• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure?

    2021-03-11 08:32:38XiangxianWang王向賢JiankaiZhu朱劍凱YueqiXu徐月奇YunpingQi祁云平LipingZhang張麗萍HuaYang楊華andZaoYi易早
    Chinese Physics B 2021年2期
    關(guān)鍵詞:張麗萍楊華

    Xiangxian Wang(王向賢), Jiankai Zhu(朱劍凱), Yueqi Xu(徐月奇), Yunping Qi(祁云平),Liping Zhang(張麗萍), Hua Yang(楊華), and Zao Yi(易早)

    1School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    2College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China

    3Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    Keywords: plasmonic sensor,gold,silicon,grating

    1. Introduction

    In the past few decades, the development of various nanofabrication technologies has provoked the enormous growth of nanostructures in various applications such as photocatalysis,[1–3]absorption enhancements,[4,5]photonic crystals,[6,7]and other fields.[8]Simultaneously, the fabrication of metal micro-nano structures mainly benefits from the rapid growth of electron beam lithography(EBL)and focused ion beam(FIB)milling.The realization of cost-effective metal nanostructures greatly improves the possibilities of their integration in the optical field. When the characteristic size of the metal nanostructure is of sub-wavelength order, a kind of electromagnetic motion mode of light and electron closely combined under the action of external electromagnetic wave,namely surface plasmons,cannot be ignored.[9]In reality,the structures and devices based on surface plasmons make it possible to manipulate and control photons on the nanoscale,which provides a new solution for realizing smaller,faster,and more efficient nanophotonic devices. Moreover, many applications of metal micro-nano structures,such as absorbers,[10]fiber sensors,[11,12]surface-enhanced Raman,[13–15]are all related to the surface plasmons generated by the close interaction between metal nanostructures and incident light.

    At present, surface plasmons have a considerable application prospect in the fields of optical sensing, due to their high sensitivity to the physical and chemical properties of the environment, as well as their action range can be controlled at the nano level. In addition, surface plasmons based biochemical sensors are also attracting attention because of their advantages of fast detection speed, high specificity, samplefree labeling,[16,17]and online real-time analysis.[17]However,the plasmonic refractive index (RI) sensors based on prism coupling, which has been successfully commercialized, have gradually exhibited drawbacks in miniaturization and integration owing to its bulky volume. In recent years,the integrated grating coupled plasmonic RI sensors have attracted much attention since it is compatible with the portable development concept of future sensors.[18]Moreover, the noise reduction and light collection are other significant improvement advantages because the grating coupling based plasmonic RI sensors can be excited via normal incidence. Therefore, it is of great significance to design grating coupled plasmonic RI sensor with higher sensitivity,a higher figure of merit(FOM),and a more straightforward manufacturing process(easy to manufacture in a large area)to meet the future needs of RI sensing.

    In this work,we propose a novel complementary grating structure for plasmonic RI sensing. Compared with the traditional grating coupled plasmonic RI sensors, our structure can more effectively couple the surface plasmons excited via grating to the environment of the analyte and significantly reduce the full width at half maximum(FWHM),thus improved the FOM. A broadband simulation was performed to extract the structure spectrum characteristics based on TM polarization, and the electric field distributions were obtained using the finite-difference time-domain (FDTD) method. We find that multiple surface plasmon resonance modes can exist in the complementary grating structure. Furthermore,the resonance mode excited via the first-order diffraction coupling of the grating is quite suitable for RI sensing because of its extremely narrow FWHM.The influences of grating geometric variables on resonance behavior are discussed in detail to obtain the appropriate geometric ranges for RI sensing.Finally,the RI sensing performances of the structure are reflected plainly by two important physical parameters,sensitivity and FOM.

    2. Structural design

    The three-dimensional schematic diagram and the twodimensional profile diagram of the structure are respectively shown in Figs. 1(a) and 1(b). The sensing structure is composed of Si grating,Au grating,and glass substrate. The structure is mainly composed of complementary and directly contacted Si and Au gratings. In essence, it is a functional layer based on the Schottky junction,which is advantageous to current silicon electronic devices from the integration point of view. The analyte is located on the upper surface of the entire structure during the actual RI sensing. Here, the RI of the analyte and the period of the Au/Si grating are assumed to be 1 and 1700 nm, respectively, unless otherwise stated. For the convenience of discussion,grating geometric variables are shown in Fig.1(b),which are the Au grating channel width w,Au grating channel depth td,and the thickness of Si film tsin the Si grating.

    Fig.1. The three-dimensional schematic diagram (a) and the twodimensional profile diagram(b)of the complementary grating structure.From top to bottom are Si grating,Au grating,and glass substrate. The black and blue arrows represent the propagation direction and polarization direction of the incident light,respectively.

