• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and implementation of new fractional-order multi-scroll hidden attractors?

    2021-03-11 08:31:52LiCui崔力WenHuiLuo雒文輝andQingLiOu歐青立
    Chinese Physics B 2021年2期

    Li Cui(崔力), Wen-Hui Luo(雒文輝), and Qing-Li Ou(歐青立)

    Hunan University of Science and Technology,Xiangtan 411201,China

    Keywords: fractional order,hidden attractor,hidden bifurcation,basins of attraction,circuit implementation

    1. Introduction

    In recent years,the chaotic system has attracted extensive attention and conducted in-depth studies by researchers due to its particularities. It has promising prospects of many applications in random signal generators,[1–4]synchronous control technology,[5]image processing,[6]secure communication,[7,8]and artificial neural networks.[9–11]The increase in the complexity of the chaotic system and the generation of complex chaotic attractors have brought about the difficulty of deciphering the information in encryption systems.At present,the use of the multi-scroll or multi-wing topology method to improve the complexity of the chaotic system has become a hot topic.[12–14]

    Although fractional differential has a history of over 300 years,its application to physics and engineering has been only in the last few decades. In the last three decades, it has been discovered that when we use fractional calculus to describe complex systems, the physical significance becomes clearer and its expression becomes more concise. The nature and behavioral characteristics of an object are revealed with greater ease when we use fractional calculus to characterize the object. Hence,fractional calculus has been gaining increasingly more attention,and its application to engineering and physics has become a research hotspot. As a generalization of the integer number system, fractional calculus can describe the dynamic characteristics of the system more accurately with higher nonlinear complexity, and it has a unique historical memory function. There are mainly two kinds of chaotic attractors: self-excited attractors and hidden attractors. The dynamic characteristics of hidden attractors are completely different from those of self-excited attractors. In recent years,Leonov et al.[15,16]discovered hidden attractors in Chua system and proposed the concept of hidden attractors. At the same time, Leonov provided a new set of numerical analysis methods to find hidden attractors. As is well known, the Lorenz attractor,the Chen attractor,and the Chua attractor are all typical attractors in the traditional sense. However,the researchers in Refs.[17,20]indicated a kind of attractor different from these traditional attractors, namely, hidden attractor.Some of these hidden attractor systems possess no equilibrium points,and some have only a stable equilibrium point with an infinite number of equilibrium points. These are reports on integer-order hidden attractor systems. There are few reports on fractional-order hidden attractor systems.

    The integer-order chaotic system has been extended to the fractional-order chaotic system by introducing the fractional-order differential operators based on the mathematical model of the integer-order chaotic system in the early stage of their studies, such as the fractional-order Lorenz system,[21]fractional-order Jerk system,[22]fractional-order Chua system.[23]The fractional-order multi-scroll chaotic system has been widely concerned because it can increase the complexity of the system and the accuracy of chaos.[24–27]In recent years, the hidden chaotic attractor system has also received extensive attention.The searching for the hidden attractors and the hidden bifurcations of the hidden attractor chaotic system has also become a hot topic.[28–30]In Ref.[31]the hidden attractor and the hidden bifurcation phenomenon of the multi-scroll Chua’s chaotic system are studied. In Ref. [32]studied are the chaotic property,quasi-periodicity,and coexistence of hidden attractors in a new simple of four-dimensional(4D) chaotic system with hyperbolic cosine nonlinear terms.In Ref. [33] conducted is a dynamic analysis of the multistable chaotic system of hidden attractors. In Ref.[29]studied are the hidden and transient chaotic attractors in the attitude system of four-rotor UAVs. In Ref.[34]studied are the multistability,hidden chaotic attractors,and transient chaotic analysis of brushless DC motors.

    The Riemann–Liouville (RL) derivative and the Caputo derivative are often used in research for practical applications.In the time–frequency domain transformation method, as defined by RL,the integer is used to fit the fractional-order and the fractional-integral operator in the time domain is transformed into a transfer function in the frequency domain and then the piecewise linear approximation method for the frequency domain is used to perform an approximate calculation. The corresponding expanded form can be obtained by solving the system function in the frequency domain. On the other hand, one starts from the Caputo derivative and derives the predictor–corrector method as the time-domain solution method of fractional differential equations. Using the Adams–Bashforth predictor formula and the Adams–Moulton corrector formula can obtain the time series of the system’s corresponding order, thus solving the fractional differential equation. In this paper the definition of Caputo fractional calculus is adopted.

