• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Breather solutions of modified Benjamin–Bona–Mahony equation

    2021-03-11 08:31:58Adamashvili
    Chinese Physics B 2021年2期

    G T Adamashvili

    Technical University of Georgia,Kostava Street 77,Tbilisi,0179,Georgia

    Keywords: modified Benjamin–Bona–Mahony equation, generalized perturbation reduction method, vector breather,nonlinear waves

    1. Introduction

    A solitary wave is a localized highly stable nonlinear wave that maintains its profile when it propagates at a constant speed through a medium.The existence of solitary waves in the form of a soliton and its various modifications, including breather (pulsing soliton) and vector soliton, among others, is one of the most striking demonstrations of the nonlinear properties of the medium in which they are propagating.Such waves are encountered in a wide variety of research fields pertaining to optics,acoustics,plasma,hydrodynamics,particle physics, etc. Depending on the nature of the nonlinearity,various mechanisms of the formation of nonlinear solitary waves are realized. However,the general properties of solitary waves in different materials and physical situations can be similar. Usually,two main types of solitary waves are considered:single-component (scalar) and two-component (vector) nonlinear waves. Among single-component solitary waves, soliton and breather are investigated quite often. However, the breather is of special interest because it can be propagated at a relatively low intensity of the wave in comparison to the soliton. They have been studied for a very long time, both theoretically and experimentally, in a lot of nonlinear physical phenomena.[1–23]In addition to single-component scalar breathers, two-component waves, such as vector solitons, are also considered in various physical systems, such as optical waveguides.[24,25]Recently,in optics, as well as in acoustics,some special varieties of two-component waves, which are the bound state of two small-amplitude scalar one-component breathers with the same polarization, have been investigated.One breather oscillates with the sum, and the other with the difference of the frequencies and wavenumbers(SDFW).This nonlinear two-component wave has a very special profile that differs in shape among all other nonlinear solitary waves(see Fig.1). In the theory of self-induced transparency,such a nonlinear solitary wave is called the vector 0π pulse.[26–30]

    The behavior of the single-component and twocomponent solitary waves can be described mathematically by means of nonlinear partial differential equations. These include the Sine–Gordon equation (SGE), the Maxwell–Bloch equations, the Maxwell–Liouville equations, the wave equation in Kerr media, the system of wave equation and material equations for two-photon resonant transitions,the system of the magnetic Bloch equations and the elastic wave equation, among others. The inverse scattering transform (IST),the perturbative reduction method (PRM), and several other approaches to solve the nonlinear differential equations and to analyze the solitary waves have been applied.[1,31–36]In particular, a small-amplitude breather solution of SGE can be obtained by means of IST (see Appendix A: As a point of clarification, there have been two different definitions of“breathers” which do cause confusion. The standard definition of“breathers”was a bound state of a two-soliton solution of the nonlinear wave equation, for instance, SGE, Bloch–Maxwell equations, etc. and is manifestly stable against infinitesimal perturbations of the initial data. But certain twosoliton solutions of some other nonlinear equations, such as the scalar NSE and others, have also been called “breathers”solutions, provided that each soliton in the breather had exactly the same velocity, such that they would travel as a unit and would oscillate. But they were manifestly unstable to almost any infinitesimal perturbation of the initial data, upon which they would slowly separate, since the binding energy was zero. We are considering the original definition of the breather,as being a stable,bound state of two solitons. In the low intensity limit, the envelope of this breather is described by a one-soliton solution of the scalar NSE. Such situation take place, for instance, for SGE and Bloch–Maxwell equations when small amplitude breathers of these equations are connected with the one-soliton solution of the scalar NSE[1,6]).

    The two-component vector breathers oscillating with the SDFW have been considered for optical and acoustic waves by means of the Maxwell–Bloch equations, the Maxwell–Liouville equations, and SGE, among others, using the recently developed generalized version of the PRM.[26–30,38,39]But a question is evoked: Is this two-component nonlinear wave specifically for optics and acoustics, or does it have a more general character, and can it be met in other fields of research, such as plasma, hydrodynamics, etc.? Regarding this, it is natural to consider other materials and corresponding nonlinear differential equations. Physical systems, other than those in optics and acoustics,can be described by means of the nonlinear dispersive modified Benjamin–Bona–Mahony(MBBM)equation. This equation was derived to describe an approximation for surface long waves in dispersive nonlinear materials,with phonon properties in the anharmonic crystal lattice, acoustic-gravity waves in compressible fluids, and hydro-magnetic waves in cold plasma.