    As shown by the arrows in Fig.1,this plasmonic structure is excited via vertical incident light with a polarization direction along the periodic direction(TM mode). In the structural design,the purpose of the Au grating is to compensate for the appropriate momentum to excite the surface plasmons propagating along the functional layer composed of complementary gratings. The thickness of the designed Au grating is thick enough; thus,the light transmission of the structure is almost zero in a wide frequency band. The Si grating, complementary to Au grating,has two main objectives. On the one hand,the Si grating makes the contact surface between the analyte and the structure smooth(easy to clean analytes). On the other hand, Si grating can assist Au grating to couple more energy of surface plasmons to the environment of analyte(discussed below). In the numerical simulation, the optical constants of Si and glass substrate (SiO2) are derived from previous experimental values,[19,20]and the dielectric constant of gold is selected from the experimental data supported by the Drude model.[21]

    3. Results and discussion

    3.1. Plasmonic responses of the structure

    The black curve in Fig.2 shows the reflection spectrum of the complementary grating structure in a wide wavelength range of 1400 nm to 4000 nm. Here, the geometric parameters of the complementary grating structure are w=400 nm,td=160 nm, and ts=30 nm, respectively. To illustrate the advantages of the complementary grating structure, we also simulate the reflection spectrum of the structure with only Au grating under the same geometric parameters,as shown in the red curve in Fig.2. It can be clearly seen from the comparison that the complementary grating structure with a layer of Si can excite more surface plasmon resonance modes and can effectively reduce the FWHM of the resonance peak. According to the spectral response of the complementary grating structure,the resonance mode excited at 1708 nm has great advantages in RI sensing due to its strong resonance intensity(reflectivity almost 0)and extremely narrow FWHM(about 5.4 nm). It is worth mentioning that the resonance mode at 3189 nm may have application potential in broadband absorption,benefit by its FWHM of nearly 500 nm.

    Fig.2. Reflection spectra of the structures. The black curve shows the reflection spectrum of the complementary grating structure at the geometric variables of w=400 nm,td =160 nm, and ts =30 nm, respectively. The red curve shows the reflection spectrum of the structure with only Au grating under the same geometric parameters.

    To intuitively reveal the resonance mechanism caused by grating coupling,we calculated the electric field distributions of the grating coupling structures for each resonance mode(corresponding to Fig.2)in Fig.3. Figure 3(a)shows the electric field distribution at 1813 nm,which is the only plasmonic resonance mode excited via the structure with only Au grating. Figures 3(b)–3(d) show the electric field distributions of the complementary grating structure at resonance wavelengths of 1558 nm, 1708 nm, and 3189 nm, respectively. As can be seen, in the case of Fig.3(a), the electric fields are found to leak into the environment of the analytes, which is the signature of propagating surface plasmon. It can be confirmed that this mode is caused by the first-order diffraction coupling of the Au grating. For Fig.3(c), one can observe a similar phenomenon in the complementary grating structure and draw the same conclusion. Thus, the 1708 nm mode can be illustratively called propagation-mode in the complementary grating structure. However,it can also be observed that the existence of Si grating in complementary grating structure makes the energy of surface plasmons excited by Au grating more evenly coupled to the environment of analytes. Furthermore, the Si grating that flattens the propagation interface of the surface plasmon is the main reason for reducing the FWHM of the first-order diffraction coupled resonance of Au gratings. Remarkably, both these two characteristics caused by complementary gratings are conducive to RI sensing. Subsequently,it can be observed from Fig.3(b) that the weak resonance of Au/Si interface in the channel of Au grating is the reason for the reflection valley at 1558 nm,and a standing wave is formed in the environment of analyte due to the reflection of the incident light. As shown in Fig.3(d),the large capture of the field energy via the Au grating channel is responsible for the resonance mode at 3189 nm,which can be called channel-mode.

    To further reveal the role of grating on the excitation of surface plasmon resonances,we theoretically verify the simulation results via the 1D grating equation. Incident light scattering on metal nanostructures results in a wide range of directions for the propagation vector. Then, surface plasmon resonance is generated when the following momentum matching conditions are satisfied:[22]

    where k0nsin? is the k-vector of the incident light in the xdirection, and 2πm/P is the additional momentum compensated via 1D grating.More specifically,k0=2π/λ is the propagation constant in free space, nais the RI of the analyte, εmis the complex dielectric constant of the gold, ? is the incident angle, P is the 1D grating period, m are the diffraction orders of 1D gratings and are integers. In the case of normal incidence,the above equation can be reduced to

    where λresrepresents the resonance wavelength.When m=1,the 1708 mode is in good agreement with Eq.(2)obtained via theoretical analysis, which fully testifies that the 1708 mode is excited by the first-order subwavelength diffraction of the grating. The theoretical result is also consistent with the qualitative analysis of the electric field distribution in Fig.3(c).

