• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation?

    2021-03-11 08:32:08QingYuShi石擎宇XiaHuang黃霞FangYuan袁方andYuXiaLi李玉霞
    Chinese Physics B 2021年2期

    Qing-Yu Shi(石擎宇), Xia Huang(黃霞), Fang Yuan(袁方), and Yu-Xia Li(李玉霞)

    College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: quadratic transformation,chaotic switched system,FPGA

    1. Introduction

    At present, design and implementation of multi-wing or multi-scroll chaotic systems with rich dynamic properties on the basis of chaos and circuit theory have become an important research topic.[1–10]The research on the generation of multi-scroll chaotic systems has been relatively mature, but it is still challenging to design the multi-wing chaotic systems.Compared with conventional 2-wing chaotic systems, multiwing chaotic systems not only have more key parameters,but also have nested topological structures.[11–14]They show their unique advantages in relevant fields such as information security and secret communication.[15–18]

    In recent decades,a large number of scholars at home and abroad have been devoted to the generation and realization of multi-wing chaotic attractors. For example, Lin et al. constructed a multi-wing chaotic system by introducing the sawtooth wave function to the Lorenz system.[19]Huang et al.proposed a new four-dimensional chaotic system based on Sprott B chaotic system, which can produce not only 2-wing and 4-wing attractors, but also symmetric coexisting attractors.[20]Zhang et al. developed a novel method of constructing multiwing chaotic and hyperchaotic systems by using a unified step function.[21]Chang et al. presented a novel memristorbased chaotic system, and the implemented chaotic attractors had a 2×3-wing, 2×2-wing, and 2×1-wing.[22]Zhong et al. employed a second-degree polynomial memristor function and a sixth-order exponent internal state memristor function to design a three-dimensional memristor-based chaotic system, which formed 2-to-8-wing chaotic attractors.[23]From the above analysis, it is easy to find that most of the literature concentrated on using a particular kind of nonsmooth functions(e.g.,piecewise linear functions,sine functions,stair functions,and saturated functions)or using memristor devices to expand the number of wings. To increase the number of wings rapidly, this paper is devoted to combining the switching function method with the state transformation method to produce a series of multi-wing chaotic attractors.

    On the other hand, the research on multi-wing chaotic systems is no longer limited to theoretical analysis and numerical simulations but includes analog or digital circuits realization.[24–29]In actual analog circuits,strict requirements are usually placed on the electronic components,and therefore many factors such as the aging of the devices and the interference of the external environments have a dramatic impact on the dynamics of the considered system. However, the use of field programmable gate array(FPGA)digital systems can well avoid these problems. In regard to FPGA implementation, there are usually three methods. The first is to use the Verilog HDL or HDL code directly to describe the chaotic system.[30–32]The advantage of this method is that the codes have good portability and versatility, but the programming is quite complicated. The second is to use the DSP Builder to construct a discrete model for the considered chaotic system and then output HDL codes.[33,34]This method adopts graphical programming, and hence the code is relatively simple to write, but the portability is low. The third is to use the HDL Coder to generate Verilog HDL or HDL code in the Matlab/Simulink environment.[35,36]This method combines the advantages of the first and the second,but the library functions are still not perfect,and some computing functions are difficult to implement. With careful consideration of these three methods,the Verilog HDL code is used directly to describe the state equations of the considered system. We convert the generated digital chaotic sequence into an analog voltage signal by the digital-to-analog converter(DAC)module,and then the phase diagrams of the chaotic attractors can be observed on the oscilloscope.

    In summary,we propose a combined method in this paper to generate multi-wing chaotic attractors. More precisely,we combine the quadratic transformation with a switching function to expand the number of saddle-focus equilibrium points,and meanwhile the FPGA is built to confirm the numerically simulations.

    Comparing with the existing literature,the innovations of this paper are as follows.

    (1)Most of the published literature used only one method to expand the number of wings, while this paper combines two different techniques to generate the multi-wing chaotic attractors. The proposed system can produce 6-to-8-12-16-wing attractors by adjusting the switching function and it makes the generation of multi-wing chaotic attractors easier.

    (2)Most of the chaotic attractors in the published literature are arranged in linear or grid form.In contrast,the chaotic attractors generated in this paper are distributed in a fish-bone like structure,and the topological structures are more complicated.

    (3)In FPGA implementation,we use the three-stage state machine design to write Verilog HDL code directly to realize the chaotic switched systems. Compared with the existing work,there exist more difficulties in the FPGA design.

