of liquid mercury. For improved visualization and interpretation of the results,the solid(black)contour line is displayed,which indicates the neutrality of the longitudinal and transverse radiation force efficiencies (i.e.,Yst,x=0;Yst,y=0). In this configuration, the inner fluid cylinder is located at the center of the large cylinder such that kd=0, and kb=0.1, corresponding to a small core.This configuration corresponds to a concentric(i.e.,kd=0)cylindrical shell,such that an asymmetry in panel(a)and symmetry in panel (b) with respect to the incidence angle value α =90?arise. Panel (c) displays the plot for the axial component of the radiation torque function that vanishes as required by the concentric geometrical symmetry regardless of the value of α.Another quadratic physical quantity of interest is the extinction (or scattering) energy efficiency, which is computed using the expression[48]

    The related computational plot shown in panel(d)displays a complete symmetry versus the incidence angle value α=90?,which clearly verifies the accuracy of the results based on energy conservation and the reciprocity theorem.[49]Based on Eq.(19),the absorption energy efficiency[48,50]Qabs=Qext?Qscais zero for a lossless concentric fluid-like cylinder.

    Fig.2. Panels(a)–(d)display the 2D plots versus(ka,α)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for kd=0 and kb=0.1.The inner cylindrical core is composed of water,while the layer is made of mercury.

    In order to break the geometrical symmetry, the eccentricity is increased such that kd =2 and kb=0.1, and the inner core cylindrical material is composed of water while the outer layer is made of liquid mercury. The increase of the eccentricity induces variations in the radiation force,torque and extinction/scattering efficiencies,as shown in panels(a)–(d)of Fig.3,which are quite distinct from those displayed in panels (a)–(d) of Fig.2. The plot in panel (a) shows that Yst,xalternates between positive,negative,and neutral(i.e.,solid black line)values as(ka,α)increase. Similar sign changes are also noticed in panel(b)for Yst,yand panel(c)for τst,z. Without a doubt, the eccentricity/asymmetry(i.e., kd/=0)leads to the rise of an axial radiation torque component,which takes positive,negative,or neutral values along the solid(black)contour lines that surround the regions of positive and negative values. The sign changes (i.e., positive to negative) indicate that depending on the values of (ka,α),counter-clockwise rotation in the polar plane,or clockwise rotation about the center of the cylinder of radius a occur due to the transfer of angular momentum. Neutrality (i.e., τst,z=0) along the solid (black) lines also indicates no rotation. The plot in panel(d)of Fig.3 shows that Qextis always positive,in complete agreement with the law of energy conservation.

    Fig.3. Panels(a)–(d)display the 2D plots versus(ka,α)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for kd=2 and kb=0.1. The inner cylindrical core is composed of water,while the layer is made of mercury.

    Fig.4. Panels(a)–(d)display the 2D plots versus(ka,α)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for kd=2 kb=0.1. The inner cylindrical core is composed of air,while the layer is made of mercury.

    The effect of changing the physical/mechanical properties of the inner core material has been also investigated,by choosing an inner air cylindrical bubble cylinder layered by a compressible mercury cylinder. Similarly to Fig.3, the eccentricity is set to kd=2 while kb=0.1. Comparisons of the plots in panels(a)–(c)of Fig.4 with those of Fig.3 show that the axial radiation torque function increases (in absolute sense) while the longitudinal and transverse radiation force efficiencies are comparable.The extinction energy efficiency displayed in panel(d)of Fig.4 exhibits different variations,which indicates that the changes in the physical properties of the inner core strongly enhance or reduce the energy efficiency as(ka,α)vary.

    The effect of increasing the inner cylinder radius is examined by choosing kb=2, while keeping kd (=2) constant and the inner core cylindrical material is composed of water while the outer layer is made of liquid mercury. The corresponding computational plots are shown in panels(a)–(d)of Fig.5. As shown in all the panels,the asymmetry versus the incidence angle α =90?increases as the ka increases. The plots for the dimensionless functions Yst,xand Yst,yalternate between positive or negative values while crossing zero as the α varies. The plot in the panel(c)of Fig.5 shows more intricate characteristics than its counterpart of the panel(c)of Fig.4,where the solid(black)lines demarcate regions/islands over which a negative radiation torque efficiency arises;τst,z<0. Moreover,the panel(d)shows that extinction/scattering increases as ka and kb increase,such that the property of Qext>0 is always preserved,which verifies the results from the standpoint of the energy conservation applied to scattering.