    Fig.3. The electric field distributions of the structures corresponding to each resonance wavelength in Fig.2 and the white dashed line outlined the structures.The electric field distribution of the structure with only Au grating at the resonance wavelength of(a)1813 nm. The electric field distributions of a complementary grating structure at the resonance wavelengths of(b)1558 nm,(c)1708 nm,and(d)3189 nm,respectively.

    3.2. Structural optimization

    Considering the purpose of using this structure for RI sensing, the following discussion focuses on the 1708 nm mode (propagation-mode), which has strong resonance (low reflectivity)and narrow FWHM,and has extensive interaction with the environment of the analyte. Firstly, the geometric parameters of the structure are optimized, and the geometric parameter tolerance suitable for RI sensing is obtained. Figure 4(a) shows the reflection spectra at the waveband where the propagation-mode is located when w changes from 280 to 680 in a step size of 100 nm with tdand tsfixed at 160 nm and 30 nm, respectively. It can be observed that the resonance wavelengths move towards the shorter wavelength,and the reflectivity decreases first and then increases with the increase of w, while the FWHM presents fluctuation. Hence, a choice of the channel width w of 380 nm(red line)resulted in a decent value of signal contrast. Figure 4(b)shows the reflectivity spectra for w of 380 nm,tsof 30 nm,and variable channel death tdin step size of 20 nm. It can be noticed that the reflectivity decreases to the minimum value and then increases,resulting in an optimal value of 160 nm for td(blue line). Figure 4(c) shows the reflection spectra for w of 380 nm, tdof 160 nm,and with tschanged from 0 nm to 40 nm in step size of 10 nm. It can be observed that with the increase of ts, the resonance wavelength shifts to the long wavelength and is accompanied by the reflectivity gets lower,and the FWHM gradually widened. Here, tsis optimized to be 30 nm (blue line)because there is a trade-off between dip strength and FWHM.

    Fig.4. Influences of(a)channel width w,(b)channel depth td,and(c)Si film thickness ts on the 1708 nm mode(propagation-mode).

    According to the above discussion,the optimum geometric parameters of the complementary grating structure used for RI sensing are w of 380 nm, tdof 160 nm, and tsof 30 nm,respectively. In addition, two important points can be simultaneously derived from the above discussion on the influence of geometric parameters on propagation-mode: (i)in terms of sensing, this structure is capable of exciting the strong resonances with sensing capability in a wide range of grating variables,which reveals a remarkably high tolerance to geometric parameters of the structure in the fields of RI sensing;(ii)the variations of w, td, and tsshow the minor effect on the peak position of the propagation-mode, this is because the change of the geometric parameters does not alter the essence of Au grating diffraction,and further confirms that the propagationmode at 1708 nm is indeed aroused by grating diffraction after compensating optical momentum.

    3.3. The sensing performance of the structure

    Based on the above analysis of the plasmonic responses of the complementary grating structure, the sensing performances of the propagation-mode are discussed in detail. Via introducing two crucial physical parameters, sensitivity (S)and figure of merit (FOM), we follow the common knowledge in the field of RI sensing. The RI sensitivity of a plasmonic sensor is generally reported in nanometers of peak shift per refractive index unit (nm/RIU), i.e., S = ?λ/?n.The sensing precision depends on higher sensitivity and narrower FWHM;thus,the concept of FOM can be derived,i.e.,FOM=S/FWHM.

    Figure 5(a) shows the reflection spectra of the structure under different analyte RI in the waveband where the propagation-mode is located. Here, we assume that the analytes are gases, and their RI varies from 1.0 to 1.1 in step size of 0.02. As shown, the resonance wavelength of the propagation-mode moves to the long-wavelength equidistantly with the even increases of analyte RI.It is also observed that the sensing process is very stable,which is reflected in the fact that the reflectivity and the FWHM of the resonance peaks are almost unchanged.Figure 5(b)shows the relationship between the resonance wavelength and the FOM of the propagationmode with the analyte RI. It is more intuitive to observe that the resonance wavelengths are linearly sensitive to the change of analyte RI.According to the definition of S,the slope of the black line in Fig.5(b)is the value of S and keeps a constant of 1642 nm/RIU.In the range of analyte RI being gas,the FOM is all above 300 RIU?1,and the highest can reach 409 RIU?1.The S of this plasmonic sensor is quite high compared with the RI sensors in recent reports,[23–27]and the FOM is higher than that obtained in other previous studies.[28–31]For Fig.5(a),an interesting phenomenon can also be observed. The mode at about 1558 nm (described in detail in Fig.2) presents insensitive to analyte RI, which indicates the potential application in the RI sensing of self-referenced.[32]The reason can be explained from Fig.3(b), which is the electric field distribution under this mode. One can observe from Fig.3(b)that the region of this weak plasmonic resonance is only confined in the channel of Au grating,and has no effect on the external environment of the analyte.