    The rest of the paper is organized as follows.In Section 2,by using the quadratic transformation scheme, the state variables of a 2-wing chaotic system are transformed into another group of state variables to generate a 4-wing chaotic attractor,and it is shown that the number of wings is equal to the number of the saddle-focus equilibrium points. In Section 3,the number of the saddle-focus equilibrium points is increased by constructing a kind of switching functions. Thus, the previously generated 4-wing chaotic attractor can be transformed into a series of attractors with 6-to-8-12-16 wings, which are also testified by the Lyapunov exponent spectra, Poincar′e maps,and bifurcation diagrams. In Section 4,the Verilog HDL code for the multi-wing switched chaotic system is designed. By using FPGA,the chaotic attractors are observed on the oscilloscope,which verifies the feasibility of our design method.

    2. A four-wing chaotic system based on the quadratic transformation

    Consider a three-dimensional 2-wing chaotic system[37]as follows:

    where u,v,w are the state variables, and a1,a2,a3,a4are the system parameters.

    First, the quadratic transformation[38]is applied to system(1). The specific steps are as follows.

    Step 1:Denote the space transformation as Φ0=x+yi,where Φ0is a complex number with x and y as its real and imaginary parts. Introduce the quadratic transformation Φ1as follows:

    where(x2?y2)is the real part of Φ1,and 2xy is the imaginary part of Φ1.

    Step 2:Let the state variables u and v be the real and imaginary part of Φ1,respectively. And,the state variable w is replaced by a new variable z,that is

    Step 3:In view of Eq.(3),the relations between the state variables u,v,w and x,y,z can be represented by

    Step 4:By the matrix inverse algorithm,equation(4)can be further rewritten as

    which is equivalent to

    Thus, based on the quadratic transformation, system (1) is transformed into system (6). Next, the characteristics of the equilibrium points and their eigenvalues are analyzed.

    Set the parameters as a1=22,a2=12,a3=6,a4=8.Then, the equilibrium points and the corresponding eigenvalues of system (6) are displayed in Table 1. The distribution of those equilibrium points in x–y plane is shown in Fig.1,in which the symbol ‘?’ represents the equilibrium points of system(6).

    Table 1. The equilibrium points and eigenvalues of system(6).

    Fig.1. Distribution of the equilibrium points of system(6).

    Fig.2. The chaotic attractor of system(6): (a)x–y plane;(b)x–z plane.

    It can be seen from Table 1 that system (6) has four saddle-focus equilibrium points of index 2. Thus, it can generate a 4-wing chaotic attractor. For given initial values[x0,y0,z0]T=[1,1,1]T, the 4-wing chaotic attractor is shown in Fig.2.

    Meanwhile, the three Lyapunov exponents of system(6)are LE1=1.2201, LE2=?0.0017, and LE3=?17.2275.According to the formula DL=2+(LE1+LE2)/|LE3|, the Lyapunov dimension is DL=2.0707,which suggests that the attractor is fractional.[39]

    3. A switched chaotic system based on a class of switching functions

    Clearly, for system (6), there exists a one-to-one correspondence between the number of saddle-focus points and the number of wings. In this section, by constructing a class of switching functions, the number of saddle-focus equilibrium points with index 2 on both sides of the origin can be increased. It means that the number of wings of the chaotic attractors can be further expanded.

    First, a switched system is proposed on the basis of the transformed system(6)by replacing the variable x in the right sides of Eq.(6)by Tx,which can be described by

    in which Txis a switching function of the state variable x,and also it is symmetric about the origin.

    Given the initial value[x0,y0,z0]T=[1,1,1]Tand keeping the values of a1,a2,a3,a4unchanged, the switching function Txis designed to adjust the distribution and the number of the saddle-focus equilibrium points. Thereby different kinds of multi-wing chaotic attractors can be generated. Here are the details.

    Case 1:Take

    Set the parameter e=5, the equilibrium points of system(7)with the switching function(8)are displayed in Table 2. The distribution of those equilibrium points in x–y plane is exhibited in Fig.3,in which the symbol‘?’represents the equilibrium points obtained in case 1 and‘?’denotes the equilibrium points of the original system (6). Obviously, the equilibrium points have been expanded from the previous four to six.

    Thus,system(7)has six saddle-focus equilibrium points and therefore can generate a 6-wing chaotic attractor,which is shown in Fig.4.

    In case 1, the three Lyapunov exponents of the switched chaotic system are LE1=1.8000,LE2=0.3210,and LE3=?18.1241. And, the Lyapunov dimension of the attractor is increased to 2.1170.

    Fig.3. Distribution of equilibrium points of system(7)in case 1.

