• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium?

    2021-03-11 08:32:28XinyuLiu劉欣宇ChaoSun孫超andDongmeiDeng鄧冬梅
    Chinese Physics B 2021年2期

    Xinyu Liu(劉欣宇), Chao Sun(孫超), and Dongmei Deng(鄧冬梅)

    Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices,South China Normal University,Guangzhou 510631,China

    Keywords: optical vortices,abruptly autofocusing,radiation force,strongly nonlocal nonlinear

    1. Introduction

    Abruptly autofocusing (AAF) beams have been studied both theoretically[1]and experimentally.[2,3]The focusing mechanism of AAF beams is entirely different from that of Gaussian beams. In the case of Gaussian beams, the wave’s constituent rays form a sharpened pencil which converge at the focus point and as the beam’s cross-sectional area gradually decreases, the maximum intensity over the transverse plane increases in a Lorentzian fashion,centered at the focus.[4]But in the case of AAF beams, the rays responsible for focusing are emitted from the exterior of a dark disk on the input plane and stay tangent to a convex caustic surface of revolution that contracts toward the beam axis.[1]The AAF beams maximum intensity remains almost constant during propagation,while close to a particular focal point,they suddenly autofocus, as a result, their peak intensity can increase by orders of magnitude.[1]This AAF property of the AAF beams is quite useful, which can be used to trapping or guiding microparticles[3,5]and generation of light bullet.[6]

    In 1989, Coullet found the vortex solutions of the Maxwell–Bloch equations and created the concept of optical vortices (OVs), inspired by hydrodynamic vortices.[7]Abruptly autofocusing vortex beams were investigated by Jeffrey A. Davis, who gave explicit equations for the phaseonly Fourier masks that generate these beams including explanations for controlling the focal distance and numerical aperture.[8]In recent years, OVs have potential application in the fields of optical communications,[9]high resolution imaging,[10]and optical tweezers.[11,12]

    What is more, the propagating properties of all kinds of beams and light bullets in strongly nonlocal nonlinear medium(SNNM) have been exploited, such as Laguerre–Gaussian beams,[13]Airy beam,[14]airy light bullets,[15]and Airy–Laguerre–Gaussian light bullets.[16]In addition to this, a lot of researchers have studied the evolution characteristics of the beams in different categories of potentials,including quadratic nonlinear medium,[17]linear index potentials,[18]parabolic potential,[19]highly nonlocal medium,[20]and higher-order power-law potentials.[21]Nevertheless,as far as we know,the AAF properties and the radiation force of the circular Airy Gaussian vortex(CAiGV)beams in SNNM have not been researched. In this paper, the propagating properties and radiation force of the CAiGV beams are researched through numerical simulations.The magnitude of the topological charges and the position of the vortex can change the light spot pattern and the peak intensity contrast. The positions of the autofocusing and autodefocusing planes,the peak intensity contrast,and the radiation force can be tuned by altering the parameter of the incident beam.

    The rest of this article is structured as follows. First and foremost in Section 2,we introduce a kind of theoretical model for the CAiGV beams in SNNM. After that in Section 3, the propagation properties of the beams are discussed. Then in Section 4,the radiation force of the beams is studied. Finally in Section 5,the important conclusions are summarized.

    2. The theoretical model

    The dynamics of the spatial beams propagating along the z-axis in SNNM can be governed by the (2+1) dimensional

    with the 2D nonlinear perturbation of the refractive index ?n being given by

    where X and Y represent the normalized transverse coordinates. According to the radially symmetrical CAiGV beams solution,we can describe it in polar coordinates,equation(4)can be rewritten as

    The electric fields of the initial CAiGV beams can be expressed as

    where A0is the constant amplitude of the electric field; Ai(·)denotes the Airy function;a(0 <a <1)is the truncation factor of the Airy function; R0represents the radius of the first ring of the CAiGV beams;bs(0 <bs<1)is the spatial distribution factor that makes the CAiGV beams tend to the CAiV beams when the spatial distribution factor is small or the Gaussian vortex(GV)beams when the spatial distribution factor is large;(Rk,φk)represents the position of the OVs;(m,l)is the topological charges of the OVs. We cannot obtain the analytical solution for Eq. (5). Fortunately, we can obtain numerical simulations through using the fast Fourier transform method.[27,28]In the following simulation, the related parameters are chosen as A0=1, a=0.1, bs=0.1, m=0, l =0,R0=1,ρ0=100μm,λ =533 nm.