    Fig.5. (a) Reflective spectra of the complementary grating structure with the optimum geometric parameters when the analyte RI ranges from 1.0 to 1.1 in steps of 0.02. (b)The relationship of resonance wavelengths and FOM with analyte RI in propagation-mode.

    The complementary grating structure we designed can be used not only as a gas RI sensor but also as a liquid RI sensor.Figure 6(a) shows the reflection spectra under the waveband where the propagation-mode is located when the analyte RI varies from 1.3 to 1.4 (within the analyte RI range near liquid). Here,the values of w,td,and tsare the optimized parameters under the grating period equals to 1200 nm. As shown in Fig.6(a), the stable sensing ability of the resonance peak can still be observed, which is shown in the linear sensitivity with the even change of analyte RI and the almost constant FWHM. It is noted that when the structure is used for liquid sensing,the sensing waveband can be the same as that for gas sensing. This is because although the increase of analyte RI will lead to the redshift of the resonance peak,the decrease of the period will lead to the blueshift of that. The flexibility of geometric parameter change is also illustrated when the structure is used for RI sensing. Figure 6(b) shows the sensitivity curve used to calculate S and the relationship between FOM and analyte RI.The sensitivity of the structure used for liquid sensing is estimated to be 1212 nm/RIU,and its FOM is stabilized at about 135 RIU?1. Compared with the structure used in gas sensing, the sensitivity of liquid sensing is obviously reduced. This is due to the decrease of the period,which corresponding to reduce the interaction range between the surface plasmon and the environment of the analyte.

    Fig.6. (a) Reflective spectra of the complementary grating structure when the analyte RI ranges from 1.3 to 1.4 in steps of 0.02.Here,the geometric parameters of the structure are with grating period=1200 nm,w=400 nm, td =180 nm, and ts =30 nm. (b) The relationship of resonance wavelength and FOM with analyte RI in propagation-mode.

    4. Conclusion

    In conclusion, a surface plasmon RI sensor based on a complementary grating structure composed of Au and Si is presented. The effective energy couplings between the surface plasmon and the incident light are fully proved by the detailed discussion of the structure plasmonic responses. A propagation-mode with narrow FWHM and high strength occurs via the first-order diffraction of the complementary grating structure, making it very suitable for RI sensing. After optimizing the geometrical parameters of the structure, the S and the highest FOM of the structure are 1642 nm/RIU and 409 RIU?1,respectively,in the analyte of gas.Moreover,flexible geometric parameters regulation makes the structure can be used for liquid sensing in the same waveband as gas sensing. This plasmonic RI sensor is simple to manufacture and has stable sensing performance in the case of the analytes being gas and liquid. Thus, this sensor can be widely used in biological and chemical RI sensing fields.