    Fig.4. The chaotic attractor of system (7) in case 1: (a) x–y plane;(b)x–z plane.

    Case 2:Take

    When designing the switching function Txas Eq. (9), set the parameter e=5,the equilibrium points of system(7)are displayed in Table 3. The distribution of these equilibrium points in x–y plane is presented in Fig.5, in which the symbol ‘×’represents the equilibrium points in case 2 and‘?’denotes the equilibrium points of the original system(6). From Fig.5,we can see that the equilibrium points have been expanded from the previous four to eight.

    Table 2. The equilibrium points and eigenvalues of system(7)in case 1.

    Table 3. The equilibrium points and eigenvalues of system(7)in case 2.

    Fig.5. Distribution of equilibrium points of system(7)in case 2.

    In this case, system (7) has eight saddle-focus equilibrium points and therefore produces a 8-wing chaotic attractor,which is demonstrated in Fig.6.

    In case 2, the three Lyapunov exponents of the switched chaotic system are LE1=2.8066,LE2=?0.1807,and LE3=?18.6331. Thus, the Lyapunov dimension of the attractor is increased to 2.1409.

    Fig.6. The chaotic attractor of system (7) in case 2: (a) x–y plane;(b)x–z plane.

    Case 3:Take

    Set the parameter e=5,the equilibrium points and their eigenvalues of system (7) with the switching function (10) are shown in Table 4. The distribution of those equilibrium points in x–y plane is demonstrated in Fig.7,in which the symbol‘△’represents the equilibrium points in case 3 and‘?’denotes the equilibrium points of the original system (6). Obviously, the equilibrium points have been expanded from the previous four to twelve.

    Thus, in this case, system (7) has twelve saddle-focus equilibrium points and can generate a 12-wing chaotic attractor,which is demonstrated in Fig.8.

    In case 3, the three Lyapunov exponents are LE1 =4.0855,LE2=?0.8212,and LE3=?19.2708,respectively.The Lyapunov dimension of the attractor is increased to 2.1694.

    Fig.7. Distribution of equilibrium points of system(7)in case 3.

    Fig.8. The chaotic attractor of system (7) in case 3: (a) x–y plane;(b)x–z plane.

    Case 4:Take

    Set the parameter e=5,with the switching function(11),the equilibrium points and their eigenvalues of system(7)are displayed in Table 5. The distribution of those equilibrium points in x–y plane is exhibited in Fig.9, in which the symbol ‘□’represents the equilibrium points obtained in case 4 and ‘?’denotes the equilibrium points of the original system(6). Obviously, the equilibrium points have been expanded from the previous four to sixteen.

    Thus, system (7) has sixteen saddle-focus equilibrium points and therefore can generate a 16-wing chaotic attractor,which is shown in Fig.10.

    In case 4, the three Lyapunov exponents are LE1 =4.5384,LE2=?0.9897,and LE3=?19.5547,respectively.Therefore, the Lyapunov dimension of the attractor is increased to 2.1815.

    Table 4. The equilibrium points and eigenvalues of system(7)in case 3.

    Table 5. The equilibrium points and eigenvalues of system(7)in case 4.

    Fig.9. Distribution of equilibrium points of system(7)in case 4.

    Fig.10. The chaotic attractor of system (7) in case 4: (a) x–y plane;(b)x–z plane.

    4. Dynamic analysis of the switched system

    In this section, the complex dynamic behaviors of the switched system will be studied. By analyzing the Poincar′e maps,the Lyapunov exponent spectra,and the bifurcation diagrams,some detailed dynamic properties for the switched system(7)will be revealed.

    4.1. Poincar′e maps

    Fixing a1=22,a2=12,a3=6,a4=8,e=5,and the initial value[x0,y0,z0]T=[1,1,1]T,taking z=200 as the crossing plane, the Poincar′e maps of system (7) are displayed in Fig.11. It can be seen from Figs. 11(a)–11(d) that the four different Poincar′e maps are consistent with the previously obtained 6-to-8-12-16-wing chaotic attractors, which verify the existence of the multi-wing chaotic attractors.

    4.2. Lyapunov exponent spectra and bifurcation diagrams

    Fig.11. Poincar′e map on the cross-section z=200: (a)case 1;(b)case 2;(c)case 3;(d)case 4.

    Besides, taking the threshold parameter e as the bifurcation parameter and keeping the values of the other parameters unchanged, the Lyapunov exponent spectra and bifurcation diagrams of system(7)for the four cases are displayed in Figs.12 and 13.Note that the parameter range for e is selected as 0 <e <25 in the simulations. From Figs.12 and 13,it can be seen that system(7)is chaotic for a large range of parameter 1 <e <25. In addition,an interesting phenomenon can be observed, that is, the bifurcation diagrams consist of 2,3,5,7 branches, respectively, which are entirely consistent with the number of the segments in the switching functions.