    The generalized MBBM equation has the form[40–45]

    When n = 2 this equation called the nonlinear dispersive MBBM equation

    or in the dimensionless form[44]

    where u(z,t) is a real function of space and time, z is spatial variable and t is time variable. C, β, and a are arbitrary constants.

    Equation (1) have been considered as an improvement of the modified Korteweg–de Vries (MKdV) equation which is also well known in different field of research and applications.[41,43–46]

    Sometimes,another form of the MBBM equation is also considered[47,48]

    The linear part of MBBM equation(1)is given by

    which describes dispersive effect to the equation and yields dispersion relation between the wavenumber k and frequency ω:

    In the system of coordinates moving along the axis z with velocity C,equation(1)is transformed to the MKdV equation

    where

    Equation (3) has been proposed as a model to describe the nonlinear evolution of plasma waves, the dynamics of thin elastic rods,phonons in anharmonic lattices,meandering ocean currents, traffic congestion, hyperbolic surfaces, ionacoustic solitons,Alfven waves in collisionless plasmas,slagmetallic bath interfaces, and Schottky barrier transmission lines, among others.[49]There are many different approaches in finding the solutions of the MKdV equation; in particular, through the means of the IST and the single-component(scalar) N-solitons and breathers, exact solutions have been studied.[49,50]

    Although the properties of various solitary waves of the MBBM (MKdV) equation have been studied, a twocomponent breather oscillating with the SDFW, which is the superposition of two single-component breathers,has not been considered till date. The purpose of the present work is to theoretically investigate the connection between the MBBM equation(1)and the coupled nonlinear Schr¨odinger equations(NSEs)and to study the two-component breather solution oscillating with the SDFW of the MBBM equation by using the generalized PRM and the comparison with the singlecomponent (scalar) breather of this equation analyzed by the PRM.

    The rest of this paper is organized as follows: Section 2 is devoted to the two-component (vector) breather solution oscillating with the SDFW of the MBBM equation by using the generalized version of the PRM.In Section 3,we will investigate the one-component (scalar) breather solution of the MBBM equation with the PRM in standard form. Finally, in Section 4,we will compare the two methods,PRM in standard form and the generalized PRM and corresponding solutions,and discuss the obtained results.

    2. Vector breather and the generalized PRM

    In the beginning,we simplify Eq.(1)by using the method of slowly varying envelope approximation in the following form:[43,51]

    and the connection between the parameters ω and k, is given by Eq.(2).

    where ε is a small parameter,

    Substituting Eq.(8)into Eq.(7),we obtain

    where

    There are four independent equations for the different values l=±1 and n=±1.

    Equating to zero, the terms with the same powers of a small parameter ε,we obtain a series of equations. In the first order of ε,we obtain the following equation

    From Eqs. (10) and (11), we can establish a connection between different values of the parameters ?l,nand Ql,n. In particular,when

    From Eq.(9),in the second order of ε,we obtain the following equation:

    Taking into account Eqs.(12)and(13),from Eq.(14)we obtain the following equations:

    From Eq.(9), we have in the third order of ε the system of equations proportional to Z+1and Z?1,respectively

    We consider the equation proportional to the Z+1in detail, the complex-conjugation equations proportional to the Z?1can be considered similarly.

    After a transformation back to the variables z and t,from Eq.(16)we obtain the coupled NSEs in the following form:

    where

    Equations (17) are the characterizing bound state of the two breathers. One breather is described by means of the function U+1and the second breather by the function U?1.These breathers propagate in the same direction,with the same constant velocities, and have identical polarizations. In the process of propagation, they interact with each other and exchange energy. This connection between breathers is characterized by the cross terms in Eqs. (17), r+|U?1|2U+1, and r?|U+1|2U?1. As a result, we obtain one steady-state twocomponent vector pulse that consists of the two breathers.In order to describe properties of the vector two-component pulse, we have to find solutions for the coupled NSEs for the auxiliary functions U+1and U?1.

