• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure?

    2021-03-11 08:32:38XiangxianWang王向賢JiankaiZhu朱劍凱YueqiXu徐月奇YunpingQi祁云平LipingZhang張麗萍HuaYang楊華andZaoYi易早
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張麗萍楊華

    Xiangxian Wang(王向賢), Jiankai Zhu(朱劍凱), Yueqi Xu(徐月奇), Yunping Qi(祁云平),Liping Zhang(張麗萍), Hua Yang(楊華), and Zao Yi(易早)

    1School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    2College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    3Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    Keywords: plasmonic sensor,gold,silicon,grating

    1. Introduction

    In the past few decades, the development of various nanofabrication technologies has provoked the enormous growth of nanostructures in various applications such as photocatalysis,[1–3]absorption enhancements,[4,5]photonic crystals,[6,7]and other fields.[8]Simultaneously, the fabrication of metal micro-nano structures mainly benefits from the rapid growth of electron beam lithography(EBL)and focused ion beam(FIB)milling.The realization of cost-effective metal nanostructures greatly improves the possibilities of their integration in the optical field. When the characteristic size of the metal nanostructure is of sub-wavelength order, a kind of electromagnetic motion mode of light and electron closely combined under the action of external electromagnetic wave,namely surface plasmons,cannot be ignored.[9]In reality,the structures and devices based on surface plasmons make it possible to manipulate and control photons on the nanoscale,which provides a new solution for realizing smaller,faster,and more efficient nanophotonic devices. Moreover, many applications of metal micro-nano structures,such as absorbers,[10]fiber sensors,[11,12]surface-enhanced Raman,[13–15]are all related to the surface plasmons generated by the close interaction between metal nanostructures and incident light.

    At present, surface plasmons have a considerable application prospect in the fields of optical sensing, due to their high sensitivity to the physical and chemical properties of the environment, as well as their action range can be controlled at the nano level. In addition, surface plasmons based biochemical sensors are also attracting attention because of their advantages of fast detection speed, high specificity, samplefree labeling,[16,17]and online real-time analysis.[17]However,the plasmonic refractive index (RI) sensors based on prism coupling, which has been successfully commercialized, have gradually exhibited drawbacks in miniaturization and integration owing to its bulky volume. In recent years,the integrated grating coupled plasmonic RI sensors have attracted much attention since it is compatible with the portable development concept of future sensors.[18]Moreover, the noise reduction and light collection are other significant improvement advantages because the grating coupling based plasmonic RI sensors can be excited via normal incidence. Therefore, it is of great significance to design grating coupled plasmonic RI sensor with higher sensitivity,a higher figure of merit(FOM),and a more straightforward manufacturing process(easy to manufacture in a large area)to meet the future needs of RI sensing.

    In this work,we propose a novel complementary grating structure for plasmonic RI sensing. Compared with the traditional grating coupled plasmonic RI sensors, our structure can more effectively couple the surface plasmons excited via grating to the environment of the analyte and significantly reduce the full width at half maximum(FWHM),thus improved the FOM. A broadband simulation was performed to extract the structure spectrum characteristics based on TM polarization, and the electric field distributions were obtained using the finite-difference time-domain (FDTD) method. We find that multiple surface plasmon resonance modes can exist in the complementary grating structure. Furthermore,the resonance mode excited via the first-order diffraction coupling of the grating is quite suitable for RI sensing because of its extremely narrow FWHM.The influences of grating geometric variables on resonance behavior are discussed in detail to obtain the appropriate geometric ranges for RI sensing.Finally,the RI sensing performances of the structure are reflected plainly by two important physical parameters,sensitivity and FOM.

    2. Structural design

    The three-dimensional schematic diagram and the twodimensional profile diagram of the structure are respectively shown in Figs. 1(a) and 1(b). The sensing structure is composed of Si grating,Au grating,and glass substrate. The structure is mainly composed of complementary and directly contacted Si and Au gratings. In essence, it is a functional layer based on the Schottky junction,which is advantageous to current silicon electronic devices from the integration point of view. The analyte is located on the upper surface of the entire structure during the actual RI sensing. Here, the RI of the analyte and the period of the Au/Si grating are assumed to be 1 and 1700 nm, respectively, unless otherwise stated. For the convenience of discussion,grating geometric variables are shown in Fig.1(b),which are the Au grating channel width w,Au grating channel depth td,and the thickness of Si film tsin the Si grating.