    猜你喜歡
    張麗萍楊華
    Effect of spin on the instability of THz plasma waves in field-effect transistors under non-ideal boundary conditions
    Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
    石磨
    金山(2022年6期)2022-06-24 20:38:53
    楊華作品
    Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array?
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    張麗萍 勿忘初心 立己達(dá)人
    一区二区三区国产精品乱码| 日本撒尿小便嘘嘘汇集6| 十八禁网站免费在线| 少妇 在线观看| 狂野欧美激情性xxxx| 国产有黄有色有爽视频| 亚洲全国av大片| 首页视频小说图片口味搜索| 99精国产麻豆久久婷婷| 欧美在线黄色| 女性被躁到高潮视频| 久久ye,这里只有精品| 99精品久久久久人妻精品| 日韩熟女老妇一区二区性免费视频| 一级黄色大片毛片| 久久久久久久久免费视频了| 欧美中文综合在线视频| 国产熟女午夜一区二区三区| 黄色视频不卡| 日韩视频在线欧美| 国产无遮挡羞羞视频在线观看| 看免费av毛片| 性少妇av在线| 国产有黄有色有爽视频| 精品亚洲乱码少妇综合久久| 一本久久精品| av一本久久久久| tocl精华| 久久中文字幕人妻熟女| 在线观看人妻少妇| 建设人人有责人人尽责人人享有的| 我的亚洲天堂| 久久这里只有精品19| 亚洲精品中文字幕一二三四区 | 香蕉丝袜av| 国产精品久久久av美女十八| 久久久久久免费高清国产稀缺| 怎么达到女性高潮| 国产成人免费观看mmmm| 国产成人精品久久二区二区免费| 久久久久国产一级毛片高清牌| 国产精品一区二区在线观看99| 日本黄色视频三级网站网址 | 久久中文字幕一级| av不卡在线播放| 国产单亲对白刺激| 免费看十八禁软件| 捣出白浆h1v1| 国产日韩欧美亚洲二区| 亚洲欧美精品综合一区二区三区| 国产成人av激情在线播放| 波多野结衣一区麻豆| 免费观看人在逋| 久久毛片免费看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| av天堂久久9| 人人妻人人澡人人看| 夜夜爽天天搞| 亚洲精品美女久久av网站| 日韩 欧美 亚洲 中文字幕| 婷婷成人精品国产| 欧美乱码精品一区二区三区| 精品久久蜜臀av无| 热99re8久久精品国产| 一级片免费观看大全| 久久中文字幕一级| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| e午夜精品久久久久久久| 亚洲精品av麻豆狂野| 久久久久久亚洲精品国产蜜桃av| 亚洲男人天堂网一区| 亚洲专区中文字幕在线| 777米奇影视久久| 日韩人妻精品一区2区三区| 日韩欧美三级三区| 亚洲精品在线观看二区| 一级黄色大片毛片| 一区二区三区国产精品乱码| 国产高清videossex| 国产麻豆69| 一边摸一边抽搐一进一小说 | 12—13女人毛片做爰片一| 国产在线精品亚洲第一网站| 色综合欧美亚洲国产小说| 日本av免费视频播放| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜爽天天搞| 极品教师在线免费播放| 大香蕉久久网| 亚洲精品在线观看二区| 色播在线永久视频| 女人精品久久久久毛片| 亚洲熟女精品中文字幕| 国产色视频综合| 国产免费福利视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品国产区一区二| 亚洲色图综合在线观看| 久久久久视频综合| 久久久精品国产亚洲av高清涩受| 最近最新中文字幕大全免费视频| 亚洲精品美女久久久久99蜜臀| av视频免费观看在线观看| 精品亚洲成a人片在线观看| 一二三四在线观看免费中文在| 国产成人精品久久二区二区免费| 色尼玛亚洲综合影院| 免费在线观看黄色视频的| 久久免费观看电影| 亚洲性夜色夜夜综合| 亚洲精品一二三| www.