    Fig.12. Lyapunov exponent spectra of system(7): (a)case 1;(b)case 2;(c)case 3;(d)case 4.

    Fig.13. Bifurcation diagrams of system(7)with respect to e: (a)case 1;(b)case 2;(c)case 3;(d)case 4.

    5. FPGA implementation

    In this section, the Verilog HDL code is designed for switched chaotic system (7). Meanwhile, the 6-to-8-12-16-wing chaotic attractors are implemented by FPGA.In particular, the improved Euler algorithm is used to describe the system first. Then, a three-stage state machine is employed to describe the whole iterative process. Finally, the output digital chaotic sequences are transmitted to DAC, and the phase diagrams of the chaotic attractors are observed from the oscilloscope.

    Before designing the model for the system, the dynamic range of the variables should be considered first. In order to prevent the values of the variables from overflowing,we must compress the system first. The compression factors for variables x,y,z are respectively taken as K1=25,K2=25,K3=29.Thus, the dimensionless state equation of system (7) is obtained as follows:

    and notice that all the constant items and the switching threshold in Txare reduced to 1/K1of their original value. Taking case 2 as an example. When the system is compressed,Txcan be further rewritten as

    Next, the k-step input vector of the system is denoted as Xk=(xk,yk,zk)T,the right-side function of the state equation is marked as F(Xk), and the step size of the iteration is set to h=1/128. Then, the discretization equation of the chaotic system is obtained as

    Xk+1=Xk+F[Xk+F(Xk)×0.5h]×h.

    First of all,we use 24-bit fixed-point numbers to describe the variables of the system. In these 24-bit binary numbers,we use 18 of them to represent decimals.Then,the three-stage state machine of the system is designed. The so-called threestage state machine uses three always modules. Among them,the first always module uses synchronous timing to describe the state transition. The second always module uses combinational logic to judge the state transition conditions and to describe the state transition rules.The third always module describes the state output. By using the state machine,the jump of the iteration operation can be easily realized,and each step of the iteration can be described in different state processes.The design of the state machine for the system is shown in Fig.14.

    In S0 state, the switching function Txcan be realized by the selection output process of the multiplexer. Following the state jump process, the addition, subtraction, multiplication and division operations in the iterative process can be implemented by the status bits S1 to S20. Thus,in S21 state,we get Xk+0.5or Xk+1of the k-step iteration. If jump position=0,then output Xk+0.5,and the state machine jumps to the S0 state to perform another round of calculation;if jump position=1,then output Xk+1,Xk+1is the output vector of the k-step iterative operation,which corresponds to the output of the chaotic sequence of the system. In S22 state, we add a 24-bit positive number to Xk+1to ensure that the input values to the DAC module are all positive. Finally, because the DAC module is 14 bits, it implies that we should intercept [21:8] bits of data as the final output.

    Fig.14. State machine description of the system.

    Fig.15. Wiring diagram and phase diagrams of the generated chaotic attractors: (a)wiring diagram between AX301 and oscilloscope;(b)6-wing attractor in case 1;(c)8-wing attractor in case 2;(d)12-wing attractor in case 3;(e)16-wing attractor in case 4.

    Thereafter, we compile the Verilog HDL code in Quartus II software and download it to the FPGA development board after synthesis. The FPGA development board that we use is AX301 board of Alinx,and the board carries Altera Cyclone IV EP4CE10F17C8 chip. Moreover, the development board is also equipped with a 14-bit DAC module AN9767,which can convert the digital chaotic sequence generated in the FPGA chip into analog voltage signals for output. Wiring diagram between AX301 and oscilloscope is shown in Fig.15(a),and the observed phase diagrams of the 6-to-8-12-16-wing chaotic attractors are displayed in Figs. 15(b)–15(e), which confirm the existence of the chaotic attractors.

    6. Conclusion

    In this study,a multi-wing chaotic switched system with complicated topological structures is proposed on the basis of a 2-wing chaotic attractor via a combined method,and meanwhile the multi-wing chaotic attractors are realized by FPGA.In brief, the core of the design method is the combination of a quadratic transformation and a switching function. By the means of Lyapunov exponent spectra, bifurcation diagrams and Poincar′e map analysis, some interesting dynamical phenomena are revealed. Besides,in the FPGA digital circuit design, Verilog HDL hardware description language is used to describe the system,and each step of the iterative operation is realized in the designed state machine. The observation of the multi-wing chaotic attractors on the oscilloscope verifies the validity of the proposed design method.