    Fig.5. Panels(a)–(d)display the 2D plots versus(ka,α)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for kd=2 and kb=2. The inner cylindrical core is composed of water,while the layer is made of mercury.

    Additional computations have been performed to investigate the variations of the radiation force, torque, and extinction/scattering energy efficiency versus(α,kd)for fixed values of ka and kb.

    The corresponding results are displayed in panels (a)–(d) of Fig.6 for ka=5 and kb=0.1, while the panels in Fig.7 correspond to a larger core liquid cylinder with kb=2, while ka (=5) is kept constant. Clearly, as the eccentricity increases,positive,negative,and neutral radiation force and torque components are predicted,while the extinction energy efficiency remains positive,in agreement with the law of energy conservation applied to scattering. For a fixed value of the incidence angle α and as kd varies,the physical observables change sign. Alternatively,for a fixed value of eccentricity kd while α varies,the sign is also altered. Moreover,as kb increases,an increase in amplitude is perceived for all the physical observables.

    Fig.6. Panels(a)–(d)display the 2D plots versus(kd,α)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for ka=5 and kb=0.1. The inner cylindrical core is composed of water,while the layer is made of mercury.

    Fig.7. Panels(a)–(d)display the 2D plots versus(kd,α)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for ka=5 and kb=2. The inner cylindrical core is composed of water,while the layer is made of mercury.

    Lastly,the effect of varying ka and kd for fixed values of kb and α is investigated. As discussed previously,the constraint kd <(ka?kb)is imposed in the simulations. The corresponding results are displayed in panels(a)–(d)of Fig.8 for kb=0.1 and α =45?. The plots in panels(a)–(c)show that as the non-dimensional size parameter ka and eccentricity kd vary,the acoustic radiation force and torque components alternate between positive, negative, and neutral values. Panel (d) shows that Qextis positive,in agreement with the law of energy conservation applied to scattering. As the dimensionless size parameter of the inner core cylinder increases to kb=1,changes arise in the plots of the radiation force,torque,and extinction efficiency as displayed in panels(a)–(d)of Fig.9. Positive,negative,and neutral values of the physical observables are noted. Moreover,as the incidence angle increases to α =90?, the radiation force, torque, and extinction efficiency plots are altered as shown in panels (a)–(d)of Fig.10. As such, it is obvious that the radiation force, torque and extinction/scattering efficiencies are very sensitive to the variations of ka,kb,kd,and α.

    Fig.8. Panels(a)–(d)display the 2D plots versus(ka,kd)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for kb=0.1 and α =45?.The inner cylindrical core is composed of water,while the layer is made of mercury.

    Fig.9. Panels(a)–(d)display the 2D plots versus(ka,kd)of the dimensionless efficiencies Yst,x,Yst,y,τst,z,and Qext,respectively,for kb=1 and α =45?. The inner cylindrical core is composed of water,while the layer is made of mercury.

    Fig.10. Panels(a)–(d)display the 2D plots versus(ka,kd)of the dimensionless efficiencies Yst,x,Yst,y, τst,z, and Qext, respectively, for kb=1 and α =90?.The inner cylindrical core is composed of water,while the layer is made of mercury.

    4. Conclusion

    In this work, mathematical expressions for the acoustic radiation force and torque components for an eccentric layered cylinder composed of a non-viscous inner core, layered by another non-viscous fluid shell material in acoustic standing waves are derived analytically and computed. As the eccentricity of the cylinder varies,negative,positive or neutral(i.e.,zero) radiation force and torque components arise depending on the size parameters of the layer ka and inner cylinder kb as well as the eccentricity kd and angle of incidence in the polar plane. The results demonstrate that the axial radiation torque efficiency in acoustic standing waves arises,not as a result of absorption(as discussed previously in Ref.[25]),but as a consequence of a geometrical symmetry breaking as the eccentricity deviates from zero. This asymmetric behavior causing the generation of a windmill torque has been also observed in the context of elliptical cylinders.[23]Moreover, since the eccentric cylinder considered here is infinitely long,it is anticipated that the results would remain valid for an elongated particle where edge effects are neglected. In addition,the verification and validation of the results obtained here have been accomplished from the standpoint of the energy conservation law applied to scattering.The results may be used to advantage in the design and optimization of acoustical standing wave tweezers for the manipulation and rotation of eccentric elongated compound particles in fluid dynamics applications and related research.