自偷自拍.com| 变态另类成人亚洲欧美熟女 | 夜夜夜夜夜久久久久| 久久精品91无色码中文字幕| 捣出白浆h1v1| 国产av一区二区精品久久| 狠狠精品人妻久久久久久综合| 亚洲成人免费电影在线观看| 欧美一级毛片孕妇| 久久午夜亚洲精品久久| 欧美精品av麻豆av| 国产av又大| 久久国产精品大桥未久av| 18禁国产床啪视频网站| av线在线观看网站| 久久久久久人人人人人| 久久久久久免费高清国产稀缺| 久久国产精品影院| 曰老女人黄片| 久久久久网色| 精品国产国语对白av| 看免费av毛片| 欧美国产精品一级二级三级| 美女主播在线视频| 日本一区二区免费在线视频| tocl精华| 一区在线观看完整版| 免费看十八禁软件| 视频在线观看一区二区三区| 高清黄色对白视频在线免费看| 肉色欧美久久久久久久蜜桃| 日本a在线网址| 久久人妻熟女aⅴ| 成在线人永久免费视频| 国产不卡av网站在线观看| 欧美精品高潮呻吟av久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲高清精品| 一级黄色大片毛片| 水蜜桃什么品种好| 国产精品久久久久成人av| 丝袜美足系列| 怎么达到女性高潮| 久久99热这里只频精品6学生| 人人澡人人妻人| 精品国内亚洲2022精品成人 | 精品国产一区二区三区久久久樱花| 一二三四社区在线视频社区8| 亚洲第一青青草原| 午夜福利,免费看| 精品乱码久久久久久99久播| 一本一本久久a久久精品综合妖精| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻丝袜一区二区| 欧美激情 高清一区二区三区| 国产不卡一卡二| 啦啦啦免费观看视频1| 亚洲第一av免费看| 91成人精品电影| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲专区中文字幕在线| 亚洲全国av大片| 午夜免费成人在线视频| 欧美精品高潮呻吟av久久| 亚洲美女黄片视频| 久久久国产欧美日韩av| 国产在线精品亚洲第一网站| 国产精品久久久久久人妻精品电影 | 成人18禁高潮啪啪吃奶动态图| 91老司机精品| 亚洲av片天天在线观看| av天堂久久9| 免费在线观看日本一区| 亚洲精品av麻豆狂野| 日日摸夜夜添夜夜添小说| 一区二区三区国产精品乱码| 一区二区三区国产精品乱码| 久久 成人 亚洲| 欧美乱码精品一区二区三区| 亚洲自偷自拍图片 自拍| 国产老妇伦熟女老妇高清| 一级毛片电影观看| 美女高潮到喷水免费观看| 在线观看免费视频网站a站| 国产亚洲一区二区精品| 黄片播放在线免费| 高清在线国产一区| 黄片播放在线免费| 一区二区av电影网| 国产精品美女特级片免费视频播放器 | 欧美日本中文国产一区发布| 欧美午夜高清在线| a级片在线免费高清观看视频| 国产伦理片在线播放av一区| 一二三四社区在线视频社区8| 国产免费现黄频在线看| 极品教师在线免费播放| 国产免费福利视频在线观看| 国产成人影院久久av| 欧美日韩成人在线一区二区| 99香蕉大伊视频| 亚洲第一欧美日韩一区二区三区 | 亚洲av成人一区二区三| 又黄又粗又硬又大视频| 久久国产精品影院| 在线观看66精品国产| 欧美日韩亚洲高清精品| 在线观看一区二区三区激情| kizo精华| 亚洲九九香蕉| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| av天堂久久9| 中文字幕av电影在线播放| 一本久久精品| 激情视频va一区二区三区| 精品亚洲成国产av| 国产免费av片在线观看野外av| 成人免费观看视频高清| cao死你这个sao货| 别揉我奶头~嗯~啊~动态视频| 国产一区二区在线观看av| √禁漫天堂资源中文www| 精品国内亚洲2022精品成人 | 18禁美女被吸乳视频| 欧美成狂野欧美在线观看| 欧美黄色淫秽网站| 91老司机精品| 无限看片的www在线观看| 精品国产亚洲在线| 国产精品麻豆人妻色哟哟久久| 人妻一区二区av| 欧美精品一区二区免费开放| 亚洲第一欧美日韩一区二区三区 | 黄色视频在线播放观看不卡| 亚洲全国av大片| 欧美午夜高清在线| 极品教师在线免费播放| 国产黄频视频在线观看| 亚洲avbb在线观看| 99久久99久久久精品蜜桃| 777久久人妻少妇嫩草av网站| 午夜视频精品福利| 丝袜喷水一区| 亚洲av日韩精品久久久久久密| 日韩大码丰满熟妇| 18禁裸乳无遮挡动漫免费视频| 免费在线观看视频国产中文字幕亚洲| av视频免费观看在线观看| 国产亚洲欧美在线一区二区| a级毛片在线看网站| 亚洲精品乱久久久久久| 国产成人免费无遮挡视频| 国产精品1区2区在线观看. | 日日夜夜操网爽| 一级a爱视频在线免费观看| 老熟女久久久| 中文字幕人妻丝袜一区二区| 日韩人妻精品一区2区三区| 首页视频小说图片口味搜索| 免费一级毛片在线播放高清视频 | 老司机深夜福利视频在线观看| 侵犯人妻中文字幕一二三四区| 极品少妇高潮喷水抽搐| 日本黄色日本黄色录像| 久久久久国内视频| 国产精品欧美亚洲77777| 黑人操中国人逼视频| 黄网站色视频无遮挡免费观看| 日韩成人在线观看一区二区三区| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 国产精品偷伦视频观看了| 少妇的丰满在线观看| 国产免费视频播放在线视频| 在线观看66精品国产| 精品亚洲乱码少妇综合久久| 亚洲成av片中文字幕在线观看| 男女免费视频国产| 无人区码免费观看不卡 | 丁香欧美五月| 国产精品九九99| 最近最新免费中文字幕在线| av片东京热男人的天堂| 