    We will seek the steady-state solutions of Eqs. (17) for the functions U±1in the following form:

    where ?±=k±z?ω±t are the phase functions for each components, K±,k±, and ω±are constants. The standard way to ensure the stationary character of the envelope function S(ξ)entails depending on space coordinate and time only through the variable ξ =t ?(z/V0), where V0is the nonlinear twocomponent pulse velocity. We consider that valid following inequalities:

    Substituting Eqs. (19) into Eqs. (17), we obtain the explicit form of the envelope function and connections between different parameters of the breathers

    Substituting Eqs.(19)and(21)into Eqs.(8)and(5), we obtain the two-component vector breather oscillating with the SDFW of the MBBM equation(1)in the following form:

    where T is the width of the two-component nonlinear pulse

    Fig.1. Plot of the two-component breather oscillating with the SDFW of the MBBM equation(22)at a fixed value of the z coordinate.

    Equation (22) describes the nonlinear two-component vector pulse (vector breather) that consists of the two breathers. One of them oscillates with the sum of the frequencies ω+?+1and wavenumbers k+Q+1(to take into account Eqs.(20))and the other with the difference of the frequencies ω ???1and wavenumbers k ?Q?1. The parameters of the nonlinear wave by Eqs. (15), (18), (21), and (23) are determined. The corresponding plot of the two-component vector breather oscillating with the SDFW of the MBBM equation at a fixed value of the z coordinate for the values of the parameters ω/?±1=103,?+1/??1=0.83 is presented in Fig.1.

    3. One-component breather

    In the present section, we will consider the onecomponent breather solution of the MBBM equation (1) by the PRM.The function u is expanded in a power series of ε as follows:[36]

    is the rapidly varying part,while the slow variables

    ζ =εκ(z?vgt), τ =ε2t, vg= dw/dκ.

    We assume that they satisfy the inequalities

    Substituting the expansion(24)into Eq.(1),we obtain the equation

    To determine the functions of f(α)n,we equate to zero the different terms corresponding to the same powers of ε.

    In the first order in ε,we obtain the following equation

    From Eq.(26),we obtain the dispersion relation

    In the second order in ε,we obtain the following equation

    Using the expressions

    we can transform the equations(29)to the form

    where

    If we make the transformation of the variables Eq. (4),from Eq.(30),we will finally obtain the NSE in the form

    where

    Equation(31)has the soliton solution[21–24]

    where

    K is the amplitude of the NSE soliton,Vbis the velocity of the nonlinear wave,λlis the envelope of the soliton.

    Substituting the soliton solution for λlfrom Eq. (33) in Eq.(24),we obtain for the envelope for u the one-component(scalar) breather solution of the MBBM equation (1) in the form

    From Eq. (35), it is obvious that the trigonometric function points to the existence of oscillation, and this leads to the conclusion that the soliton solution of the NSE (33)for the auxiliary function λlis transformed to the onecomponent breather solution(35)of the MBBM equation for the function u(z,t). The profile and parameters of the onecomponent breather of the MBBM equation are determined from Eqs. (32), (34), and (35). The connection between parameters w and κ is determined from Eq. (27). The corresponding plot of the one-component scalar breather of the MBBM equation at a fixed value of the z coordinate for the values of the parameter w=50(at the same width as the vector breather in Fig.1)is presented in Fig.2.

    Fig.2. Plot of the one-component breather of the MBBM equation(35)at a fixed value of the z coordinate.

    From Eqs. (35) and (A2), it is evident that the onecomponent breather solution of MBBM equation coincides with the small-amplitude breather of SGE with precision to the notation(see Appendix A).