    In the present study,we first propose a three-dimensional quadratic fractional-order multi-scroll hidden chaotic attractor system with sinusoidal nonlinear terms. Then we use the Adomian decomposition algorithm[35]to solve the proposed fractional-order chaotic system,thereby obtain the 0.99-order chaotic phase diagram as well as the Lyaponov exponent spectrum, bifurcation diagram, SE complexity, and basins of attraction of the system. In the process of analyzing the system,it is found that the system possesses the dynamic characteristics of hidden bifurcations. Finally, we construct a circuit system of the fractional-order chaotic system by designing an equivalent circuit module of the fractional-order integral operators, thus realizing the 0.9-order multi-scroll hidden chaotic attractors.

    2. New fractional-order multi-scroll chaotic system

    In this paper a new fractional-order multi-scroll chaotic system with sinusoidal nonlinear terms is proposed. The dimensionless equation of the state is given as follows:

    When the parameters of the system(1)are taken as A=8,B=4,C=4,w=3.8,q=0.99(0 <q <1),the initial value is(1,1,0),the system presents a multi-scroll chaotic state. The Adomian decomposition algorithm is used to solve the system(1). The corresponding system phase diagram is obtained and the results are shown in Fig.1. The analysis in Fig.1 clearly shows that there are hidden attractors in the phase diagram.

    Fig.1. Phase diagram of x–z plane with q=0.99 for q=0.99 initial value(1,1,0).

    Fig.2. Phase diagram of x–z plane with q=0.9 for q=0.9, initial value(1,1,0).

    Fig.3. Phase diagram of x–z plane with q=0.8 for q=0.8, initial value(1,1,0).

    When the values of q are 0.9 and 0.8, the phase diagrams of system(1)are shown in Figs.2 and 3, respectively.In this paper, the proposed 0.99-order fractional-order multiscroll hidden attractor system is particularly analyzed.

    2.1. Equilibrium point and Lyapunov analysis

    The equilibrium points of system(1)can be obtained by solving the following equation

    By solving Eq. (2), it is found that the proposed system(1)has infinitely many equilibrium points. As the number of scrolls is affected by sinusoidal function and different initial values,the number of scrolls,which also depends on the order of fractional order, is generated randomly. When q=0.99,the Lyapunov exponents of system (1) are LE1=4.3271,LE2=?0.0542,and LE3=?5.3292,indicating that the system is a multi-scroll hidden attractor system. The Lyapunov exponents are shown in Fig.4.

    Fig.4. Lyapunov exponent spectra of system(1)for q=0.99,initial value(1,1,0).

    2.2. Bifurcation and Lyaponov exponent spectrum analysis

    We set the fractional parameters to be q=0.99, B=4,C=4,and w=3.8,the control parameter A of the system(1)to change from 0 to 10,the initial values of the system(1)are chosen as follows:

    x(0)=1, y(0)=1, z(0)=0,

    and the step size of parameter A is chosen as 0.01. The bifurcation of the fractional-order multi-scroll system is shown in Fig.5(a). When the fractional-order multi-scroll system is 0.99-order,the system(1)presents a chaotic state varying with time. When the control parameter B increases from 0 to 5,the fractional-order multi-scroll system enters into the chaotic state with period-doubling bifurcations. When the control parameter C increases from 0 to 5, the system (1) has hidden bifurcations, because when the corresponding Lyaponov exponent spectrum enters into the positive exponent state, the bifurcation of the parameter C does not appear but directly enters into the chaotic state,so it is believed that the system(1)has hidden bifurcation behaviors. The Lyapunov exponent of the system(1)is calculated and the corresponding index map is obtained based on the predictor–corrector (PECE) method of Adams–Bashforth–Moulton type and Wolf’s method.

    Fig.5.(a)Corresponding bifurcation diagram of state variable A;(b)spectra of Lyapunov exponent,with A changing from 0 to 10.