黑人欧美特级aaaaaa片| 久久久久网色| 日本五十路高清| 老汉色av国产亚洲站长工具| 国产精品久久久久久人妻精品电影 | 精品国产乱码久久久久久小说| 国产精品 欧美亚洲| 中文字幕精品免费在线观看视频| 午夜视频精品福利| 日韩欧美三级三区| cao死你这个sao货| 一本色道久久久久久精品综合| 免费一级毛片在线播放高清视频 | 久久 成人 亚洲| 亚洲专区中文字幕在线| 欧美午夜高清在线| 欧美精品一区二区大全| 可以免费在线观看a视频的电影网站| 成人精品一区二区免费| 午夜视频精品福利| 精品乱码久久久久久99久播| 交换朋友夫妻互换小说| 777米奇影视久久| 欧美人与性动交α欧美软件| av线在线观看网站| 美女高潮到喷水免费观看| 91国产中文字幕| 国产高清videossex| www日本在线高清视频| 国产日韩欧美亚洲二区| 91成年电影在线观看| 久久午夜亚洲精品久久| 高清在线国产一区| 国产精品一区二区精品视频观看| 天天影视国产精品| 久久中文字幕人妻熟女| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 国产不卡av网站在线观看| 99国产精品一区二区蜜桃av | 午夜精品久久久久久毛片777| 亚洲精品国产一区二区精华液| 成年人午夜在线观看视频| 日韩成人在线观看一区二区三区| 成在线人永久免费视频| 99久久精品国产亚洲精品| 精品高清国产在线一区| 18禁观看日本| 在线天堂中文资源库| av福利片在线| 窝窝影院91人妻| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 色综合婷婷激情| videos熟女内射| 天堂中文最新版在线下载| 精品午夜福利视频在线观看一区 | 97在线人人人人妻| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区久久| 亚洲午夜理论影院| 精品亚洲成国产av| 国产亚洲精品久久久久5区| 亚洲综合色网址| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 国产精品亚洲一级av第二区| 国产精品免费一区二区三区在线 | 久久人人97超碰香蕉20202| 欧美黑人欧美精品刺激| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 老熟女久久久| 精品国产一区二区三区久久久樱花| 久久中文字幕人妻熟女| 麻豆国产av国片精品| 黑人欧美特级aaaaaa片| 日本黄色视频三级网站网址 | 国产精品香港三级国产av潘金莲| 日韩人妻精品一区2区三区| 欧美大码av| 久久久久久久大尺度免费视频| 欧美日本中文国产一区发布| 国产国语露脸激情在线看| 在线观看免费高清a一片| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 一本—道久久a久久精品蜜桃钙片| 亚洲精品成人av观看孕妇| 国产精品久久久人人做人人爽| 电影成人av| 成人18禁在线播放| 在线观看免费视频日本深夜| 国产伦理片在线播放av一区| 久久九九热精品免费| 一级毛片女人18水好多| 黄色 视频免费看| 国产一区二区激情短视频| 久久这里只有精品19| 国产成+人综合+亚洲专区| 亚洲欧美色中文字幕在线| 国产精品久久久久久人妻精品电影 | 黄色毛片三级朝国网站| 国产在线一区二区三区精| 色94色欧美一区二区| 成人国语在线视频| 水蜜桃什么品种好| 欧美黄色片欧美黄色片| 最黄视频免费看| 色播在线永久视频| 国产日韩欧美在线精品| av超薄肉色丝袜交足视频| 国产人伦9x9x在线观看| 国产无遮挡羞羞视频在线观看| 成人免费观看视频高清| av片东京热男人的天堂| 手机成人av网站| 精品乱码久久久久久99久播| 最黄视频免费看| 亚洲欧美一区二区三区久久| 99re在线观看精品视频| 亚洲一区二区三区欧美精品| 久久青草综合色| 免费黄频网站在线观看国产| 大型av网站在线播放| av一本久久久久| 纯流量卡能插随身wifi吗| 欧美在线一区亚洲| www.熟女人妻精品国产| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清 | 亚洲九九香蕉| 亚洲avbb在线观看| 久久久久久人人人人人| 精品免费久久久久久久清纯 | 国产97色在线日韩免费| 国产老妇伦熟女老妇高清| 黄片小视频在线播放| 亚洲人成伊人成综合网2020| av电影中文网址| 午夜福利乱码中文字幕| 欧美精品一区二区免费开放| 丝袜美足系列| 久热这里只有精品99| av片东京热男人的天堂| 国产成人精品久久二区二区免费| 1024香蕉在线观看| 狂野欧美激情性xxxx| 在线观看66精品国产| 国产欧美日韩一区二区三| 午夜福利在线观看吧| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 色婷婷久久久亚洲欧美| www.