    Fig.1. The three-dimensional schematic diagram (a) and the twodimensional profile diagram(b)of the complementary grating structure.From top to bottom are Si grating,Au grating,and glass substrate. The black and blue arrows represent the propagation direction and polarization direction of the incident light,respectively.

    As shown by the arrows in Fig.1,this plasmonic structure is excited via vertical incident light with a polarization direction along the periodic direction(TM mode). In the structural design,the purpose of the Au grating is to compensate for the appropriate momentum to excite the surface plasmons propagating along the functional layer composed of complementary gratings. The thickness of the designed Au grating is thick enough; thus,the light transmission of the structure is almost zero in a wide frequency band. The Si grating, complementary to Au grating,has two main objectives. On the one hand,the Si grating makes the contact surface between the analyte and the structure smooth(easy to clean analytes). On the other hand, Si grating can assist Au grating to couple more energy of surface plasmons to the environment of analyte(discussed below). In the numerical simulation, the optical constants of Si and glass substrate (SiO2) are derived from previous experimental values,[19,20]and the dielectric constant of gold is selected from the experimental data supported by the Drude model.[21]

    3. Results and discussion

    3.1. Plasmonic responses of the structure

    The black curve in Fig.2 shows the reflection spectrum of the complementary grating structure in a wide wavelength range of 1400 nm to 4000 nm. Here, the geometric parameters of the complementary grating structure are w=400 nm,td=160 nm, and ts=30 nm, respectively. To illustrate the advantages of the complementary grating structure, we also simulate the reflection spectrum of the structure with only Au grating under the same geometric parameters,as shown in the red curve in Fig.2. It can be clearly seen from the comparison that the complementary grating structure with a layer of Si can excite more surface plasmon resonance modes and can effectively reduce the FWHM of the resonance peak. According to the spectral response of the complementary grating structure,the resonance mode excited at 1708 nm has great advantages in RI sensing due to its strong resonance intensity(reflectivity almost 0)and extremely narrow FWHM(about 5.4 nm). It is worth mentioning that the resonance mode at 3189 nm may have application potential in broadband absorption,benefit by its FWHM of nearly 500 nm.

    Fig.2. Reflection spectra of the structures. The black curve shows the reflection spectrum of the complementary grating structure at the geometric variables of w=400 nm,td =160 nm, and ts =30 nm, respectively. The red curve shows the reflection spectrum of the structure with only Au grating under the same geometric parameters.

    To intuitively reveal the resonance mechanism caused by grating coupling,we calculated the electric field distributions of the grating coupling structures for each resonance mode(corresponding to Fig.2)in Fig.3. Figure 3(a)shows the electric field distribution at 1813 nm,which is the only plasmonic resonance mode excited via the structure with only Au grating. Figures 3(b)–3(d) show the electric field distributions of the complementary grating structure at resonance wavelengths of 1558 nm, 1708 nm, and 3189 nm, respectively. As can be seen, in the case of Fig.3(a), the electric fields are found to leak into the environment of the analytes, which is the signature of propagating surface plasmon. It can be confirmed that this mode is caused by the first-order diffraction coupling of the Au grating. For Fig.3(c), one can observe a similar phenomenon in the complementary grating structure and draw the same conclusion. Thus, the 1708 nm mode can be illustratively called propagation-mode in the complementary grating structure. However,it can also be observed that the existence of Si grating in complementary grating structure makes the energy of surface plasmons excited by Au grating more evenly coupled to the environment of analytes. Furthermore, the Si grating that flattens the propagation interface of the surface plasmon is the main reason for reducing the FWHM of the first-order diffraction coupled resonance of Au gratings. Remarkably, both these two characteristics caused by complementary gratings are conducive to RI sensing. Subsequently,it can be observed from Fig.3(b) that the weak resonance of Au/Si interface in the channel of Au grating is the reason for the reflection valley at 1558 nm,and a standing wave is formed in the environment of analyte due to the reflection of the incident light. As shown in Fig.3(d),the large capture of the field energy via the Au grating channel is responsible for the resonance mode at 3189 nm,which can be called channel-mode.

    To further reveal the role of grating on the excitation of surface plasmon resonances,we theoretically verify the simulation results via the 1D grating equation. Incident light scattering on metal nanostructures results in a wide range of directions for the propagation vector. Then, surface plasmon resonance is generated when the following momentum matching conditions are satisfied:[22]

    where k0nsin? is the k-vector of the incident light in the xdirection, and 2πm/P is the additional momentum compensated via 1D grating.More specifically,k0=2π/λ is the propagation constant in free space, nais the RI of the analyte, εmis the complex dielectric constant of the gold, ? is the incident angle, P is the 1D grating period, m are the diffraction orders of 1D gratings and are integers. In the case of normal incidence,the above equation can be reduced to

    where λresrepresents the resonance wavelength.When m=1,the 1708 mode is in good agreement with Eq.(2)obtained via theoretical analysis, which fully testifies that the 1708 mode is excited by the first-order subwavelength diffraction of the grating. The theoretical result is also consistent with the qualitative analysis of the electric field distribution in Fig.3(c).