    Although the configuration studied in this paper is a 2D case, it is important in several aspects. First, the elongated cylindrical geometry has attracted significant attention in various studies,as demonstrated by numerous analyses where the 2D results have been utilized in experimental design. Second,the physical knowledge gained from the study of the 2D geometry(such as the emergence of positive, negative and neutral forces and torque) can be directly extended to the threedimensional (3D) problem as well. This is, however, not to dismiss the interest of studying radiation forces and torques for 3D geometries such as eccentric spheres or spheroidal particles,[51,52]which are still most commonly used in modeling experiments in acoustic manipulation and tweezers. It is expected that this work may generate some interest to further extend the scope of this study to account for a particle with an arbitrary-shaped geometry(in 3D)using the T-matrix formalism[53,54]or other methods.

    A plausible extension of this work concerns the consideration of multiple cylindrical eccentric particles,where interparticle forces[55]and torques[56]can arise. Computations for the interparticle radiation forces and torque may be performed by extending the scope of the previous works[55,56]to account for the complex(eccentric)geometry,and earlier formulations for the extrinsic and intrinsic scattering,extinction and absorption energy efficiencies (and cross-sections)[44,57]can be utilized for verification and validation purposes based on the law of energy conservation in multiple acoustic scattering.

    Appendix A:Partial-wave series expressions using the addition theorem

    The addition theorem for cylindrical wave functions[43,58,59]is used to express the individual mode in the coordinate system(r′,θ′)as an infinite sum of wave functions in the other coordinate system(r,θ)(and vice versa)as

    Appendix B:Partial-wave series expressions for the radiation force and torque

    For the reader’s convenience, the partial-wave series used to derive the expressions for the components of the acoustic radiation force and torque are given as follows.

    Based on Eqs.(2),(3),and(10),the partial-wave series expression for the term Re{Φis(r,θ)}is expressed as