    4. Conclusion

    We consider the formation of nonlinear waves in various physical systems (anharmonic crystals, hydrodynamics,plasma, etc.) that are described by the MBBM equation (1).Using a recently developed mathematical approach, the generalized PRM,it became possible to obtain a new solution of the MBBM equation,which is a nonlinear combination of the components of two breathers. One component oscillates with the sum,and the second with the difference of the frequencies and wavenumbers. Both components have the same polarization, and as a result of the superposition of their amplitudes,a nonlinear pulse with a specific profile is obtained. Although the analytical expression of the pulse Eq.(22)differs from the analytical expression of the vector 0π pulse of the self-induced transparency studied at the beginning in nonlinear optics,and later in nonlinear acoustics, the corresponding graphical expressions are similar(see Fig.1).[26–30]

    We also obtained a one-component breather solution of the MBBM equation by means of PMR in a standard form. This wave completely coincides with the low-amplitude breather solution of SGE.On comparing the analytical expressions and corresponding profiles of the two-component (vector)and one-component(scalar)breathers of the MBBM equation,it becomes obvious that they are completely different.Indeed, the vector breather is the bound state of the two scalar breathers when one breather oscillates with the sum and the other with the difference of the frequencies and wavenumbers. The difference between the two-component and onecomponent waves is especially evident when comparing the corresponding profiles in Figs. 1 and 2. A scalar breather is characterized by one amplitude K and two oscillating parameters w and κ. The relationship between them is illustrated through Eq. (27) and the parameters are determined from Eq.(34).

    On the other hand,a vector breather is characterized by a larger number of parameters: two amplitudes K+and K?,and four oscillating parameters ?+1,??1,Q+1,and Q?1. The relationship between these oscillating parameters is determined by Eqs. (12) and (13), while the relationship between the remaining parameters is determined by Eqs.(21)and(23).

    The study of the two-component breather solutions became possible due to the generalized PRM,which allowed us to expand the number of auxiliary functions and parameters compared to the standard PRM. In particular, in the generalized PRM,we used two complex functions, f±1,±1and f±1,?1,and eight parameters, ?l,nand Ql,n; however, in the standard PMR, there is only one complex function, fn, and two parameters, w and κ, which are not enough to describe twocomponent waves.

    The results obtained above allow us to reach an important conclusion, which is that the generalized PRM allows us to obtain a new solution Eq. (22) (see Fig.1) of the MBBM equation (1). Such a nonlinear two-component pulse, previously studied in optics and acoustics, can also be formed in other physical systems, in particular, in anharmonic crystals,hydrodynamics, plasma, etc. The present work significantly extends the class of materials and physical situations in which vector breathers oscillating with the SDFW can be formed.Consequently, the existence of the vector breathers oscillating with the SDFW has a general character and can be met in completely different physical systems and various physical situations.

    Appendix A

    The breather solution of SGE,which is stable solution to relatively infinitesimal perturbations of the initial data,can be obtained by the IST and written as[31–34]

    where A is the amplitude of the wave, the functions ?1and ?1are determined in Ref.[31]. When A ?1, the breather in Eq.(A1)can be reduced to a small amplitude breather