    Fig.3. The electric field distributions of the structures corresponding to each resonance wavelength in Fig.2 and the white dashed line outlined the structures.The electric field distribution of the structure with only Au grating at the resonance wavelength of(a)1813 nm. The electric field distributions of a complementary grating structure at the resonance wavelengths of(b)1558 nm,(c)1708 nm,and(d)3189 nm,respectively.

    3.2. Structural optimization

    Considering the purpose of using this structure for RI sensing, the following discussion focuses on the 1708 nm mode (propagation-mode), which has strong resonance (low reflectivity)and narrow FWHM,and has extensive interaction with the environment of the analyte. Firstly, the geometric parameters of the structure are optimized, and the geometric parameter tolerance suitable for RI sensing is obtained. Figure 4(a) shows the reflection spectra at the waveband where the propagation-mode is located when w changes from 280 to 680 in a step size of 100 nm with tdand tsfixed at 160 nm and 30 nm, respectively. It can be observed that the resonance wavelengths move towards the shorter wavelength,and the reflectivity decreases first and then increases with the increase of w, while the FWHM presents fluctuation. Hence, a choice of the channel width w of 380 nm(red line)resulted in a decent value of signal contrast. Figure 4(b)shows the reflectivity spectra for w of 380 nm,tsof 30 nm,and variable channel death tdin step size of 20 nm. It can be noticed that the reflectivity decreases to the minimum value and then increases,resulting in an optimal value of 160 nm for td(blue line). Figure 4(c) shows the reflection spectra for w of 380 nm, tdof 160 nm,and with tschanged from 0 nm to 40 nm in step size of 10 nm. It can be observed that with the increase of ts, the resonance wavelength shifts to the long wavelength and is accompanied by the reflectivity gets lower,and the FWHM gradually widened. Here, tsis optimized to be 30 nm (blue line)because there is a trade-off between dip strength and FWHM.

    Fig.4. Influences of(a)channel width w,(b)channel depth td,and(c)Si film thickness ts on the 1708 nm mode(propagation-mode).

    According to the above discussion,the optimum geometric parameters of the complementary grating structure used for RI sensing are w of 380 nm, tdof 160 nm, and tsof 30 nm,respectively. In addition, two important points can be simultaneously derived from the above discussion on the influence of geometric parameters on propagation-mode: (i)in terms of sensing, this structure is capable of exciting the strong resonances with sensing capability in a wide range of grating variables,which reveals a remarkably high tolerance to geometric parameters of the structure in the fields of RI sensing;(ii)the variations of w, td, and tsshow the minor effect on the peak position of the propagation-mode, this is because the change of the geometric parameters does not alter the essence of Au grating diffraction,and further confirms that the propagationmode at 1708 nm is indeed aroused by grating diffraction after compensating optical momentum.

    3.3. The sensing performance of the structure

    Based on the above analysis of the plasmonic responses of the complementary grating structure, the sensing performances of the propagation-mode are discussed in detail. Via introducing two crucial physical parameters, sensitivity (S)and figure of merit (FOM), we follow the common knowledge in the field of RI sensing. The RI sensitivity of a plasmonic sensor is generally reported in nanometers of peak shift per refractive index unit (nm/RIU), i.e., S = ?λ/?n.The sensing precision depends on higher sensitivity and narrower FWHM;thus,the concept of FOM can be derived,i.e.,FOM=S/FWHM.