    Based on Eqs.(2),(3),and(16),the partial-wave series expression for the term

    is decomposed into three components as,

    亚洲精品色激情综合| 久久精品国产亚洲av涩爱| 成人二区视频| 超碰97精品在线观看| 国产在线一区二区三区精| 成人美女网站在线观看视频| 在线观看一区二区三区激情| 97在线人人人人妻| 日韩欧美一区视频在线观看 | 亚洲自拍偷在线| 男人舔奶头视频| 国产一区二区三区av在线| av免费观看日本| 国产精品秋霞免费鲁丝片| 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说 | 国产乱来视频区| 精品人妻偷拍中文字幕| 中文在线观看免费www的网站| 中文在线观看免费www的网站| av专区在线播放| 久久久精品免费免费高清| 亚洲无线观看免费| 国产精品人妻久久久久久| 国产综合懂色| 精品一区二区三卡| a级一级毛片免费在线观看| 国产亚洲一区二区精品| 欧美3d第一页| 日韩免费高清中文字幕av| 丝袜脚勾引网站| 干丝袜人妻中文字幕| 99久久人妻综合| 男女无遮挡免费网站观看| kizo精华| 白带黄色成豆腐渣| 亚洲av日韩在线播放| 全区人妻精品视频| 男人狂女人下面高潮的视频| 久久久久久久国产电影| 亚洲美女搞黄在线观看| av线在线观看网站| 久久久欧美国产精品| 高清午夜精品一区二区三区| av在线观看视频网站免费| 欧美日韩在线观看h| 久久久成人免费电影| 久久久精品欧美日韩精品| 男人和女人高潮做爰伦理| 久久人人爽人人片av| 在线 av 中文字幕| 国产精品一二三区在线看| 国产美女午夜福利| 亚洲美女搞黄在线观看| 狠狠精品人妻久久久久久综合| 内地一区二区视频在线| 日日啪夜夜爽| av在线老鸭窝| 国产探花在线观看一区二区| 在线观看一区二区三区| 真实男女啪啪啪动态图| 中文字幕制服av| 97在线人人人人妻| 亚洲久久久久久中文字幕| 啦啦啦啦在线视频资源| 国产视频内射| av国产免费在线观看| 国产一区二区三区av在线| 一边亲一边摸免费视频| 性插视频无遮挡在线免费观看| 韩国高清视频一区二区三区| 久久久久久久国产电影| 久久久久网色| 男人和女人高潮做爰伦理| 亚洲国产最新在线播放| 中文乱码字字幕精品一区二区三区| 日本黄色片子视频| 亚洲美女搞黄在线观看| 国产成人精品一,二区| 精品亚洲乱码少妇综合久久| 国产日韩欧美亚洲二区| 日日摸夜夜添夜夜添av毛片| 亚洲精品一二三| 亚洲欧美精品自产自拍| 插逼视频在线观看| 亚洲精品aⅴ在线观看| 深夜a级毛片| 一级毛片 在线播放| 99热网站在线观看| 女的被弄到高潮叫床怎么办| 在线免费观看不下载黄p国产| 噜噜噜噜噜久久久久久91| 欧美精品国产亚洲| 一二三四中文在线观看免费高清| 久久精品国产亚洲网站| 国产大屁股一区二区在线视频| 一级爰片在线观看| 国产一区二区三区综合在线观看 | 日韩中字成人| 麻豆国产97在线/欧美| 男插女下体视频免费在线播放| 三级国产精品片| 又爽又黄a免费视频| 免费看不卡的av| 欧美xxⅹ黑人| 精品国产乱码久久久久久小说| 亚洲欧美日韩卡通动漫| 99久久精品国产国产毛片| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 免费观看av网站的网址| av播播在线观看一区| 国产精品爽爽va在线观看网站| 国产精品久久久久久av不卡| 日本一二三区视频观看| 国产精品一区www在线观看| 国产中年淑女户外野战色| 熟妇人妻不卡中文字幕| 欧美激情国产日韩精品一区| 国产极品天堂在线| 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| 人妻系列 视频| 亚洲欧美日韩另类电影网站 | 久久97久久精品| 色视频www国产| 晚上一个人看的免费电影| 亚洲丝袜综合中文字幕| 久久久久久久久久人人人人人人| 我的老师免费观看完整版| 99精国产麻豆久久婷婷| 日日啪夜夜撸| 色吧在线观看| 麻豆国产97在线/欧美| 国产成人a∨麻豆精品| 蜜桃亚洲精品一区二区三区| 日韩欧美一区视频在线观看 | 婷婷色综合www| 国产精品久久久久久久久免| 麻豆成人av视频| 美女脱内裤让男人舔精品视频| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 中文精品一卡2卡3卡4更新| 国产成年人精品一区二区| 久久久久久久久大av| 少妇丰满av| 亚洲成人中文字幕在线播放| 汤姆久久久久久久影院中文字幕| 在线观看av片永久免费下载| av网站免费在线观看视频| 汤姆久久久久久久影院中文字幕| 亚洲经典国产精华液单| 国产精品一区二区性色av| 搡女人真爽免费视频火全软件| 精品久久国产蜜桃| 嫩草影院入口| 五月天丁香电影| 99热这里只有是精品在线观看| 成人亚洲精品av一区二区| 日韩电影二区| 秋霞伦理黄片| 欧美+日韩+精品| 伦精品一区二区三区| 伊人久久精品亚洲午夜| 亚洲色图av天堂| 夜夜看夜夜爽夜夜摸| 男人舔奶头视频| 中文欧美无线码| 最新中文字幕久久久久| www.