    av网站免费在线观看视频| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 免费看a级黄色片| 婷婷六月久久综合丁香| av有码第一页| 日韩大码丰满熟妇| 中出人妻视频一区二区| 亚洲国产欧美网| 999久久久精品免费观看国产| 国产高清激情床上av| 久久精品人人爽人人爽视色| 精品欧美国产一区二区三| 在线播放国产精品三级| 久久久久国产精品人妻aⅴ院| 97碰自拍视频| 亚洲熟妇熟女久久| 久久天躁狠狠躁夜夜2o2o| 国产单亲对白刺激| 一级毛片精品| 身体一侧抽搐| 国产私拍福利视频在线观看| 一级片免费观看大全| 国产成人av教育| 免费在线观看日本一区| 亚洲欧美激情在线| 亚洲片人在线观看| 日日干狠狠操夜夜爽| 国产亚洲欧美98| 一区二区三区国产精品乱码| 99久久久亚洲精品蜜臀av| 1024香蕉在线观看| 99riav亚洲国产免费| 午夜福利成人在线免费观看| 韩国av一区二区三区四区| 午夜精品国产一区二区电影| 亚洲熟妇中文字幕五十中出| 日本 欧美在线| 成人亚洲精品av一区二区| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 精品久久久精品久久久| 亚洲伊人色综图| 女性生殖器流出的白浆| 久久久国产成人免费| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| av视频免费观看在线观看| 人成视频在线观看免费观看| 亚洲成a人片在线一区二区| 人妻丰满熟妇av一区二区三区| 午夜福利成人在线免费观看| 亚洲中文av在线| АⅤ资源中文在线天堂| 久久婷婷人人爽人人干人人爱 | 深夜精品福利| 国产私拍福利视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲成人久久性| 久热爱精品视频在线9| 精品国内亚洲2022精品成人| 在线国产一区二区在线| av免费在线观看网站| 精品一区二区三区视频在线观看免费| 97人妻天天添夜夜摸| 国产亚洲精品久久久久久毛片| 国产成人欧美| 国产xxxxx性猛交| 一二三四社区在线视频社区8| 欧美激情高清一区二区三区| 国产成人精品无人区| 亚洲午夜理论影院| 日韩精品中文字幕看吧| 99久久久亚洲精品蜜臀av| 一级a爱片免费观看的视频| 久久香蕉国产精品| 亚洲人成电影观看| 熟女少妇亚洲综合色aaa.| www国产在线视频色| 欧美黑人精品巨大| 国产精品免费一区二区三区在线| 在线天堂中文资源库| 亚洲九九香蕉| 极品教师在线免费播放| 国产精品 国内视频| 最近最新免费中文字幕在线| 一夜夜www| 久久人妻熟女aⅴ| 满18在线观看网站| 视频在线观看一区二区三区| 可以在线观看的亚洲视频| 国产成人欧美在线观看| 亚洲天堂国产精品一区在线| 99精品在免费线老司机午夜| 两性午夜刺激爽爽歪歪视频在线观看 | 日本三级黄在线观看| 欧美一级a爱片免费观看看 | 成年人黄色毛片网站| 国产精品久久久久久人妻精品电影| 黄色成人免费大全| 咕卡用的链子| 亚洲色图av天堂| 伊人久久大香线蕉亚洲五| 一区二区日韩欧美中文字幕| 国产一区二区三区综合在线观看| 99香蕉大伊视频| 国产精品 国内视频| 99香蕉大伊视频| 狂野欧美激情性xxxx| 精品国产国语对白av| 成人三级黄色视频| cao死你这个sao货| 久久热在线av| 午夜视频精品福利| 国产精品九九99| 免费在线观看亚洲国产| 一本综合久久免费| 国产又色又爽无遮挡免费看| 亚洲人成电影观看| 中文字幕av电影在线播放| 韩国精品一区二区三区| 久久人妻福利社区极品人妻图片| 中出人妻视频一区二区| 一二三四在线观看免费中文在| 宅男免费午夜| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 丁香欧美五月| a级毛片在线看网站| 日韩欧美国产在线观看| 动漫黄色视频在线观看| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器 | 老熟妇乱子伦视频在线观看| 99热只有精品国产| 久久久久国内视频| 国产av一区在线观看免费| 夜夜看夜夜爽夜夜摸| 国产欧美日韩精品亚洲av| 黄色片一级片一级黄色片| 亚洲一区二区三区不卡视频| 国产免费av片在线观看野外av| 好男人在线观看高清免费视频 | 黑人巨大精品欧美一区二区蜜桃| 国产高清有码在线观看视频 | 日日干狠狠操夜夜爽| 伦理电影免费视频| 亚洲中文字幕日韩| 91成年电影在线观看| 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| 久久久久久国产a免费观看| 国产单亲对白刺激| 天天一区二区日本电影三级 | 中文字幕高清在线视频| 搡老岳熟女国产| 免费看十八禁软件| 国产99久久九九免费精品| 婷婷精品国产亚洲av在线| 