    Figure 5(a) shows the reflection spectra of the structure under different analyte RI in the waveband where the propagation-mode is located. Here, we assume that the analytes are gases, and their RI varies from 1.0 to 1.1 in step size of 0.02. As shown, the resonance wavelength of the propagation-mode moves to the long-wavelength equidistantly with the even increases of analyte RI.It is also observed that the sensing process is very stable,which is reflected in the fact that the reflectivity and the FWHM of the resonance peaks are almost unchanged.Figure 5(b)shows the relationship between the resonance wavelength and the FOM of the propagationmode with the analyte RI. It is more intuitive to observe that the resonance wavelengths are linearly sensitive to the change of analyte RI.According to the definition of S,the slope of the black line in Fig.5(b)is the value of S and keeps a constant of 1642 nm/RIU.In the range of analyte RI being gas,the FOM is all above 300 RIU?1,and the highest can reach 409 RIU?1.The S of this plasmonic sensor is quite high compared with the RI sensors in recent reports,[23–27]and the FOM is higher than that obtained in other previous studies.[28–31]For Fig.5(a),an interesting phenomenon can also be observed. The mode at about 1558 nm (described in detail in Fig.2) presents insensitive to analyte RI, which indicates the potential application in the RI sensing of self-referenced.[32]The reason can be explained from Fig.3(b), which is the electric field distribution under this mode. One can observe from Fig.3(b)that the region of this weak plasmonic resonance is only confined in the channel of Au grating,and has no effect on the external environment of the analyte.

    Fig.5. (a) Reflective spectra of the complementary grating structure with the optimum geometric parameters when the analyte RI ranges from 1.0 to 1.1 in steps of 0.02. (b)The relationship of resonance wavelengths and FOM with analyte RI in propagation-mode.

    The complementary grating structure we designed can be used not only as a gas RI sensor but also as a liquid RI sensor.Figure 6(a) shows the reflection spectra under the waveband where the propagation-mode is located when the analyte RI varies from 1.3 to 1.4 (within the analyte RI range near liquid). Here,the values of w,td,and tsare the optimized parameters under the grating period equals to 1200 nm. As shown in Fig.6(a), the stable sensing ability of the resonance peak can still be observed, which is shown in the linear sensitivity with the even change of analyte RI and the almost constant FWHM. It is noted that when the structure is used for liquid sensing,the sensing waveband can be the same as that for gas sensing. This is because although the increase of analyte RI will lead to the redshift of the resonance peak,the decrease of the period will lead to the blueshift of that. The flexibility of geometric parameter change is also illustrated when the structure is used for RI sensing. Figure 6(b) shows the sensitivity curve used to calculate S and the relationship between FOM and analyte RI.The sensitivity of the structure used for liquid sensing is estimated to be 1212 nm/RIU,and its FOM is stabilized at about 135 RIU?1. Compared with the structure used in gas sensing, the sensitivity of liquid sensing is obviously reduced. This is due to the decrease of the period,which corresponding to reduce the interaction range between the surface plasmon and the environment of the analyte.

    Fig.6. (a) Reflective spectra of the complementary grating structure when the analyte RI ranges from 1.3 to 1.4 in steps of 0.02.Here,the geometric parameters of the structure are with grating period=1200 nm,w=400 nm, td =180 nm, and ts =30 nm. (b) The relationship of resonance wavelength and FOM with analyte RI in propagation-mode.

    4. Conclusion

    In conclusion, a surface plasmon RI sensor based on a complementary grating structure composed of Au and Si is presented. The effective energy couplings between the surface plasmon and the incident light are fully proved by the detailed discussion of the structure plasmonic responses. A propagation-mode with narrow FWHM and high strength occurs via the first-order diffraction of the complementary grating structure, making it very suitable for RI sensing. After optimizing the geometrical parameters of the structure, the S and the highest FOM of the structure are 1642 nm/RIU and 409 RIU?1,respectively,in the analyte of gas.Moreover,flexible geometric parameters regulation makes the structure can be used for liquid sensing in the same waveband as gas sensing. This plasmonic RI sensor is simple to manufacture and has stable sensing performance in the case of the analytes being gas and liquid. Thus, this sensor can be widely used in biological and chemical RI sensing fields.