色视频.com| 国产亚洲91精品色在线| 一级a做视频免费观看| 亚洲av福利一区| 看非洲黑人一级黄片| 久久久成人免费电影| 精品国产乱码久久久久久小说| 亚洲怡红院男人天堂| 成人国产麻豆网| 一本色道久久久久久精品综合| 亚洲av男天堂| 午夜激情久久久久久久| 精品一区在线观看国产| 男女国产视频网站| 欧美性感艳星| 插阴视频在线观看视频| 久久人人爽人人片av| 久久久久久久大尺度免费视频| 中文在线观看免费www的网站| av在线亚洲专区| 国产精品一区二区性色av| 日韩欧美精品v在线| 久久精品综合一区二区三区| 在线免费观看不下载黄p国产| 国产成人精品一,二区| 最近中文字幕2019免费版| 免费看a级黄色片| 大码成人一级视频| 久久久久九九精品影院| 熟妇人妻不卡中文字幕| 欧美激情久久久久久爽电影| 亚洲真实伦在线观看| 一区二区av电影网| 国产精品爽爽va在线观看网站| 久久久久精品性色| 一级爰片在线观看| 99视频精品全部免费 在线| 国产极品天堂在线| 亚洲国产av新网站| 亚洲精品国产色婷婷电影| 国产免费视频播放在线视频| 韩国高清视频一区二区三区| 日本一本二区三区精品| 国产探花极品一区二区| 亚洲精品,欧美精品| 日韩一区二区视频免费看| 赤兔流量卡办理| 国产免费福利视频在线观看| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区| 亚洲自拍偷在线| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 三级经典国产精品| 日韩伦理黄色片| 2018国产大陆天天弄谢| 亚洲婷婷狠狠爱综合网| 免费在线观看成人毛片| 新久久久久国产一级毛片| 看黄色毛片网站| 人体艺术视频欧美日本| 亚洲一区二区三区欧美精品 | 大香蕉久久网| 久久人人爽人人片av| 美女高潮的动态| 国产v大片淫在线免费观看| 男女那种视频在线观看| 小蜜桃在线观看免费完整版高清| 尾随美女入室| 亚洲,欧美,日韩| 看免费成人av毛片| 欧美日韩综合久久久久久| 成人亚洲欧美一区二区av| 身体一侧抽搐| 国产爱豆传媒在线观看| 一边亲一边摸免费视频| 97热精品久久久久久| 尤物成人国产欧美一区二区三区| 美女脱内裤让男人舔精品视频| 精品一区二区免费观看| 男男h啪啪无遮挡| 中文字幕免费在线视频6| 国产白丝娇喘喷水9色精品| 少妇人妻 视频| 男男h啪啪无遮挡| 97在线人人人人妻| 亚洲国产高清在线一区二区三| 日韩三级伦理在线观看| 亚洲精品日本国产第一区| av在线亚洲专区| xxx大片免费视频| 香蕉精品网在线| 永久免费av网站大全| 女人十人毛片免费观看3o分钟| 可以在线观看毛片的网站| 免费播放大片免费观看视频在线观看| 美女高潮的动态| 日本黄大片高清| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| 国产精品人妻久久久影院| 在线亚洲精品国产二区图片欧美 | 日韩亚洲欧美综合| 夫妻性生交免费视频一级片| 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 自拍偷自拍亚洲精品老妇| 亚洲最大成人手机在线| 国产男女超爽视频在线观看| 欧美日韩视频高清一区二区三区二| 中文字幕久久专区| 国产精品久久久久久精品电影| 成人鲁丝片一二三区免费| 我的老师免费观看完整版| 亚洲精品影视一区二区三区av| 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| 欧美成人午夜免费资源| 日本色播在线视频| 日本黄色片子视频| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 两个人的视频大全免费| 久久国内精品自在自线图片| 精品国产一区二区三区久久久樱花 | 中文字幕av成人在线电影| 精品久久久精品久久久| 亚洲成色77777| 综合色丁香网| 亚洲人成网站在线观看播放| 