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 嫩草影视91久久| 久久人妻熟女aⅴ| 欧美大码av| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品成人综合色| 国产日韩一区二区三区精品不卡| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 精品国内亚洲2022精品成人| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 一级毛片女人18水好多| 午夜影院日韩av| 久久天躁狠狠躁夜夜2o2o| 中文字幕av电影在线播放| 欧美在线黄色| 好男人在线观看高清免费视频 | 99re在线观看精品视频| 禁无遮挡网站| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 无人区码免费观看不卡| 久久久久国产精品人妻aⅴ院| 亚洲第一青青草原| 久久这里只有精品19| 色老头精品视频在线观看| 88av欧美| 国产成人av教育| 国产精品一区二区精品视频观看| 欧美日本中文国产一区发布| 中文字幕色久视频| 亚洲电影在线观看av| 日韩视频一区二区在线观看| 国产精品永久免费网站| 国产欧美日韩一区二区三区在线| 18禁美女被吸乳视频| 精品第一国产精品| 免费看a级黄色片| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 18禁国产床啪视频网站| 99久久精品国产亚洲精品| 国产精品1区2区在线观看.| 黄色视频不卡| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 99国产精品一区二区蜜桃av| 亚洲色图综合在线观看| 一a级毛片在线观看| 给我免费播放毛片高清在线观看| 成人三级做爰电影| 一级毛片高清免费大全| av免费在线观看网站| 婷婷精品国产亚洲av在线| 日韩欧美三级三区| 桃红色精品国产亚洲av| 一级毛片女人18水好多| ponron亚洲| 国产精品日韩av在线免费观看 | 精品人妻1区二区| 免费看美女性在线毛片视频| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 美女大奶头视频| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片午夜丰满| 黄色成人免费大全| 欧美激情高清一区二区三区| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| 亚洲人成电影免费在线| 成年版毛片免费区| 国产成人精品在线电影| 色老头精品视频在线观看| 国产精品日韩av在线免费观看 | 国产亚洲欧美在线一区二区| 国产激情久久老熟女| 好男人电影高清在线观看| a级毛片在线看网站| 咕卡用的链子| 国产一区二区三区综合在线观看| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 午夜免费激情av| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 国产精品影院久久| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 国产精品av久久久久免费| xxx96com| 精品国产一区二区三区四区第35| 国产国语露脸激情在线看| 成年版毛片免费区| 国产av精品麻豆| 91老司机精品| 男女做爰动态图高潮gif福利片 | 亚洲av成人不卡在线观看播放网| 一本久久中文字幕| 免费无遮挡裸体视频| 国产av精品麻豆| 久久青草综合色| 男人舔女人下体高潮全视频| x7x7x7水蜜桃| 在线观看www视频免费| 亚洲国产精品成人综合色| 搡老熟女国产l中国老女人| 欧美日本中文国产一区发布| 午夜久久久久精精品| 在线视频色国产色| 亚洲国产精品成人综合色| 两个人看的免费小视频| 麻豆成人av在线观看| 男女做爰动态图高潮gif福利片 | 国产亚洲精品av在线| 美女免费视频网站| 男人的好看免费观看在线视频 | 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| av有码第一页| 亚洲国产精品久久男人天堂| 欧美绝顶高潮抽搐喷水| 色综合亚洲欧美另类图片| 国内精品久久久久久久电影| 亚洲欧美激情在线| 淫秽高清视频在线观看| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 日本 欧美在线| 欧美久久黑人一区二区| 久久久久亚洲av毛片大全| 亚洲精华国产精华精| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 亚洲人成电影观看| 美国免费a级毛片| 