    Obviously,the Lyapunov spectrum provides the parameter ranges of the system(1)when it is in a chaotic state. These ranges are consistent with the results of the bifurcation analysis. As shown in Fig.5(b),there is a positive Lyapunov exponent in a range of 0 <A ≤10,indicating that the system(1)is chaotic. As shown in Fig.6(b),the system(1)shows a quasiperiodic state in a range of 0 <B ≤1,the system(1)presents a quasi-periodic state. When the parameter B continues to increase to 5, there is a positive Lyapunov exponent, this indicates that the system(1)enters into a chaotic state. As shown in Fig.7, when Z is in a range of 0.06 <C ≤5, the system is in a chaotic state. However,the analysis of the corresponding bifurcation diagram shows that the system does not enter into the chaotic state, nor has the bifurcation behaviors in a range of 0 <C <1,indicating that the system(1)has hidden bifurcation behaviors.

    Fig.6. (a)Corresponding bifurcation diagram of state variable B;(b)spectra of Lyapunov exponent,with B changing from 0 to 5.

    Fig.7. (a)Corresponding bifurcation diagram of state variable C;(b)spectra of Lyapunov exponents,with C changing from 0 to 5.

    Fig.8. (a)Corresponding bifurcation diagram of state variable w;(b)spectra of Lyapunov exponents with w changing from 0 to 5.

    2.3. SE complexity analysis

    The complexity analysis of the system involves many fields. Scholars have studied these fields and have different understandings of the complexity of the system. So far,there is no unified definition of the complexity. The complexity of the chaotic system refers to the randomness of chaotic sequences. The greater the complexity, the closer to a random sequence the sequence is and the higher the security of the corresponding system. The complexity of the chaotic system,in essence,belongs to the complexity of the chaotic dynamics.So far,many complexity algorithms have been applied to measuring the complexity of the chaotic system, including multiscale entropy,[36]Shannon entropy,[37]fuzzy entropy,[38]and spectral entropy (SE) algorithm.[39]Compared with other algorithms,the SE algorithm has the advantages of few parameters and high precision. Therefore,it is used in this paper to measure the complexity of the chaotic system. In addition,the SE algorithm based on chaotic mapping can provide a better basis for the parameter selection in practical applications.

    First, it can be known from Figs. 9(b) and 9(d) that the darker the color, the greater the complexity of the system is,indicating that if the value of the system parameter is within this range, the security of the system is higher. Then it can follow from the analysis of Figs. 9(a) and 9(c) that because system (1) is a hidden attractor system, darker colored areas are randomly distributed in lighter-colored areas and its complexity is affected not only by the orders but also by the initial values of the system. The randomness of the chaotic sequence is dependent on initial values.

    Fig.9. Chaos diagrams of fractional-order chaotic system(1)in(a)q–A plane,(b)q–B plane,(c)q–C plane,and(d)q–w plane.

    2.4. Basins of attraction

    Fig.10. Basins of attraction of coexisting attractors on x(0)–y(0)plane with q=0.99(a),0.98(b),0.9(c),and 0.8(d).

    To further study the nonlinear dynamic behaviors of system (1), in this paper we propose using the Lyapunov exponents to calculate the basins of attraction of the chaotic system,because the Lyapunov exponents describe the orbit of the chaotic system. The Lyapunov exponents refer to the average quantities related to the contraction and expansion of the phase space near the orbit in different directions. No matter what sense of space or time they are in,Lyapunov exponents are not local quantities.Each Lyapunov exponent is the average quantity of the local deformation of the phase space relative to the motion of the system. At the same time, it is determined by the long-term evolution of the system. Therefore,the positive Lyapunov exponent is compared with the Lyapunov exponent with the middle value equal to 0 to describe the coexistence of multiple attractors of the chaotic system with different initial value.

    The basins of attraction of system (1) can be obtained by changing the parameter q and the initial conditions x(i)and y(i) in a range of (?5, 5) with the system parameters unchanged[40–44]as shown in Fig.10. The red area refers to the basins of attraction of infinity attractors,namely,the point set where the trajectory is diverged. The yellow area refers to the basins of attraction of chaotic attractors, showing the coexistence of multiple attractors. The blue area refers to the periodic area. The red, blue and yellow areas are mixed to form a meshed basin, indicating that there is a smooth and invariant subspace containing the chaotic attractor system(1)(Ref.[40]). Different color areas represent completely different initial conditions, showing the multiple stability of coexistence. The simulation results show that system (1) has a multi-stable phenomenon, namely, the coexistence of multiple attractors. Therefore,the trajectory of the system not only depends on the initial conditions of system(1),but also is related to the fractional-orders. The lower the order, the higher the complexity of the chaotic system is and the larger the red area,which is consistent with the conclusion of the complexity analysis. The partially enlarged diagram of the basins of attraction of the 0.99-order system(1)is shown in Fig.11.