    3. Propagation properties of circular Airy Gaussian vortex beams

    The side-view intensity profiles of the CAiGV beams are illustrated in Fig.1(a). It is clear that it represents a kind of periodic abruptly autofocusing and autodefocusing evolution behavior.From Figs.1(b1)–1(b5),the transverse intensity profiles are displayed at the planes marked by the dashed lines in Fig.1(a). It can be seen from Fig.1(b1) that the intensity of the annular plate decreases gradually from the inside out and the width of the annular plate also decreases gradually. As the propagation distance increases, almost all the energy focuses on a very small circular light spot region at the autofocusing plane in Fig.1(b2). Comparing Figs.1(b2)and 1(b4),the transverse intensity distribution is the same in the autofocusing plane and the autodefocusing plane. A cylindrical pattern of the light spots is formed between the autofocusing position and the autodefocusing position,and the intensity decreases first and then increases with the increase of the propagation distance,which is due to some interference rings being formed in Fig.1(b3). The transverse intensity distribution in Fig.1(b5)is the same as that in Fig.1(b1),one cycle evolution ending and a new one beginning.

    In Fig.2, we analyze the evolution characteristics of the CAiGV beams,one can see clearly a hollow channel,it is because the on-axis vortex(the vortex core of an OV can exist on the propagation axis of the beam,that is to say,Rk=0,φk=0)exists along the propagation. For studying the evolution behavior of the CAiGV beams,we demonstrate the intensity pattern of the CAiGV beams in Fig.2(c).In Fig.2(c),we find that the CAiGV beams can sharply concentrate nearly all energy at the autofocusing plane in SNNM.In Fig.2(d),we describe the phase distribution of the CAiGV beams when the beams exist the on-axis vortex.

    Fig.1. The intensity profiles of CAiGV beams at different propagation distances. (a) The numerically simulated side-view propagation of the CAiGV beams,(b1)–(b5)snapshots of the transverse intensity patterns are taken at the planes marked by the dashed lines in(a).

    Fig.2. The intensity profiles of CAiGV beams at different propagation distances. (a)The numerically simulated side-view propagation of the CAiGV beams, (b1)–(b3) snapshots of the transverse intensity patterns are taken at the planes marked by the dashed lines in (a), (c) the detailed intensity distribution of the propagation dynamics,(d)the phase pattern at the initial plane. Other parameters are the same as those in Fig.1,except m=1.

    In order to study the effect of the spatial distribution factor bsbetter, we plot the transverse intensity profiles and the corresponding cross lines of the CAiGV beams in Fig.3. We can see from Figs. 3(a1)–3(d1) that the CAiGV beams tend to circular Airy vortex (CAiV) beams when bs=0.1, while the CAiGV beams tend to the GV beams when bs=0.5. In Figs.3(a2)–3(d2),the distance between the autofocusing position and the autodefocusing position decreases gradually with the increase of bs, meanwhile, the intensity of the autodefocusing plane increases significantly, as shown in Figs.3(a3)–3(d3).

    The off-axis vortices (the vortex core of an OV can not exist on the propagation axis of the beam, that is to say,Rk/=0,φk/=0) are imposed in Fig.4(c). In Fig.4(b1), we can witness a hollow region in which the light intensity is zero on the left of the light spot due to the off-axis vortex,almost all the energy concentrates on the right side of the main ring at the initial plane. As the propagation distance increases,the vortex moves to the center in Fig.4(b2)and all the energy is focused on the center. The intensity profiles rotate 90?counterclockwise and we can see many interference rings in Fig.4(b3).Compared with the initial plane, the intensity profiles rotate 180?counterclockwise,as is depicted in Fig.4(b5).

    The propagation properties of the CAiGV beams can be noticeably influenced due to the difference of the magnitude of topological charges and the position of the vortex. When we impose two off-axis vortices at the different positions in Figs. 5(a4)–5(b4), the intensity profile of the light spot is the same, but the light spot location is different at the same position. In Figs. 5(a1)–5(b1), the intensity pattern of the CAiGV beam is the shape of a meniscus light spot, and the intensity pattern is a pea-shaped light spot at the autofocusing plane in Figs.5(a2)–5(b2)and at the autodefocusing plane in Figs. 5(a3)–5(b3). When the number of topological charges increases, the light intensity increases, compared to that in Figs. 4(b2)–4(b4). We can find that the intensity contrast increases with the increase of m when we impose on-axis vortices in Fig.5(c), while the intensity contrast decreases first and then increases when we impose the off-axis vortices in Fig.5(d), but the positions of the self-focusing plane and the self-defocusing plane can not change.