亚洲成人国产一区在线观看| 夜夜夜夜夜久久久久| 亚洲三区欧美一区| 亚洲性夜色夜夜综合| 大码成人一级视频| 美女国产高潮福利片在线看| 欧美激情极品国产一区二区三区| 后天国语完整版免费观看| 人妻丰满熟妇av一区二区三区| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 亚洲熟妇熟女久久| 久久香蕉激情| 757午夜福利合集在线观看| 黄色女人牲交| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 淫秽高清视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产区一区二| 51午夜福利影视在线观看| www.精华液| 国产亚洲av高清不卡| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 黄片小视频在线播放| 很黄的视频免费| 国产亚洲精品久久久久久毛片| 91成年电影在线观看| 国内久久婷婷六月综合欲色啪| 精品电影一区二区在线| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 美女免费视频网站| 午夜免费激情av| 9191精品国产免费久久| 一区福利在线观看| 69精品国产乱码久久久| 精品卡一卡二卡四卡免费| 最好的美女福利视频网| 国产精品自产拍在线观看55亚洲| av天堂久久9| 好男人电影高清在线观看| 一级,二级,三级黄色视频| 一级毛片高清免费大全| 久久精品aⅴ一区二区三区四区| 久99久视频精品免费| 亚洲最大成人中文| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 亚洲国产精品sss在线观看| www.www免费av| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 岛国在线观看网站| 成人免费观看视频高清| 国产成人啪精品午夜网站| 成人国产综合亚洲| 精品人妻在线不人妻| 精品熟女少妇八av免费久了| 亚洲色图av天堂| 色综合站精品国产| 国产单亲对白刺激| 老司机靠b影院| 亚洲国产精品成人综合色| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| www国产在线视频色| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 欧洲精品卡2卡3卡4卡5卡区| 动漫黄色视频在线观看| 国产精品二区激情视频| 青草久久国产| 欧美大码av| 亚洲成人久久性| 久久久国产精品麻豆| 一进一出抽搐动态| 丁香六月欧美| 欧美+亚洲+日韩+国产| 久久久精品欧美日韩精品| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 久久狼人影院| 美女高潮到喷水免费观看| 99久久国产精品久久久| 欧美国产精品va在线观看不卡| 老汉色av国产亚洲站长工具| 成人国语在线视频| 亚洲欧美精品综合一区二区三区| 久久狼人影院| 18美女黄网站色大片免费观看| 精品久久久久久成人av| 国语自产精品视频在线第100页| 一个人免费在线观看的高清视频| 中文字幕av电影在线播放| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 此物有八面人人有两片| 一区在线观看完整版| 少妇 在线观看| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 性欧美人与动物交配| 国产99白浆流出| 久久久久国内视频| 亚洲av五月六月丁香网| 天天添夜夜摸| 亚洲av成人一区二区三| 亚洲精品美女久久久久99蜜臀| 免费久久久久久久精品成人欧美视频| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 女人爽到高潮嗷嗷叫在线视频| 丰满的人妻完整版| 无人区码免费观看不卡| 欧美日韩精品网址| 免费高清在线观看日韩| av天堂久久9| 丁香欧美五月| 午夜免费激情av| 在线播放国产精品三级| 99久久久亚洲精品蜜臀av| 国产伦人伦偷精品视频| 午夜久久久久精精品| 精品国产亚洲在线| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| 身体一侧抽搐| 久久精品影院6| 色综合欧美亚洲国产小说| 国产99白浆流出| 日本免费a在线| 九色国产91popny在线| 最好的美女福利视频网| 成年人黄色毛片网站| 亚洲一区中文字幕在线| 美女高潮到喷水免费观看| 亚洲精品国产色婷婷电影| 人人妻,人人澡人人爽秒播| 超碰成人久久| www国产在线视频色| 国产一区二区三区视频了| 搡老妇女老女人老熟妇| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 