    亚洲自拍偷在线| 久久久久久国产a免费观看| 日本a在线网址| 欧美日韩一级在线毛片| 丰满人妻熟妇乱又伦精品不卡| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 一区福利在线观看| 欧美黑人巨大hd| e午夜精品久久久久久久| 真实男女啪啪啪动态图| 国产乱人伦免费视频| 欧美日韩黄片免| 人妻夜夜爽99麻豆av| 12—13女人毛片做爰片一| 男女下面进入的视频免费午夜| 国产一区二区在线观看日韩 | 999精品在线视频| 大型黄色视频在线免费观看| 日韩欧美三级三区| 亚洲国产欧洲综合997久久,| 免费电影在线观看免费观看| 亚洲精品国产精品久久久不卡| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| 久久中文看片网| 美女免费视频网站| 国产精品影院久久| 美女黄网站色视频| 男人和女人高潮做爰伦理| 在线播放国产精品三级| 国产精品一区二区三区四区免费观看 | 国产极品精品免费视频能看的| av女优亚洲男人天堂 | 欧美高清成人免费视频www| 亚洲无线观看免费| 无遮挡黄片免费观看| 噜噜噜噜噜久久久久久91| 亚洲成人久久爱视频| 怎么达到女性高潮| 国产乱人视频| 久久精品影院6| 毛片女人毛片| 91老司机精品| 大型黄色视频在线免费观看| 少妇裸体淫交视频免费看高清| 亚洲一区高清亚洲精品| 日韩精品中文字幕看吧| 男女下面进入的视频免费午夜| 狠狠狠狠99中文字幕| 欧美中文日本在线观看视频| 欧美乱色亚洲激情| 午夜影院日韩av| 噜噜噜噜噜久久久久久91| x7x7x7水蜜桃| 超碰成人久久| 国产伦精品一区二区三区视频9 | 精品熟女少妇八av免费久了| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| www.www免费av| 黄色丝袜av网址大全| 黄色日韩在线| 亚洲18禁久久av| 国产亚洲av嫩草精品影院| 观看免费一级毛片| 国产三级中文精品| 99国产精品一区二区蜜桃av| 成人午夜高清在线视频| aaaaa片日本免费| 国产精品电影一区二区三区| 国产精品99久久99久久久不卡| 久久久国产欧美日韩av| 免费高清视频大片| 国产精品av久久久久免费| 亚洲av第一区精品v没综合| 母亲3免费完整高清在线观看| 美女cb高潮喷水在线观看 | 午夜影院日韩av| 女生性感内裤真人,穿戴方法视频| 欧美午夜高清在线| 一级毛片女人18水好多| 欧美一级a爱片免费观看看| 特级一级黄色大片| 国产伦人伦偷精品视频| 后天国语完整版免费观看| 人妻久久中文字幕网| 淫妇啪啪啪对白视频| 亚洲成av人片在线播放无| 欧美激情久久久久久爽电影| 熟女电影av网| 老汉色∧v一级毛片| 99国产极品粉嫩在线观看| 久久这里只有精品中国| 久久精品综合一区二区三区| 少妇的丰满在线观看| 日本熟妇午夜| 一区福利在线观看| 欧美日韩一级在线毛片| 欧美日本视频| 久久婷婷人人爽人人干人人爱| 黄片大片在线免费观看| 天堂av国产一区二区熟女人妻| 伊人久久大香线蕉亚洲五| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 久久婷婷人人爽人人干人人爱| 99riav亚洲国产免费| xxx96com| 亚洲精品一区av在线观看| 免费观看人在逋| 欧美另类亚洲清纯唯美| 日本黄大片高清| 亚洲精品美女久久av网站| 亚洲成人久久爱视频| 中文资源天堂在线| 午夜免费观看网址| 97超级碰碰碰精品色视频在线观看| 一本综合久久免费| 99久久精品热视频| 亚洲欧美日韩高清专用| 91九色精品人成在线观看| 在线视频色国产色| 天天躁日日操中文字幕| 午夜久久久久精精品| av在线蜜桃| 久久久久久久午夜电影| 欧美极品一区二区三区四区| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 国产亚洲欧美98| 亚洲欧美日韩东京热| 精品国产三级普通话版| 亚洲人成电影免费在线| 亚洲最大成人中文| 亚洲熟妇熟女久久| 人妻久久中文字幕网| 亚洲人成网站在线播放欧美日韩| or卡值多少钱| 在线播放国产精品三级| 日本五十路高清| 欧美zozozo另类| 精品久久久久久久久久久久久| 精品国产超薄肉色丝袜足j| 国产午夜精品久久久久久| xxxwww97欧美| 黄色日韩在线| 国产精品精品国产色婷婷| 亚洲avbb在线观看| 精品电影一区二区在线| 国产精品久久视频播放| 欧美高清成人免费视频www| 中文字幕人成人乱码亚洲影| 久久九九热精品免费| 看片在线看免费视频| 国产三级在线视频| 亚洲五月婷婷丁香| 少妇熟女aⅴ在线视频| 他把我摸到了高潮在线观看| 