    猜你喜歡
    張麗萍楊華
    Effect of spin on the instability of THz plasma waves in field-effect transistors under non-ideal boundary conditions
    Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
    石磨
    金山(2022年6期)2022-06-24 20:38:53
    楊華作品
    Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array?
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    張麗萍 勿忘初心 立己達(dá)人
    国产在线精品亚洲第一网站| 国产亚洲欧美98| 一夜夜www| 亚洲中文字幕一区二区三区有码在线看| 欧美日韩综合久久久久久| 婷婷亚洲欧美| 岛国毛片在线播放| 精品久久久久久久久亚洲| 激情 狠狠 欧美| 久久久久久久久久黄片| av天堂在线播放| 久久人人精品亚洲av| 最新中文字幕久久久久| 少妇的逼好多水| 青青草视频在线视频观看| 哪里可以看免费的av片| 国产黄a三级三级三级人| 最近视频中文字幕2019在线8| 青青草视频在线视频观看| 亚洲精品国产av成人精品| 欧美日韩乱码在线| 亚洲精品影视一区二区三区av| 国产人妻一区二区三区在| 国产91av在线免费观看| 啦啦啦韩国在线观看视频| 在线天堂最新版资源| 久久这里只有精品中国| videossex国产| 高清毛片免费看| 九草在线视频观看| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜爱| 又爽又黄无遮挡网站| av在线亚洲专区| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧美人成| a级毛色黄片| 国产成人午夜福利电影在线观看| 亚洲欧美精品专区久久| 色吧在线观看| 免费看a级黄色片| .国产精品久久| 少妇熟女aⅴ在线视频| 成人午夜精彩视频在线观看| 啦啦啦观看免费观看视频高清| 精品国内亚洲2022精品成人| 久久这里有精品视频免费| 中文资源天堂在线| 欧美日韩国产亚洲二区| 少妇高潮的动态图| 欧美三级亚洲精品| 日本免费一区二区三区高清不卡| 亚洲精品久久久久久婷婷小说 | 天堂av国产一区二区熟女人妻| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区三区四区免费观看| 国产极品精品免费视频能看的| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆| 不卡一级毛片| or卡值多少钱| 国产精品伦人一区二区| 国产黄片美女视频| 久久精品国产清高在天天线| 一本久久中文字幕| 桃色一区二区三区在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲熟妇中文字幕五十中出| 欧美成人一区二区免费高清观看| 国产在线精品亚洲第一网站| 蜜臀久久99精品久久宅男| or卡值多少钱| 亚洲国产精品久久男人天堂| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 在线免费观看不下载黄p国产| 97超碰精品成人国产| 欧美又色又爽又黄视频| 深爱激情五月婷婷| 九九爱精品视频在线观看| 国产精品.久久久| 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 久99久视频精品免费| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 日韩欧美三级三区| 在线免费观看不下载黄p国产| 日韩欧美在线乱码| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 亚洲av中文字字幕乱码综合| 只有这里有精品99| 一夜夜www| 欧美成人免费av一区二区三区| 熟妇人妻久久中文字幕3abv| avwww免费| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 国产成人精品一,二区 | 亚洲av电影不卡..在线观看| 成人特级黄色片久久久久久久| 国产成年人精品一区二区| 精品欧美国产一区二区三| 黄色欧美视频在线观看| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 十八禁国产超污无遮挡网站| 三级国产精品欧美在线观看| 偷拍熟女少妇极品色| 99久国产av精品| 国产精品.