    Fig.3. The transverse intensity profiles and the corresponding cross lines of the CAiGV beams(a1)–(d1)at the initial plane(Z=0),(a3)–(d3)at the autofocusing plane. (a2)–(d2)The numerically simulated side-view propagation and the corresponding cross lines of the CAiGV beams.Other parameters are the same as those in Fig.2,except bs=0.1 in(a1)–(a3);bs=0.2 in(b1)–(b3);bs=0.5 in(c1)–(c3).

    Fig.4. The intensity profiles of CAiGV beams at different propagation distances. (a)The numerically simulated side-view propagation of the CAiGV beams,(b1)–(b5)snapshots of the transverse intensity patterns are taken at the planes marked by the dashed lines in(a),(c)the phase pattern at the initial plane. Other parameters are the same as those in Fig.2,except m=1 and rk=0.8.

    Fig.5. The transverse intensity profiles of the CAiGV beams(a1)–(b1)at the initial plane(Z=0),(a2)–(b2)at the autofocusing plane,(a3)–(b3)at the autodefocusing plane,(a4)–(b4)the phase pattern at the initial plane.Comparison of(I/I0)max of the CAiGV beams with different m as a function of Z for(c)on-axis vortices and(d)off-axis vortices. Other parameters are the same as those in Fig.4,except m=2 in(a1)–(a4),and m=2,φk=π/3 in(b1)–(b4).

    Finally, for understanding the effect of the parameter R0and the parameter a better, we depict the peak intensity contrast of the CAiGV beams.One can easily see that the intensity contrast is about the same,but the positions of the autofocusing and autodefocusing in Fig.6(a)can be changed sightly by adjusting the parameter R0, and the distance between autofocusing and autodefocusing decreases with R0increasing. As a increases, the peak intensity contrast of the CAiGV beams decreases in Fig.6(b).

    Fig.6. The peak intensity contrast of the CAiGV beams versus the propagation distance for(a)different R0,(b)different a. Other parameters are the same as those in Fig.2.

    4. The radiation forces of circular Airy Gaussian vortex beams on a Rayleigh dielectric sphere

    Here, we investigate the radiation forces of CAiGV beams on a Rayleigh dielectric sphere in SNNM, which are associated with momentum changes of the electromagnetic wave,and the radius of the Rayleigh dielectric sphere is much smaller than the wavelength of the CAiGV beams (i.e., r0?λ). When r0?λ,the Rayleigh dielectric particle can be considered as a point dipole, and the Rayleigh scattering model is used to calculate the radiation forces on the particle.[7]We assume that a micro particle with refractive index npis struck by the CAiGV beams. When the particle experiences a steady state,the gradient force and the scattering force can be calculated by[20]

    where m=np/nmis the relative refractive index of the particle,nmis the refractive index of an ambient medium,r0is the radius of the micro particle,c is the light velocity,and ε0is the permittivity of vacuum.[30]

    In the following text,we choose np=1.592,r0=50 nm.The gradient force and the scattering force are deemed to be two kinds of main radiation forces.[30]From Eq.(7),one can see that the gradient force is proportional to the intensity gradient. From Eq.(8),one can find that the scattering force along the propagation direction is proportional to the intensity.[30]The trapping force can be defined as the sum of the gradient force and the scattering force.There are several necessary conditions for stably trapping in optical traps by CAiGV beams.First, the backward longitudinal gradient force must be large enough to overcome the forward scattering force. Second,the longitudinal gradient force must be large enough to overcome the influences of the buoyancy and the gravity. The third condition is that the potential well of the gradient force must be larger than the kinetic energy of the Brownian particle.[31]It is judged by the Boltzmann factor as follows:[29,32]

    where

    is the potential energy of the gradient force at the trap position,kBis the Boltzmann constant,and T is the temperature of the medium,?I(x,y,z)denotes the intensity difference related with the potential well of the gradient force.[31]

    Fig.7.(a)The longitudinal radiation force F on a Rayleith particle with radius of 40 nm versus z;(b1)–(c1)the transverse gradient force pattern(background)and the transverse gradient force flows(red arrows)of the CAiGV beams in the trapping plane; (b2)–(c2)the transverse gradient force in the trapping plane.