很黄的视频免费| 757午夜福利合集在线观看| 黄色女人牲交| 国产成人av教育| 色老头精品视频在线观看| 宅男免费午夜| 欧美中文日本在线观看视频| 成人av一区二区三区在线看| 亚洲国产精品成人综合色| 国产综合懂色| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品在线福利| 久久精品国产综合久久久| 国产不卡一卡二| 99riav亚洲国产免费| 精品国内亚洲2022精品成人| 欧美日韩综合久久久久久 | 欧美日韩亚洲国产一区二区在线观看| 欧美乱码精品一区二区三区| 欧美日韩黄片免| 波多野结衣高清作品| 国产精品久久视频播放| 国产精品永久免费网站| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 叶爱在线成人免费视频播放| 国产单亲对白刺激| 国产亚洲精品一区二区www| 黄色 视频免费看| av天堂在线播放| 国产精品九九99| 亚洲精华国产精华精| 老司机午夜福利在线观看视频| 看黄色毛片网站| av天堂中文字幕网| 在线视频色国产色| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品久久久com| 美女扒开内裤让男人捅视频| 搡老熟女国产l中国老女人| 午夜福利高清视频| 波多野结衣高清作品| 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| 国产精品精品国产色婷婷| 伦理电影免费视频| 色在线成人网| bbb黄色大片| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品乱码久久久v下载方式 | 国产精品爽爽va在线观看网站| 国产av一区在线观看免费| 久久精品人妻少妇| 日本一二三区视频观看| 久久久久免费精品人妻一区二区| 最近在线观看免费完整版| 9191精品国产免费久久| 国产精品一区二区三区四区久久| 欧美极品一区二区三区四区| 男女午夜视频在线观看| 亚洲成人久久爱视频| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 级片在线观看| 少妇丰满av| 亚洲人成电影免费在线| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区在线臀色熟女| 看免费av毛片| 久久久久久久久久黄片| 日本在线视频免费播放| www日本黄色视频网| 久99久视频精品免费| 岛国在线观看网站| 舔av片在线| 黑人欧美特级aaaaaa片| 一区福利在线观看| 久久久久国产一级毛片高清牌| 不卡一级毛片| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| www.999成人在线观看| 亚洲欧美精品综合久久99| 免费在线观看影片大全网站| 这个男人来自地球电影免费观看| 曰老女人黄片| 亚洲七黄色美女视频| 国产伦精品一区二区三区四那| 国产主播在线观看一区二区| 亚洲欧美精品综合久久99| 精品电影一区二区在线| 99在线视频只有这里精品首页| 国产黄片美女视频| 午夜亚洲福利在线播放| 在线观看舔阴道视频| 亚洲,欧美精品.| 人妻久久中文字幕网| 嫩草影视91久久| 久久性视频一级片| 亚洲熟女毛片儿| 国产一区二区三区在线臀色熟女| 99久久精品国产亚洲精品| 欧美绝顶高潮抽搐喷水| 99精品在免费线老司机午夜| 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 露出奶头的视频| 老司机福利观看| 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| aaaaa片日本免费| 曰老女人黄片| 亚洲av免费在线观看| 久久久色成人| 欧美乱色亚洲激情| 97超视频在线观看视频| www国产在线视频色| 成年版毛片免费区| 亚洲熟妇熟女久久| 午夜激情欧美在线| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 99久久综合精品五月天人人| 久久精品91蜜桃| 在线观看美女被高潮喷水网站 | 亚洲熟女毛片儿| 深夜精品福利| 国产精品亚洲av一区麻豆| 亚洲欧美日韩东京热| 中文字幕人妻丝袜一区二区| 国产视频内射| 亚洲av五月六月丁香网| 十八禁网站免费在线| 成年女人毛片免费观看观看9| 国内精品一区二区在线观看| 老汉色av国产亚洲站长工具| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 色哟哟哟哟哟哟| 日本 欧美在线| 