久久久| 色吧在线观看| 亚洲av第一区精品v没综合| 国产精品一区www在线观看| 十八禁国产超污无遮挡网站| 看十八女毛片水多多多| 成年女人永久免费观看视频| 国产精品一二三区在线看| 岛国毛片在线播放| 国产亚洲欧美98| 亚洲国产精品合色在线| 亚洲av成人av| 日韩 亚洲 欧美在线| 看黄色毛片网站| 村上凉子中文字幕在线| 午夜老司机福利剧场| 国产色婷婷99| 欧美日韩精品成人综合77777| 午夜福利在线观看吧| 十八禁国产超污无遮挡网站| 91aial.com中文字幕在线观看| 一区二区三区四区激情视频 | 国产一区二区亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 少妇的逼好多水| 夜夜夜夜夜久久久久| 亚洲最大成人中文| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 色综合色国产| 色综合站精品国产| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 欧美性猛交╳xxx乱大交人| 欧美成人免费av一区二区三区| 小说图片视频综合网站| 亚洲内射少妇av| 久久99热6这里只有精品| kizo精华| 91麻豆精品激情在线观看国产| 国产精品一区www在线观看| 国产伦在线观看视频一区| 国产不卡一卡二| 美女cb高潮喷水在线观看| 免费人成在线观看视频色| 亚洲成人精品中文字幕电影| 春色校园在线视频观看| 麻豆成人av视频| 国产高清激情床上av| 亚洲最大成人手机在线| 内射极品少妇av片p| 久久这里只有精品中国| 午夜激情福利司机影院| 小说图片视频综合网站| 欧美一区二区亚洲| 国产亚洲av片在线观看秒播厂 | 少妇的逼水好多| 91av网一区二区| 97热精品久久久久久| 99精品在免费线老司机午夜| 成人三级黄色视频| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 亚洲综合色惰| 99热6这里只有精品| 免费无遮挡裸体视频| 日韩中字成人| 一区二区三区四区激情视频 | avwww免费| 少妇的逼好多水| 亚洲婷婷狠狠爱综合网| 国产极品精品免费视频能看的| 哪里可以看免费的av片| 最近的中文字幕免费完整| 国产在线男女| 日韩精品青青久久久久久| 日韩强制内射视频| 日韩亚洲欧美综合| 真实男女啪啪啪动态图| 99久久九九国产精品国产免费| 国产私拍福利视频在线观看| 国产亚洲av嫩草精品影院| 十八禁国产超污无遮挡网站| 日本-黄色视频高清免费观看| 久久精品国产清高在天天线| 久久久久九九精品影院| 亚洲精品456在线播放app| 日韩一区二区视频免费看| 国产成人freesex在线| 天天躁夜夜躁狠狠久久av| 美女黄网站色视频| 色播亚洲综合网| 国产一级毛片在线| 中文字幕久久专区| 中文亚洲av片在线观看爽| 国产不卡一卡二| а√天堂www在线а√下载| 日本黄色片子视频| 成人永久免费在线观看视频| 国产精品福利在线免费观看| 中国国产av一级| 国产精品一二三区在线看| 熟女电影av网| 成人午夜高清在线视频| 99热精品在线国产| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 日韩高清综合在线| 国产白丝娇喘喷水9色精品| 国产一区二区亚洲精品在线观看| 亚洲人成网站高清观看| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 国产午夜精品一二区理论片| 国产一区亚洲一区在线观看| 亚洲不卡免费看| 神马国产精品三级电影在线观看| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 国产精华一区二区三区| 婷婷亚洲欧美| 欧美一区二区亚洲| 成人美女网站在线观看视频| 国产伦精品一区二区三区视频9| 成人性生交大片免费视频hd| 亚洲成人av在线免费| 听说在线观看完整版免费高清| 又爽又黄a免费视频| 久久99精品国语久久久| 三级毛片av免费| 欧美日韩综合久久久久久| 日本免费a在线| 日韩视频在线欧美| 久久99热这里只有精品18| 少妇熟女欧美另类| 国产高潮美女av| av在线播放精品| 亚洲av中文字字幕乱码综合| 哪里可以看免费的av片| 又爽又黄a免费视频| 成人三级黄色视频| 美女高潮的动态| 欧美精品一区二区大全| 午夜福利视频1000在线观看| 人人妻人人澡人人爽人人夜夜 | 日本成人三级电影网站| 亚洲av第一区精品v没综合| 免费一级毛片在线播放高清视频| 99久久久亚洲精品蜜臀av| 精品人妻偷拍中文字幕| 国产av麻豆久久久久久久| 成年版毛片免费区| 亚洲av.av天堂| 日日摸夜夜添夜夜爱| 国产久久久一区二区三区| 国产精品国产高清国产av| eeuss影院久久| 欧美成人一区二区免费高清观看| 日本一本二区三区精品| 日韩一本色道免费dvd| 欧美性猛交╳xxx乱大交人| 欧美成人精品欧美一级黄| 免费无遮挡裸体视频| 黑人高潮一二区| 一级黄片播放器| 欧美激情国产日韩精品一区| 热99在线观看视频| 国产精品久久久久久精品电影小说 | 亚洲国产精品合色在线| 久久99热这里只有精品18| 国产美女午夜福利| 欧美人与善性xxx| 91av网一区二区| 欧美在线一区亚洲| 国产在视频线在精品| .