    Fig.8. The distribution of the radiation force on the Rayleigh particle. (a)The longitudinal gradient force;(b)the scattering force,(c)the sum of the gradient force and the scattering force;(d)–(e)the transverse gradient force in the trapping plane.

    Fig.9. The distribution of the radiation force on the Rayleigh particle: (a)the sum of the gradient force and the scattering force; (b)–(c)the transverse gradient force in the trapping plane.

    In order to further investigate the trapping progress, we plot the longitudinal radiation force and the pattern of the transverse gradient force and the transverse gradient force in the trapping plane, as elucidated in Fig.7. In Fig.7(a), one can see clearly that there are two stable equilibrium points in the distribution of the longitudinal trapping force where the Rayleith particle can be trapped. In Figs.7(b1)and 7(c1),one can find that the gradient force vectors in the X-axis is mostly distributed to the left and right,and that in the Y-axis is mostly distributed in the unwards or downwards. From the overall point of view, the gradient force probably presents a circular distribution.Figures 7(b2)and 7(c2)show that the particle can be transversely trapped at b and c.

    The distributions of the transverse and longitudinal radiation forces of the CAiGV beams on a Rayleigh particle are elucidated in Fig.8. The scattering force and longitudinal gradient force increase as r0increases and the effective longitudinal trapping force of the CAiGV beams becomes larger. We can also see that the trapping position is slightly shifted forward due to the influence of the scattering force. With the increase of r0, the transverse gradient force also increases in the trapping plane.

    Finally, we analysis the distributions of the longitudinal and transverse radiation forces of the CAiGV beams in Fig.9.One can see that the radiation force can be modulated by controlling the parameter a. The longitudinal radiation force and transverse gradient force increase as a decreases,and the trapping position is not changed.

    5. Conclusion

    We have studied the evolution behavior of the abruptly autofocusing and autodefocusing CAiGV beams in SNNM through numerical calculations. We can see a kind of periodic abruptly autofocusing and autodefocusing evolution behavior, and almost all energy focuses on a very small circular light spot area at the autofocusing plane. The intensity profiles could have a hollow channel when the on-axis vortices are imposed. Furthermore,the CAiGV beams tend to the CAiV beams when bs=0.1 and tend to the GV beams when bs=0.5. Meanwhile,we can change the light spot pattern and the intensity contrast by adjusting the magnitude of the topological charges and the position of the vortex. The intensity contrast increases with the increase of m when the CAiGV beams have on-axis vortices, the intensity contrast decreases first and then increases when the CAiGV beams have off-axis vortices. The intensity pattern of the beams rotates with the increase of the propagation distance, and we can control the position of the autofocusing and autodefocusing planes by adjusting the parameters bsand R0,and we can also change the peak intensity contrast through choosing appropriate a. Finally,we have theoretically investigated the radiation force of the CAiGV beams.One can find that there are two stable equilibrium points in the distribution of the longitudinal trapping force,and we can enhance the radiation force through adjusting parameters of r0and a.