天天一区二区日本电影三级| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合| 久久香蕉国产精品| 精品久久久久久久久久免费视频| 国产精品久久久人人做人人爽| 久久草成人影院| 日韩精品青青久久久久久| 亚洲成av人片免费观看| 全区人妻精品视频| 性色avwww在线观看| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 99国产精品99久久久久| 90打野战视频偷拍视频| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| 丰满人妻熟妇乱又伦精品不卡| 国产一区在线观看成人免费| 久久草成人影院| 免费看a级黄色片| 三级毛片av免费| 老汉色∧v一级毛片| 免费观看的影片在线观看| 小说图片视频综合网站| 久久精品91无色码中文字幕| 欧美日韩精品网址| а√天堂www在线а√下载| 亚洲欧美日韩高清在线视频| 巨乳人妻的诱惑在线观看| 91在线精品国自产拍蜜月 | 国产精品一区二区三区四区免费观看 | 一级毛片精品| 久久人人精品亚洲av| 欧美zozozo另类| 久久午夜综合久久蜜桃| 人妻夜夜爽99麻豆av| 国产精品av久久久久免费| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 久久精品91无色码中文字幕| 精品久久久久久久人妻蜜臀av| 男人舔女人下体高潮全视频| 久99久视频精品免费| 国产精品亚洲美女久久久| 亚洲av美国av| 麻豆国产av国片精品| 99国产精品99久久久久| 亚洲成人精品中文字幕电影| 久久久色成人| 天堂网av新在线| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片| 成人精品一区二区免费| 亚洲,欧美精品.| 国产激情久久老熟女| 人妻夜夜爽99麻豆av| 亚洲七黄色美女视频| 一级毛片高清免费大全| 欧美日本亚洲视频在线播放| 亚洲精品久久国产高清桃花| 国产人伦9x9x在线观看| 国产精品影院久久| 色播亚洲综合网| 中文字幕av在线有码专区| 国产主播在线观看一区二区| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| 亚洲欧美日韩卡通动漫| 成人精品一区二区免费| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 全区人妻精品视频| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 亚洲av成人不卡在线观看播放网| 99riav亚洲国产免费| 黄色日韩在线| 亚洲九九香蕉| 怎么达到女性高潮| 国产高清视频在线观看网站| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看 | 女生性感内裤真人,穿戴方法视频| 91麻豆av在线| 午夜影院日韩av| 国产日本99.免费观看| 久久精品91蜜桃| 18禁美女被吸乳视频| 99久久精品一区二区三区| 九色成人免费人妻av| 精品午夜福利视频在线观看一区| 女人高潮潮喷娇喘18禁视频| 1024手机看黄色片| 国内精品一区二区在线观看| 亚洲性夜色夜夜综合| 精品久久久久久久人妻蜜臀av| 亚洲av成人av| 久久久精品大字幕| 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 亚洲精品一区av在线观看| 亚洲色图 男人天堂 中文字幕| 国产视频一区二区在线看| 日韩av在线大香蕉| www日本在线高清视频| 搡老妇女老女人老熟妇| 亚洲专区字幕在线| 我要搜黄色片| 亚洲自偷自拍图片 自拍| 精品国产乱码久久久久久男人| 国产伦精品一区二区三区四那| 香蕉av资源在线| 国产69精品久久久久777片 | 给我免费播放毛片高清在线观看| 日韩精品中文字幕看吧| a级毛片a级免费在线| 午夜精品一区二区三区免费看| 热99在线观看视频| 免费在线观看亚洲国产| 两个人的视频大全免费| 免费看十八禁软件| 亚洲国产精品合色在线| 最近视频中文字幕2019在线8| 99热精品在线国产| 丰满人妻一区二区三区视频av | 久久午夜亚洲精品久久| 三级男女做爰猛烈吃奶摸视频| 欧美在线一区亚洲| 欧美绝顶高潮抽搐喷水| 很黄的视频免费| 国产亚洲av高清不卡| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| 欧美一区二区国产精品久久精品| 亚洲欧美日韩东京热| 中国美女看黄片| 午夜福利在线观看免费完整高清在 | 无遮挡黄片免费观看| 在线免费观看不下载黄p国产 | 久久久久久国产a免费观看| 