国产精品久久| 99国产极品粉嫩在线观看| 免费无遮挡裸体视频| 亚洲欧美精品专区久久| 免费观看a级毛片全部| 两个人视频免费观看高清| 亚洲精品乱码久久久v下载方式| 边亲边吃奶的免费视频| 久久午夜亚洲精品久久| 国产老妇女一区| 欧美激情在线99| 欧美日韩国产亚洲二区| 国产视频首页在线观看| 精品久久久噜噜| 亚洲av.av天堂| 欧美高清性xxxxhd video| 国产午夜精品久久久久久一区二区三区| 亚洲欧美中文字幕日韩二区| 国产女主播在线喷水免费视频网站 | 高清午夜精品一区二区三区 | 1000部很黄的大片| 男人的好看免费观看在线视频| 99久久九九国产精品国产免费| 免费观看人在逋| 亚洲欧美成人精品一区二区| av在线天堂中文字幕| 中文字幕av在线有码专区| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 九色成人免费人妻av| 丝袜喷水一区| 久久中文看片网| 久久久久久久久久久丰满| 最新中文字幕久久久久| 别揉我奶头 嗯啊视频| 黄片wwwwww| 久久草成人影院| 国产精品无大码| 国产精品美女特级片免费视频播放器| 久久久久久久久中文| 亚洲成人中文字幕在线播放| 女人十人毛片免费观看3o分钟| 级片在线观看| 2022亚洲国产成人精品| 一本久久精品| 欧美日本视频| 国产精品av视频在线免费观看| 日韩 亚洲 欧美在线| 国产精品久久久久久久电影| 男人的好看免费观看在线视频| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 看免费成人av毛片| 91久久精品国产一区二区成人| 欧美人与善性xxx| 一级毛片久久久久久久久女| av在线亚洲专区| 久久精品影院6| 色视频www国产| 99久久九九国产精品国产免费| 91麻豆精品激情在线观看国产| 国产麻豆成人av免费视频| 婷婷亚洲欧美| 亚洲内射少妇av| 日本三级黄在线观看| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 国产精品福利在线免费观看| 嘟嘟电影网在线观看| 日本与韩国留学比较| 韩国av在线不卡| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区 | 久久久久久久久久黄片| 国内久久婷婷六月综合欲色啪| 久久精品夜夜夜夜夜久久蜜豆| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 久久精品国产亚洲av天美| 菩萨蛮人人尽说江南好唐韦庄 | 成人欧美大片| 嫩草影院精品99| 日日摸夜夜添夜夜添av毛片| 一个人免费在线观看电影| 特级一级黄色大片| 久久韩国三级中文字幕| 高清午夜精品一区二区三区 | 日本与韩国留学比较| 美女高潮的动态| 美女大奶头视频| 国产精品久久久久久久久免| 在线观看一区二区三区| 国产大屁股一区二区在线视频| 99久久中文字幕三级久久日本| 久久久a久久爽久久v久久| 亚洲自偷自拍三级| 99热精品在线国产| 最近视频中文字幕2019在线8| 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 婷婷精品国产亚洲av| 一级毛片我不卡| 成人特级黄色片久久久久久久| 久久九九热精品免费| 国产一级毛片七仙女欲春2| 麻豆国产av国片精品| 国产免费一级a男人的天堂| 久久久久网色| 亚洲精品自拍成人| 蜜桃亚洲精品一区二区三区| www.色视频.com| 中文字幕人妻熟人妻熟丝袜美| 日日撸夜夜添| 美女被艹到高潮喷水动态| 国产一区二区激情短视频| 欧美高清成人免费视频www| 国产精品女同一区二区软件| 看免费成人av毛片| 性色avwww在线观看| 亚洲第一区二区三区不卡| 99在线视频只有这里精品首页| 91午夜精品亚洲一区二区三区| 青春草国产在线视频 | 久久人人爽人人片av| 欧美日韩在线观看h| 91精品国产九色| 久久这里只有精品中国| 精品久久久噜噜| 一级毛片电影观看 | 美女脱内裤让男人舔精品视频 | 小说图片视频综合网站| 精品一区二区三区视频在线| 免费看美女性在线毛片视频| 欧美激情国产日韩精品一区| 18禁在线无遮挡免费观看视频| 在线观看免费视频日本深夜| 人妻少妇偷人精品九色| 男人舔奶头视频| 久久久国产成人精品二区| 男女下面进入的视频免费午夜| 日韩欧美国产在线观看| 中文精品一卡2卡3卡4更新| av专区在线播放| 日韩强制内射视频| 色综合色国产| 亚洲av免费高清在线观看| 91午夜精品亚洲一区二区三区| 又爽又黄无遮挡网站| 搡女人真爽免费视频火全软件| 级片在线观看| 欧美一区二区国产精品久久精品| 国产精品乱码一区二三区的特点| 久久午夜福利片| 三级国产精品欧美在线观看| 夜夜夜夜夜久久久久| 男人舔女人下体高潮全视频| 国产综合懂色| 91久久精品国产一区二区三区| 午夜视频国产福利| 精品国产三级普通话版| 