    免费观看的影片在线观看| 99在线视频只有这里精品首页| 1024手机看黄色片| 老师上课跳d突然被开到最大视频| 免费看光身美女| 国产三级中文精品| 国产精品,欧美在线| 久久久久久伊人网av| 亚洲精品国产成人久久av| 丰满乱子伦码专区| 美女cb高潮喷水在线观看| 中国美女看黄片| 99热6这里只有精品| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩高清在线视频| 亚洲第一区二区三区不卡| 国内揄拍国产精品人妻在线| 一区二区三区四区激情视频 | 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 黄色一级大片看看| 色噜噜av男人的天堂激情| 亚洲性夜色夜夜综合| 成人av在线播放网站| 久久精品国产鲁丝片午夜精品 | 午夜福利视频1000在线观看| 中文在线观看免费www的网站| 欧美不卡视频在线免费观看| 成人三级黄色视频| 偷拍熟女少妇极品色| 简卡轻食公司| 精品不卡国产一区二区三区| 精品一区二区免费观看| 男插女下体视频免费在线播放| 亚洲久久久久久中文字幕| 亚洲最大成人中文| 国产蜜桃级精品一区二区三区| 亚洲七黄色美女视频| 成年免费大片在线观看| 一个人看视频在线观看www免费| 99国产极品粉嫩在线观看| 麻豆国产97在线/欧美| 男人和女人高潮做爰伦理| 国产成人a区在线观看| 亚洲av五月六月丁香网| 国产蜜桃级精品一区二区三区| 99久久无色码亚洲精品果冻| 久久精品国产鲁丝片午夜精品 | 午夜福利视频1000在线观看| 国产在视频线在精品| 日韩精品中文字幕看吧| 成人国产麻豆网| 狠狠狠狠99中文字幕| 欧美丝袜亚洲另类 | 99热这里只有是精品50| 又黄又爽又免费观看的视频| 草草在线视频免费看| 丝袜美腿在线中文| 级片在线观看| 亚洲一区二区三区色噜噜| 日本精品一区二区三区蜜桃| 久99久视频精品免费| 午夜精品一区二区三区免费看| 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 免费人成视频x8x8入口观看| 国产大屁股一区二区在线视频| 波野结衣二区三区在线| 日日撸夜夜添| 麻豆国产av国片精品| 中文字幕久久专区| 国产高潮美女av| 久久精品影院6| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 午夜免费成人在线视频| 日日干狠狠操夜夜爽| 婷婷丁香在线五月| 老司机深夜福利视频在线观看| 亚洲自拍偷在线| 欧美性感艳星| 美女高潮的动态| 伦精品一区二区三区| 亚洲美女黄片视频| 欧美在线一区亚洲| 亚洲精品乱码久久久v下载方式| .国产精品久久| 高清日韩中文字幕在线| 一本一本综合久久| 国产在线精品亚洲第一网站| 大型黄色视频在线免费观看| 深爱激情五月婷婷| 亚洲av不卡在线观看| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 热99re8久久精品国产| 中文资源天堂在线| 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 午夜视频国产福利| 婷婷色综合大香蕉| 男人的好看免费观看在线视频| 真实男女啪啪啪动态图| 国产三级中文精品| 欧美成人性av电影在线观看| 国产aⅴ精品一区二区三区波| 成人特级黄色片久久久久久久| 在线免费观看的www视频| 免费观看的影片在线观看| 亚洲欧美日韩高清在线视频| 国产精品无大码| 免费大片18禁| 如何舔出高潮| 久久精品91蜜桃| 亚洲av成人av| 国产成人aa在线观看| 人人妻人人看人人澡| av中文乱码字幕在线| 我要搜黄色片| av在线老鸭窝| 日韩精品青青久久久久久| 亚洲性夜色夜夜综合| 久久精品国产亚洲网站| 国产av麻豆久久久久久久| 成人毛片a级毛片在线播放| 乱人视频在线观看| 久久精品国产鲁丝片午夜精品 | 干丝袜人妻中文字幕| 亚洲欧美日韩东京热| 国产主播在线观看一区二区| 俺也久久电影网| 成人一区二区视频在线观看| 自拍偷自拍亚洲精品老妇| 制服丝袜大香蕉在线| 校园春色视频在线观看| 女同久久另类99精品国产91| 久久久久久大精品| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 国产国拍精品亚洲av在线观看| 精品无人区乱码1区二区| 看免费成人av毛片| 国产欧美日韩精品亚洲av| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 在线观看一区二区三区| 国产淫片久久久久久久久| 18+在线观看网站| 国产一区二区三区av在线 | 一夜夜www| 