99热精品在线国产| www.999成人在线观看| 国产av一区在线观看免费| 国产精品久久久av美女十八| 精品熟女少妇八av免费久了| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧洲综合997久久,| 最近在线观看免费完整版| 日韩中文字幕欧美一区二区| 岛国在线免费视频观看| 中文资源天堂在线| 亚洲精品色激情综合| 国产精品一区二区三区四区久久| 美女扒开内裤让男人捅视频| 少妇人妻一区二区三区视频| 很黄的视频免费| 日韩欧美 国产精品| 一本久久中文字幕| 麻豆成人av在线观看| 夜夜爽天天搞| 曰老女人黄片| 国产成人精品久久二区二区91| 91九色精品人成在线观看| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 日韩欧美一区二区三区在线观看| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| xxxwww97欧美| 亚洲精品一区av在线观看| 久久久久性生活片| 精品人妻1区二区| 无人区码免费观看不卡| 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 国产高潮美女av| 欧美日韩一级在线毛片| 999久久久国产精品视频| 女警被强在线播放| 欧美又色又爽又黄视频| 国产成人av教育| 婷婷精品国产亚洲av在线| 午夜成年电影在线免费观看| 天堂√8在线中文| 一个人看视频在线观看www免费 | 色视频www国产| 国产欧美日韩一区二区三| 怎么达到女性高潮| 91在线精品国自产拍蜜月 | 床上黄色一级片| 亚洲欧美日韩东京热| 久久午夜亚洲精品久久| 2021天堂中文幕一二区在线观| 黄色丝袜av网址大全| 90打野战视频偷拍视频| 在线观看66精品国产| 中文字幕精品亚洲无线码一区| 成人三级黄色视频| 精品人妻1区二区| 午夜成年电影在线免费观看| 亚洲av成人av| 成人亚洲精品av一区二区| 老汉色av国产亚洲站长工具| 免费在线观看视频国产中文字幕亚洲| 青草久久国产| 91av网一区二区| 淫妇啪啪啪对白视频| 国产伦人伦偷精品视频| 国内精品美女久久久久久| 色视频www国产| 在线免费观看的www视频| 亚洲成av人片在线播放无| 亚洲精品久久国产高清桃花| 国产男靠女视频免费网站| 欧美国产日韩亚洲一区| 琪琪午夜伦伦电影理论片6080| 亚洲色图av天堂| 国产成人av教育| 久久久成人免费电影| 亚洲av片天天在线观看| 精品久久久久久久末码| 日本五十路高清| 国产 一区 欧美 日韩| 俄罗斯特黄特色一大片| 欧美三级亚洲精品| 国产视频内射| 在线永久观看黄色视频| 久久久久免费精品人妻一区二区| 国产亚洲av嫩草精品影院| 少妇人妻一区二区三区视频| 一级毛片女人18水好多| 91在线精品国自产拍蜜月 | 色综合站精品国产| 一级黄色大片毛片| 色视频www国产| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看 | 日韩有码中文字幕| 又粗又爽又猛毛片免费看| 欧美中文综合在线视频| a级毛片a级免费在线| 亚洲人成网站在线播放欧美日韩| 在线看三级毛片| 91麻豆精品激情在线观看国产| 天堂av国产一区二区熟女人妻| 久久天躁狠狠躁夜夜2o2o| 久久久久久九九精品二区国产| 国产精品 欧美亚洲| 久久久精品欧美日韩精品| 亚洲电影在线观看av| 欧美成人免费av一区二区三区| 国产午夜精品久久久久久| 国产精品98久久久久久宅男小说| xxxwww97欧美| 亚洲精品美女久久久久99蜜臀| 曰老女人黄片| 免费在线观看亚洲国产| 美女高潮喷水抽搐中文字幕| 757午夜福利合集在线观看| bbb黄色大片| 18禁国产床啪视频网站| 国产伦在线观看视频一区| 两性夫妻黄色片| 在线观看一区二区三区| netflix在线观看网站| 桃红色精品国产亚洲av| 欧美在线黄色| 怎么达到女性高潮| 亚洲五月天丁香| 婷婷精品国产亚洲av在线| 亚洲av成人精品一区久久| 91久久精品国产一区二区成人 | 人人妻,人人澡人人爽秒播| bbb黄色大片| 他把我摸到了高潮在线观看| 欧美绝顶高潮抽搐喷水| 国产成人aa在线观看| 18禁国产床啪视频网站| 少妇熟女aⅴ在线视频| 中文字幕精品亚洲无线码一区| 亚洲av美国av| 免费无遮挡裸体视频| 亚洲成a人片在线一区二区| 国产成年人精品一区二区| 欧美日韩精品网址| 成年免费大片在线观看| 床上黄色一级片| 欧美日韩综合久久久久久 | 最好的美女福利视频网| 国产探花在线观看一区二区| 麻豆av在线久日| 亚洲成人精品中文字幕电影| 国产伦精品一区二区三区四那| 俺也久久电影网|