干丝袜人妻中文字幕| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 韩国av在线不卡| 看非洲黑人一级黄片| 久久久a久久爽久久v久久| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 插阴视频在线观看视频| 国内少妇人妻偷人精品xxx网站| 欧美色欧美亚洲另类二区| eeuss影院久久| 真实男女啪啪啪动态图| a级毛片a级免费在线| 久久精品国产亚洲av涩爱 | 日韩人妻高清精品专区| 久久草成人影院| 国产私拍福利视频在线观看| 少妇的逼水好多| 亚洲欧美日韩卡通动漫| 亚洲一区二区三区色噜噜| 热99re8久久精品国产| 深夜a级毛片| 亚洲国产精品国产精品| 久久精品综合一区二区三区| 成人高潮视频无遮挡免费网站| videossex国产| 久久久久久九九精品二区国产| 亚洲成a人片在线一区二区| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 嫩草影院新地址| 全区人妻精品视频| 麻豆乱淫一区二区| 国产精品久久久久久精品电影| av专区在线播放| 国产高清有码在线观看视频| 寂寞人妻少妇视频99o| 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av香蕉五月| 一级毛片aaaaaa免费看小| 亚洲最大成人av| 三级经典国产精品| 可以在线观看的亚洲视频| 精品人妻视频免费看| 精品人妻一区二区三区麻豆| 国产一区二区三区在线臀色熟女| 变态另类成人亚洲欧美熟女| 热99re8久久精品国产| 久久亚洲精品不卡| 成人午夜精彩视频在线观看| 色播亚洲综合网| 99久久久亚洲精品蜜臀av| 91精品国产九色| 五月玫瑰六月丁香| 一个人看视频在线观看www免费| 在线观看午夜福利视频| 亚洲精品乱码久久久久久按摩| 国产精品久久电影中文字幕| 精品久久久久久久久av| 老熟妇乱子伦视频在线观看| 乱系列少妇在线播放| eeuss影院久久| 啦啦啦观看免费观看视频高清| 日本免费a在线| 日本-黄色视频高清免费观看| 成年免费大片在线观看| 97超视频在线观看视频| 欧美激情国产日韩精品一区| 午夜精品在线福利| 国产精品无大码| 久久久久久久亚洲中文字幕| 国产黄色小视频在线观看| 亚洲电影在线观看av| 啦啦啦啦在线视频资源| 国产一区亚洲一区在线观看| 伊人久久精品亚洲午夜| 99在线视频只有这里精品首页| 精华霜和精华液先用哪个| 日韩视频在线欧美| 日日摸夜夜添夜夜爱| 久久久久久九九精品二区国产| 亚洲人成网站在线播| 亚洲国产欧美人成| av福利片在线观看| 日本撒尿小便嘘嘘汇集6| 高清日韩中文字幕在线| 国产成人一区二区在线| 春色校园在线视频观看| 91av网一区二区| 黄色欧美视频在线观看| 女人十人毛片免费观看3o分钟| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 久久久久久国产a免费观看| 亚洲经典国产精华液单| 三级毛片av免费| 久久久久久伊人网av| av在线亚洲专区| 午夜精品在线福利| 26uuu在线亚洲综合色| 看片在线看免费视频| 久久韩国三级中文字幕| 午夜福利在线在线| 男女那种视频在线观看| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| 又爽又黄a免费视频| 18禁在线播放成人免费| 亚洲一区二区三区色噜噜| 成人亚洲精品av一区二区| 久久精品综合一区二区三区| 美女脱内裤让男人舔精品视频 | 可以在线观看毛片的网站| a级毛片免费高清观看在线播放| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲中文字幕日韩| 国产精品久久久久久久久免| 男女边吃奶边做爰视频| 国内精品一区二区在线观看| 亚洲五月天丁香| 国产午夜福利久久久久久| 男人狂女人下面高潮的视频| 有码 亚洲区| 国产亚洲精品av在线| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 欧美成人精品欧美一级黄| 久久久久久国产a免费观看| 女同久久另类99精品国产91| 成年免费大片在线观看| 长腿黑丝高跟| 夫妻性生交免费视频一级片| 性欧美人与动物交配| 九色成人免费人妻av| 国产高清不卡午夜福利| 亚洲精品456在线播放app| 成年女人永久免费观看视频| 亚洲人成网站在线播放欧美日韩| 国产精品伦人一区二区| 国国产精品蜜臀av免费| 成人特级黄色片久久久久久久| 精品日产1卡2卡| 国产一区二区三区在线臀色熟女| 国产一级毛片七仙女欲春2| 中文字幕免费在线视频6| 青春草亚洲视频在线观看| 精品熟女少妇av免费看| 亚洲久久久久久中文字幕| 欧美性感艳星| av在线蜜桃| 高清毛片免费看| 欧美日韩乱码在线| 91午夜精品亚洲一区二区三区| 久久久a久久爽久久v久久| 日韩av在线大香蕉| 亚洲乱码一区二区免费版| 美女被艹到高潮喷水动态|