99热这里只有精品一区| 色哟哟哟哟哟哟| 美女xxoo啪啪120秒动态图| 亚洲国产精品久久男人天堂| 国内少妇人妻偷人精品xxx网站| 我要搜黄色片| 日本一本二区三区精品| 久久国产乱子免费精品| 久久久久九九精品影院| 国产伦在线观看视频一区| eeuss影院久久| 午夜老司机福利剧场| 国产探花在线观看一区二区| 久久精品国产自在天天线| 99riav亚洲国产免费| 国产精品电影一区二区三区| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 色综合婷婷激情| 91av网一区二区| 在线观看午夜福利视频| 特级一级黄色大片| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 国产熟女欧美一区二区| 日韩欧美免费精品| 国产色婷婷99| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 国产毛片a区久久久久| 亚洲av美国av| 亚洲精品456在线播放app | 少妇人妻精品综合一区二区 | 九九爱精品视频在线观看| 永久网站在线| 色播亚洲综合网| 精品久久久噜噜| 精品人妻1区二区| 久久午夜福利片| 国产av麻豆久久久久久久| www日本黄色视频网| 嫁个100分男人电影在线观看| 最近最新中文字幕大全电影3| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添av毛片 | 精品不卡国产一区二区三区| 日韩欧美国产在线观看| 日韩高清综合在线| 国产精品日韩av在线免费观看| 国产一区二区三区av在线 | 日日干狠狠操夜夜爽| 欧美黑人巨大hd| 国产美女午夜福利| 免费搜索国产男女视频| 色精品久久人妻99蜜桃| 成人午夜高清在线视频| 成人av在线播放网站| 国产在线精品亚洲第一网站| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 性色avwww在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 免费观看人在逋| 极品教师在线视频| 欧美+日韩+精品| 久久人人精品亚洲av| 欧美性感艳星| 女人被狂操c到高潮| 亚洲精华国产精华液的使用体验 | 国产女主播在线喷水免费视频网站 | 欧美性猛交╳xxx乱大交人| 日本在线视频免费播放| 99久久久亚洲精品蜜臀av| 久久久久久久精品吃奶| 久久久久久久久中文| 免费av毛片视频| 久久99热6这里只有精品| 麻豆成人av在线观看| 日韩强制内射视频| 99精品在免费线老司机午夜| 国产精品国产三级国产av玫瑰| 成人二区视频| 国产免费一级a男人的天堂| 久久久久久久精品吃奶| 欧美人与善性xxx| 免费高清视频大片| 欧美高清性xxxxhd video| 此物有八面人人有两片| 亚洲四区av| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站| 别揉我奶头 嗯啊视频| 日韩欧美 国产精品| 91久久精品国产一区二区成人| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 国产久久久一区二区三区| 日韩一本色道免费dvd| 一边摸一边抽搐一进一小说| 在线观看舔阴道视频| 久久精品国产自在天天线| 久久久精品欧美日韩精品| 夜夜爽天天搞| 亚洲在线观看片| 成人av一区二区三区在线看| 波多野结衣高清作品| 在线免费十八禁| 亚洲无线观看免费| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 美女黄网站色视频| 高清毛片免费观看视频网站| 午夜老司机福利剧场| 韩国av在线不卡| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 我要看日韩黄色一级片| 极品教师在线视频| av福利片在线观看| 丰满人妻一区二区三区视频av| 精品欧美国产一区二区三| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 一级黄色大片毛片| 亚洲熟妇熟女久久| 两人在一起打扑克的视频| 亚洲国产精品合色在线| 热99在线观看视频| 欧美色欧美亚洲另类二区| 波野结衣二区三区在线| 国产精品一及| 听说在线观看完整版免费高清| 久久久久久久精品吃奶| 我要搜黄色片| 桃色一区二区三区在线观看| 婷婷精品国产亚洲av| 精品人妻1区二区| 亚洲av美国av| 亚洲自拍偷在线| 国产熟女欧美一区二区| 精品一区二区三区视频在线观看免费| 老熟妇仑乱视频hdxx| 91久久精品电影网| 熟女电影av网| 熟女电影av网| 