色综合欧美亚洲国产小说| 国产精品影院久久| 99在线视频只有这里精品首页| 欧美精品亚洲一区二区| 亚洲av第一区精品v没综合| 怎么达到女性高潮| 丰满的人妻完整版| 久久久久国产一级毛片高清牌| 国产午夜福利久久久久久| 日韩av在线大香蕉| 亚洲午夜理论影院| 日韩三级视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 天堂√8在线中文| 亚洲精品av麻豆狂野| 制服丝袜大香蕉在线| 在线观看66精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产毛片av蜜桃av| 欧美中文综合在线视频| 啦啦啦 在线观看视频| 黑人操中国人逼视频| 一个人观看的视频www高清免费观看 | 亚洲精品国产色婷婷电影| 国产精品九九99| 超碰成人久久| 久久九九热精品免费| 大型黄色视频在线免费观看| 校园春色视频在线观看| 亚洲,欧美精品.| 国产1区2区3区精品| а√天堂www在线а√下载| 亚洲专区国产一区二区| bbb黄色大片| 成人三级黄色视频| 国产aⅴ精品一区二区三区波| 亚洲无线在线观看| 9热在线视频观看99| 给我免费播放毛片高清在线观看| 人人妻人人澡欧美一区二区 | 老汉色av国产亚洲站长工具| 搞女人的毛片| 欧美成狂野欧美在线观看| 亚洲伊人色综图| 亚洲av电影不卡..在线观看| 欧美日本中文国产一区发布| 在线十欧美十亚洲十日本专区| 高清毛片免费观看视频网站| 涩涩av久久男人的天堂| 欧美大码av| 免费高清在线观看日韩| 亚洲五月色婷婷综合| 黄色片一级片一级黄色片| 神马国产精品三级电影在线观看 | 波多野结衣av一区二区av| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址| 老鸭窝网址在线观看| 老熟妇乱子伦视频在线观看| cao死你这个sao货| 精品福利观看| 久久精品成人免费网站| 国产精品免费视频内射| 一级片免费观看大全| 侵犯人妻中文字幕一二三四区| 又大又爽又粗| 亚洲电影在线观看av| 国产av又大| 午夜精品国产一区二区电影| 99香蕉大伊视频| 好男人电影高清在线观看| 精品无人区乱码1区二区| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 人人妻,人人澡人人爽秒播| 日本vs欧美在线观看视频| 久久国产乱子伦精品免费另类| 精品午夜福利视频在线观看一区| 午夜a级毛片| 制服人妻中文乱码| 国产精品av久久久久免费| 亚洲成人免费电影在线观看| 免费不卡黄色视频| 日韩欧美一区二区三区在线观看| 9191精品国产免费久久| 嫁个100分男人电影在线观看| 午夜影院日韩av| 久久人人爽av亚洲精品天堂| 欧美激情高清一区二区三区| 亚洲国产高清在线一区二区三 | 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩无卡精品| 中文字幕久久专区| 免费人成视频x8x8入口观看| 韩国精品一区二区三区| 级片在线观看| 免费观看人在逋| 亚洲 欧美 日韩 在线 免费| 成年女人毛片免费观看观看9| 午夜福利,免费看| 99国产精品一区二区三区| 欧美乱妇无乱码| 亚洲国产精品sss在线观看| 怎么达到女性高潮| 国产伦人伦偷精品视频| 久久国产精品影院| 久久性视频一级片| 久久精品亚洲熟妇少妇任你| 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 国产精品一区二区精品视频观看| 别揉我奶头~嗯~啊~动态视频| 美女大奶头视频| 色尼玛亚洲综合影院| 99国产精品免费福利视频| 成人欧美大片| 日韩视频一区二区在线观看| 欧美不卡视频在线免费观看 | 午夜精品国产一区二区电影| 国产单亲对白刺激| 少妇被粗大的猛进出69影院| 看免费av毛片| 少妇裸体淫交视频免费看高清 | 国产成人影院久久av| 欧美日韩黄片免| 亚洲人成电影免费在线| 日本五十路高清| 国产单亲对白刺激| 国产高清激情床上av| 国产精品一区二区免费欧美| 久久久国产精品麻豆| 欧美 亚洲 国产 日韩一| 视频在线观看一区二区三区| 老司机靠b影院| av片东京热男人的天堂| 日韩精品免费视频一区二区三区| 久久人妻av系列| 琪琪午夜伦伦电影理论片6080| 欧美 亚洲 国产 日韩一| 18美女黄网站色大片免费观看| 丝袜在线中文字幕| 97超级碰碰碰精品色视频在线观看| 男女下面进入的视频免费午夜 | 欧美色欧美亚洲另类二区 | 午夜福利成人在线免费观看| 国产精品,欧美在线| 国产99久久九九免费精品| 国产av精品麻豆| 精品国产超薄肉色丝袜足j| 精品欧美一区二区三区在线| 久久久久久大精品| 国产一级毛片七仙女欲春2 | 男男h啪啪无遮挡| 久久久久国内视频| 欧美在线黄色| 在线观看舔阴道视频| 别揉我奶头~嗯~啊~动态视频|