亚洲国产欧美人成| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 如何舔出高潮| 亚洲精品日韩av片在线观看| 超碰97精品在线观看| 在线观看av片永久免费下载| 在线免费十八禁| 精品国产露脸久久av麻豆| 国产亚洲av嫩草精品影院| 精品少妇黑人巨大在线播放| 久久人人爽av亚洲精品天堂 | 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 亚洲,欧美,日韩| 精品一区在线观看国产| 午夜视频国产福利| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产三级国产专区5o| 国产免费一级a男人的天堂| av国产久精品久网站免费入址| 日本熟妇午夜| 校园人妻丝袜中文字幕| 亚洲在久久综合| 久久ye,这里只有精品| 成年女人在线观看亚洲视频 | 免费看不卡的av| 在线观看三级黄色| 国产成人a区在线观看| 日韩制服骚丝袜av| 久久精品国产鲁丝片午夜精品| av免费观看日本| 久久精品夜色国产| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 亚洲av日韩在线播放| 一本久久精品| 国产精品一区二区在线观看99| 亚洲,一卡二卡三卡| 麻豆成人av视频| 激情五月婷婷亚洲| 中文字幕制服av| 精品熟女少妇av免费看| 亚洲av一区综合| 久久精品国产亚洲av天美| 亚洲欧美精品自产自拍| 黄色怎么调成土黄色| 亚洲一区二区三区欧美精品 | 天天一区二区日本电影三级| 一本色道久久久久久精品综合| 少妇 在线观看| 成人免费观看视频高清| 国产成人福利小说| 高清毛片免费看| 中文天堂在线官网| av卡一久久| 日韩电影二区| 日韩制服骚丝袜av| 国产69精品久久久久777片| 九九在线视频观看精品| 久久影院123| 中文在线观看免费www的网站| 精品久久久久久电影网| 尤物成人国产欧美一区二区三区| 中国三级夫妇交换| 亚洲在线观看片| 亚洲精品色激情综合| 在线观看人妻少妇| 自拍欧美九色日韩亚洲蝌蚪91 | 99热这里只有精品一区| 一区二区av电影网| 国产大屁股一区二区在线视频| 亚洲av男天堂| 免费少妇av软件| 亚洲国产欧美在线一区| 亚洲人成网站高清观看| 中文精品一卡2卡3卡4更新| 成人美女网站在线观看视频| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 久久久久久久久久成人| 久久6这里有精品| 色综合色国产| 97热精品久久久久久| 国产老妇女一区| 亚洲综合精品二区| 国内精品美女久久久久久| 久久久久网色| 国产乱人视频| 韩国高清视频一区二区三区| 精品久久久久久久久亚洲| 成人亚洲精品av一区二区| 久久久久精品久久久久真实原创| av在线app专区| 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩精品一区二区| 青春草亚洲视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品无大码| 少妇人妻精品综合一区二区| 欧美人与善性xxx| 免费电影在线观看免费观看| 国产淫片久久久久久久久| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 一区二区三区四区激情视频| h日本视频在线播放| 国模一区二区三区四区视频| 日本黄大片高清| 水蜜桃什么品种好| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 久久久久久久久大av| tube8黄色片| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 国产视频首页在线观看| 搞女人的毛片| 国模一区二区三区四区视频| 两个人的视频大全免费| 青春草国产在线视频| 深夜a级毛片| 中文字幕免费在线视频6| 亚洲伊人久久精品综合| 青春草视频在线免费观看| 久久久久久久午夜电影| 国产探花极品一区二区| 欧美日韩国产mv在线观看视频 | 国产成年人精品一区二区| 精品视频人人做人人爽| 欧美一区二区亚洲| 五月开心婷婷网| 一区二区三区乱码不卡18| 寂寞人妻少妇视频99o| 亚洲成人久久爱视频| 国产精品福利在线免费观看| 欧美成人午夜免费资源| 亚洲av福利一区| 亚洲人成网站在线观看播放| 啦啦啦中文免费视频观看日本| av天堂中文字幕网| 国产老妇伦熟女老妇高清| 国产黄色免费在线视频| 欧美 日韩 精品 国产| 少妇人妻久久综合中文| 亚洲三级黄色毛片| 99九九线精品视频在线观看视频| 