国产一区二区三区视频了| 久久久久久九九精品二区国产| 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 内射极品少妇av片p| 国产免费av片在线观看野外av| 麻豆成人午夜福利视频| 搡老熟女国产l中国老女人| 久久久成人免费电影| 午夜爱爱视频在线播放| 亚洲性久久影院| 婷婷六月久久综合丁香| 国产精华一区二区三区| 99久久精品一区二区三区| 亚洲精品日韩av片在线观看| 免费观看的影片在线观看| av在线亚洲专区| 色噜噜av男人的天堂激情| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看| 久久精品影院6| 乱码一卡2卡4卡精品| 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 男女啪啪激烈高潮av片| 中文字幕精品亚洲无线码一区| 日本黄色视频三级网站网址| 久久久久九九精品影院| av.在线天堂| 亚洲精品久久国产高清桃花| 99视频精品全部免费 在线| 国产精品久久久久久av不卡| 日韩精品中文字幕看吧| 丝袜美腿在线中文| 国产黄片美女视频| 毛片一级片免费看久久久久 | 久久久久久伊人网av| 日本三级黄在线观看| 男女下面进入的视频免费午夜| 蜜桃亚洲精品一区二区三区| 91av网一区二区| 免费看av在线观看网站| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 欧美xxxx性猛交bbbb| 国产极品精品免费视频能看的| 成人无遮挡网站| 天天一区二区日本电影三级| 日韩av在线大香蕉| 国产高清不卡午夜福利| 一本久久中文字幕| 国产一区二区三区视频了| 亚洲四区av| 久久香蕉精品热| 欧美日韩乱码在线| 国产综合懂色| 国产高潮美女av| 丰满的人妻完整版| 国产男人的电影天堂91| 熟女人妻精品中文字幕| 免费无遮挡裸体视频| 波野结衣二区三区在线| 熟女电影av网| 日本成人三级电影网站| 亚洲成人精品中文字幕电影| 国产精品一及| 日本精品一区二区三区蜜桃| 成人特级av手机在线观看| 亚洲七黄色美女视频| 久9热在线精品视频| 亚洲avbb在线观看| 国产乱人伦免费视频| 久久精品影院6| 色av中文字幕| 亚洲成人久久性| 欧美在线一区亚洲| 亚洲成av人片在线播放无| 国产免费av片在线观看野外av| xxxwww97欧美| 一区二区三区激情视频| 一夜夜www| 欧美潮喷喷水| 亚洲美女视频黄频| 热99re8久久精品国产| 精品不卡国产一区二区三区| 国产精品女同一区二区软件 | 国产私拍福利视频在线观看| 成年女人毛片免费观看观看9| 欧美一区二区精品小视频在线| 精品久久久久久久末码| netflix在线观看网站| 国产亚洲91精品色在线| 亚洲中文日韩欧美视频| 在线观看美女被高潮喷水网站| 国产免费男女视频| 欧美黑人巨大hd| 三级男女做爰猛烈吃奶摸视频| 中亚洲国语对白在线视频| 欧美日韩综合久久久久久 | 成年版毛片免费区| 精品久久久久久久末码| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 99久久久亚洲精品蜜臀av| 一进一出抽搐动态| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 麻豆一二三区av精品| 国国产精品蜜臀av免费| 99热这里只有是精品50| 婷婷色综合大香蕉| 国模一区二区三区四区视频| 亚洲一区高清亚洲精品| 国产精品久久久久久亚洲av鲁大| 99riav亚洲国产免费| 国产黄片美女视频| 国产精品女同一区二区软件 | 成人高潮视频无遮挡免费网站| 国产高清视频在线观看网站| 久久久久精品国产欧美久久久| 波多野结衣高清无吗| 久久久色成人| 久久香蕉精品热| 欧美在线一区亚洲| 伦精品一区二区三区| 色哟哟·www| 又爽又黄a免费视频| 国内揄拍国产精品人妻在线| 亚洲成人久久爱视频| 日本黄大片高清| videossex国产| 国产色婷婷99| 久久精品久久久久久噜噜老黄 | 亚洲av不卡在线观看| 亚洲国产精品sss在线观看| 一本久久中文字幕| 国产毛片a区久久久久| 亚洲无线在线观看| 久久精品国产鲁丝片午夜精品 | 岛国在线免费视频观看| av在线亚洲专区| 国产精品无大码| 午夜激情福利司机影院| 两个人的视频大全免费| 午夜精品在线福利| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 国产综合懂色| eeuss影院久久| 亚洲成a人片在线一区二区| 91午夜精品亚洲一区二区三区 | 12—13女人毛片做爰片一| 一区二区三区免费毛片| 