自偷自拍.com| 老熟妇仑乱视频hdxx| 国产野战对白在线观看| videos熟女内射| 肉色欧美久久久久久久蜜桃| 亚洲成国产人片在线观看| 超碰成人久久| 亚洲视频免费观看视频| 首页视频小说图片口味搜索| 精品国产亚洲在线| 免费观看av网站的网址| 最新美女视频免费是黄的| 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 王馨瑶露胸无遮挡在线观看| 久久精品aⅴ一区二区三区四区| 美女主播在线视频| 欧美日韩精品网址| 国产精品一区二区在线观看99| 久久久精品94久久精品| 精品人妻1区二区| 欧美成狂野欧美在线观看| 热99国产精品久久久久久7| 午夜福利,免费看| 亚洲综合色网址| 国产欧美日韩一区二区三区在线| 欧美精品一区二区大全| 亚洲av片天天在线观看| 亚洲,欧美精品.| 一本色道久久久久久精品综合| 黄网站色视频无遮挡免费观看| 极品教师在线免费播放| 国产成人av激情在线播放| 啦啦啦免费观看视频1| 一区在线观看完整版| 亚洲一区中文字幕在线| 人人妻人人澡人人爽人人夜夜| 久久影院123| 99re在线观看精品视频| 热99re8久久精品国产| 国产亚洲一区二区精品| 性色av乱码一区二区三区2| 啦啦啦视频在线资源免费观看| 中文字幕色久视频| 一区二区三区激情视频| 欧美激情高清一区二区三区| 国产成人av激情在线播放| 考比视频在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美精品综合一区二区三区| 免费高清在线观看日韩| 黄片播放在线免费| 在线观看免费视频网站a站| 99热网站在线观看| 久久婷婷成人综合色麻豆| 久久精品91无色码中文字幕| 色综合婷婷激情| 人人妻人人爽人人添夜夜欢视频| 大片电影免费在线观看免费| 99久久人妻综合| 成人手机av| 国产精品1区2区在线观看. | 蜜桃国产av成人99| 色精品久久人妻99蜜桃| 在线观看舔阴道视频| 91精品三级在线观看| 国产精品 欧美亚洲| 午夜福利视频在线观看免费| 免费在线观看黄色视频的| 亚洲欧美日韩另类电影网站| 久久中文字幕人妻熟女| 免费在线观看日本一区| 亚洲精品一二三| 欧美另类亚洲清纯唯美| 新久久久久国产一级毛片| 亚洲人成电影免费在线| 亚洲三区欧美一区| 啪啪无遮挡十八禁网站| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| 91老司机精品| 一区二区日韩欧美中文字幕| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 久久香蕉激情| 中文亚洲av片在线观看爽 | 久久精品人人爽人人爽视色| 丰满人妻熟妇乱又伦精品不卡| 涩涩av久久男人的天堂| 美女主播在线视频| 亚洲中文字幕日韩| 欧美在线一区亚洲| 91九色精品人成在线观看| 日韩三级视频一区二区三区| 高潮久久久久久久久久久不卡| 午夜福利一区二区在线看| 成年女人毛片免费观看观看9 | 久久国产亚洲av麻豆专区| 热99久久久久精品小说推荐| av网站在线播放免费| 丝袜喷水一区| 日本vs欧美在线观看视频| 久久久久久久国产电影| 欧美成狂野欧美在线观看| 国产视频一区二区在线看| 1024视频免费在线观看| 亚洲欧美日韩另类电影网站| 久久天躁狠狠躁夜夜2o2o| 黄色视频在线播放观看不卡| 亚洲九九香蕉| 香蕉久久夜色| 欧美激情高清一区二区三区| 王馨瑶露胸无遮挡在线观看| 女人久久www免费人成看片| 国产精品电影一区二区三区 | 黄片小视频在线播放| 亚洲欧洲日产国产| 欧美在线黄色| 午夜久久久在线观看| 久久精品aⅴ一区二区三区四区| 欧美另类亚洲清纯唯美| 日韩视频在线欧美| 2018国产大陆天天弄谢| 国产不卡一卡二| 国产成人啪精品午夜网站| 日韩欧美一区视频在线观看| 成人三级做爰电影| 99re在线观看精品视频| 欧美成人免费av一区二区三区 | 香蕉久久夜色| 性色av乱码一区二区三区2| 香蕉久久夜色| 男女之事视频高清在线观看| 一本大道久久a久久精品| 俄罗斯特黄特色一大片| 99九九在线精品视频| 黄色视频,在线免费观看| 亚洲专区字幕在线| 最近最新中文字幕大全免费视频| 在线 av 中文字幕| 国产成人精品无人区| 成年人午夜在线观看视频| 夜夜爽天天搞| 欧美成人午夜精品| 久久精品亚洲av国产电影网| 在线观看www视频免费| tocl精华| 韩国精品一区二区三区| 精品久久久久久电影网| 91成人精品电影| 大码成人一级视频| 精品一品国产午夜福利视频| 国产亚洲午夜精品一区二区久久| 午夜福利一区二区在线看| 久久国产精品人妻蜜桃| 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕一二三四区 | 国产亚洲精品久久久久5区| 欧美性长视频在线观看| 69av精品久久久久久 | 国产成人精品无人区|