亚洲美女视频黄频| 51国产日韩欧美| 国产精品成人在线| 直男gayav资源| 国产精品人妻久久久影院| 成人午夜精彩视频在线观看| 69人妻影院| 岛国毛片在线播放| 大香蕉97超碰在线| 蜜臀久久99精品久久宅男| 特大巨黑吊av在线直播| 一本色道久久久久久精品综合| 午夜免费观看性视频| av在线天堂中文字幕| 国产探花极品一区二区| 少妇裸体淫交视频免费看高清| 国产午夜精品一二区理论片| 国产成人福利小说| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 欧美高清性xxxxhd video| 亚洲美女视频黄频| 久久久久久久大尺度免费视频| 中文字幕av成人在线电影| 国产精品熟女久久久久浪| 日本-黄色视频高清免费观看| 亚洲最大成人手机在线| 亚洲国产高清在线一区二区三| 国产免费一区二区三区四区乱码| 插逼视频在线观看| 国内精品宾馆在线| 午夜福利在线观看免费完整高清在| 免费观看的影片在线观看| 国产精品久久久久久久电影| 国产综合精华液| 97超碰精品成人国产| 精品久久久久久久久av| 欧美潮喷喷水| 高清av免费在线| 精品久久久噜噜| 亚洲成人精品中文字幕电影| 国产黄频视频在线观看| 亚洲一级一片aⅴ在线观看| 天堂网av新在线| 欧美另类一区| 欧美日本视频| 日韩三级伦理在线观看| videos熟女内射| 亚洲av福利一区| 成人鲁丝片一二三区免费| av播播在线观看一区| 韩国高清视频一区二区三区| 亚洲自拍偷在线| 欧美丝袜亚洲另类| 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 久久久久久九九精品二区国产| a级毛色黄片| 亚洲成人中文字幕在线播放| 熟妇人妻不卡中文字幕| 亚洲精品,欧美精品| 简卡轻食公司| 国产乱人视频| 51国产日韩欧美| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 插逼视频在线观看| 色婷婷久久久亚洲欧美| 白带黄色成豆腐渣| 色播亚洲综合网| 久久久久久久久久久免费av| 久久6这里有精品| 日韩成人伦理影院| 亚洲av电影在线观看一区二区三区 | 欧美+日韩+精品| 嫩草影院新地址| 久久久久国产网址| 免费观看无遮挡的男女| 三级经典国产精品| videossex国产| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 永久网站在线| 国产老妇伦熟女老妇高清| 午夜福利高清视频| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 日韩一区二区三区影片| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美 | 最近中文字幕高清免费大全6| 网址你懂的国产日韩在线| 亚洲综合精品二区| 两个人的视频大全免费| 在线免费观看不下载黄p国产| 五月伊人婷婷丁香| videos熟女内射| 欧美国产精品一级二级三级 | 色视频www国产| 最近最新中文字幕免费大全7| 中文资源天堂在线| 亚洲欧美清纯卡通| 亚洲精品日韩av片在线观看| 男女无遮挡免费网站观看| 欧美激情在线99| 午夜福利高清视频| 亚洲国产精品国产精品| 亚洲av电影在线观看一区二区三区 | 深爱激情五月婷婷| 亚洲欧美一区二区三区黑人 | 大片免费播放器 马上看| 亚洲精品日韩在线中文字幕| 丝瓜视频免费看黄片| 国产高清国产精品国产三级 | 18禁裸乳无遮挡动漫免费视频 | 春色校园在线视频观看| 精品人妻视频免费看| 亚洲在线观看片| 欧美zozozo另类| 日韩人妻高清精品专区| 日日啪夜夜爽| 少妇裸体淫交视频免费看高清| 在线看a的网站| 欧美极品一区二区三区四区| 激情五月婷婷亚洲| 全区人妻精品视频| 蜜桃亚洲精品一区二区三区| 色哟哟·www| 大陆偷拍与自拍| 成人二区视频| 精品久久国产蜜桃| 国产老妇女一区| 国产精品伦人一区二区| 色哟哟·www| 国产老妇女一区| 亚洲精品中文字幕在线视频 | 中文天堂在线官网| 久久精品国产鲁丝片午夜精品| 偷拍熟女少妇极品色| 1000部很黄的大片| 别揉我奶头 嗯啊视频| 欧美一区二区亚洲| 亚洲精品aⅴ在线观看| 久久精品国产a三级三级三级| 偷拍熟女少妇极品色| 肉色欧美久久久久久久蜜桃 | 中文字幕av成人在线电影| 久久久久久久久久久丰满| 免费大片18禁| 纵有疾风起免费观看全集完整版| 国产爽快片一区二区三区| 青春草亚洲视频在线观看| 麻豆久久精品国产亚洲av| 国产在线一区二区三区精| 午夜亚洲福利在线播放| 国产乱人视频|