欧美黑人欧美精品刺激| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 床上黄色一级片| 波多野结衣巨乳人妻| 噜噜噜噜噜久久久久久91| 少妇熟女aⅴ在线视频| 亚洲男人的天堂狠狠| 色噜噜av男人的天堂激情| 一本精品99久久精品77| АⅤ资源中文在线天堂| 欧美日本视频| 欧美激情在线99| 日本成人三级电影网站| 乱系列少妇在线播放| 99国产极品粉嫩在线观看| 免费在线观看成人毛片| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 国产精品亚洲一级av第二区| 99精品久久久久人妻精品| 国产精品福利在线免费观看| 国产精品永久免费网站| www.色视频.com| 窝窝影院91人妻| 欧美性猛交黑人性爽| 熟妇人妻久久中文字幕3abv| 色精品久久人妻99蜜桃| 国产爱豆传媒在线观看| 色视频www国产| 久久精品国产亚洲av香蕉五月| 男女那种视频在线观看| 少妇的逼好多水| 搞女人的毛片| 美女cb高潮喷水在线观看| 日韩欧美国产一区二区入口| 99久国产av精品| www.色视频.com| 大又大粗又爽又黄少妇毛片口| 丰满乱子伦码专区| 日韩,欧美,国产一区二区三区 | 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 干丝袜人妻中文字幕| 高清日韩中文字幕在线| 麻豆一二三区av精品| 欧美激情在线99| 国产午夜福利久久久久久| 中文字幕精品亚洲无线码一区| 国产精品无大码| 国产精品永久免费网站| 国产一区二区在线av高清观看| 不卡视频在线观看欧美| 久久午夜亚洲精品久久| 此物有八面人人有两片| 亚洲第一电影网av| 国产一区二区在线av高清观看| 成人高潮视频无遮挡免费网站| 亚洲最大成人手机在线| 国产精品久久久久久亚洲av鲁大| 别揉我奶头 嗯啊视频| АⅤ资源中文在线天堂| 亚洲最大成人中文| 少妇裸体淫交视频免费看高清| 免费av不卡在线播放| 在线观看午夜福利视频| 午夜免费成人在线视频| 成人鲁丝片一二三区免费| 国产91精品成人一区二区三区| 人人妻人人看人人澡| 日本爱情动作片www.在线观看 | 高清日韩中文字幕在线| 欧美日本视频| 男插女下体视频免费在线播放| 免费看a级黄色片| 亚洲精品乱码久久久v下载方式| 国产一区二区在线av高清观看| 亚洲国产精品合色在线| 国产人妻一区二区三区在| 一a级毛片在线观看| 午夜精品一区二区三区免费看| 男女之事视频高清在线观看| 欧美日韩综合久久久久久 | 国产女主播在线喷水免费视频网站 | 久久人人精品亚洲av| 特大巨黑吊av在线直播| 99热只有精品国产| 午夜视频国产福利| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 啦啦啦啦在线视频资源| 99久久中文字幕三级久久日本| 国产精品一区二区免费欧美| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品久久久久久毛片| 国内精品久久久久久久电影| 国产精品,欧美在线| 国产精品亚洲美女久久久| videossex国产| 亚洲真实伦在线观看| 尤物成人国产欧美一区二区三区| 亚洲精品国产成人久久av| 少妇高潮的动态图| 少妇人妻精品综合一区二区 | 91狼人影院| 欧美xxxx黑人xx丫x性爽| 亚洲专区中文字幕在线| 亚洲久久久久久中文字幕| 综合色av麻豆| 国产精品99久久久久久久久| 亚洲va在线va天堂va国产| 国产一区二区三区av在线 | 中文字幕人妻熟人妻熟丝袜美| 深爱激情五月婷婷| 日本黄色视频三级网站网址| 亚洲一区高清亚洲精品| 国产亚洲91精品色在线| 亚洲色图av天堂| 久久久久性生活片| 99热只有精品国产| 欧美日韩瑟瑟在线播放| 亚洲人与动物交配视频| 久久精品夜夜夜夜夜久久蜜豆| a级一级毛片免费在线观看| 中国美女看黄片| 无遮挡黄片免费观看| 乱码一卡2卡4卡精品| 亚洲av第一区精品v没综合| 日本黄大片高清| 内地一区二区视频在线| 亚洲性夜色夜夜综合| 不卡一级毛片| 成人鲁丝片一二三区免费| 哪里可以看免费的av片| av天堂中文字幕网| 国产视频内射| 美女高潮喷水抽搐中文字幕| 国产毛片a区久久久久| 非洲黑人性xxxx精品又粗又长| 日韩欧美三级三区| 不卡视频在线观看欧美| 亚洲人与动物交配视频| 亚洲一级一片aⅴ在线观看| 国产成人一区二区在线| 国产真实乱freesex| 免费av毛片视频| 日韩国内少妇激情av| 亚洲人与动物交配视频| 在线免费观看的www视频| 18+在线观看网站| 中亚洲国语对白在线视频| 亚洲欧美日韩无卡精品| 国产aⅴ精品一区二区三区波| 俄罗斯特黄特色一大片|