    If the basins of attraction of the chaotic system can effectively form a meshed area for each attractor, it will result in the intermittent phenomena of continuous communications between chaotic attractors. The trajectory of the attractor will jump from one attractor to another and then hover around a certain chaotic attractor for a while, thus repeating the cycle continuously.

    Fig.11. Enlarged part of basins of attraction with q=0.99.

    3. Circuit implementation

    Fig.12. Schematic diagram of circuit designed from system(1).

    To verify the chaotic characteristics of the fractionalorder chaotic system in the physical sense, a 0.9-order fractional-order multi-scroll chaotic system is designed based on the method of designing integer-order chaotic circuits and the frequency domain approximation method[45]by using resistors, capacitors, capacitors, and other devices, including the analog operational amplifier TL082,the multiplier AD633.The power supply voltage is±12 V.In this paper designed is an analog circuit to implement the 0.9-order fractional-order multi-scroll chaotic system. The schematic circuit diagram and its parameters are shown in Fig.12. The fractional-order unit circuit with 0.9-order is shown in Fig.13.

    Its parameters are Ra= 63 MΩ, Rb= 1.6 MΩ, Rc=0.0158 MΩ, Ca=0.44 μF,Cb=0.49 μF,Cc=0.3 μF. The values of these resistances are determined in accordance with the parameters of the fractional-order multi-scroll system(1).The chaotic attractors are observed with an oscilloscope. In this paper,provided are the chaotic attractors of the x–z plane displayed by the digital oscilloscope used in the actual environment as shown in Fig.14. It is shown that the numerical simulation result of the fractional-order multi-scroll system(1)is consistent with the result of the circuit implementation.

    Fig.13. Fractional-order unit circuit with q=0.9.

    Fig.14. Phase diagram of x–z plane with q=0.9.

    4. Conclusions

    In this paper, we studied the nonlinear dynamic characteristics of a new fractional-order multi-scroll chaotic system with sinusoidal nonlinear terms,and also review the history of the fractional-order chaotic system, focusing on the bifurcations, Lyapunov exponents, complexity, and basins of attraction of the 0.99-order multi-scroll chaotic system. We first propose using the Lyapunov exponents to describe the basins of attraction of the chaotic system in the Matlab environment.The result shows that system(1)has the characteristics of hidden attractors,hidden bifurcations,and multi-stability.Finally,the 0.9-order multi-scroll chaotic attractors are implemented by using the simulated circuits. As the multi-scroll chaotic system of the fractional-order has more complex nonlinear behavior, it can describe the physical characteristics of the system more clearly. It is widely applied to such fields as secret communication, image processing, artificial neural network,etc. The hidden attractors and hidden bifurcations are new concepts that have been proposed only in recent years. The hidden attractor chaotic system has more complex nonlinear dynamic behaviors, so it is necessary to carry out more indepth research on this type of system.

    国产免费av片在线观看野外av| 一级片免费观看大全| 亚洲国产精品一区二区三区在线| 十八禁人妻一区二区| 成年女人毛片免费观看观看9| 在线播放国产精品三级| 国产精品电影一区二区三区| 成人av一区二区三区在线看| 成人三级黄色视频| 91麻豆精品激情在线观看国产 | 国产精品偷伦视频观看了| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产一区二区精华液| 精品久久久精品久久久| av中文乱码字幕在线| 在线天堂中文资源库| 18禁裸乳无遮挡免费网站照片 | 日本a在线网址| 日本vs欧美在线观看视频| av国产精品久久久久影院| 亚洲三区欧美一区| 亚洲精品美女久久久久99蜜臀| a级毛片在线看网站| 大码成人一级视频| 老司机在亚洲福利影院| 精品一品国产午夜福利视频| 视频在线观看一区二区三区| 精品无人区乱码1区二区| 一级毛片精品| 日韩欧美国产一区二区入口| 久热这里只有精品99| 亚洲精品中文字幕一二三四区| aaaaa片日本免费| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 大香蕉久久成人网| 夜夜躁狠狠躁天天躁| 中文亚洲av片在线观看爽| 少妇被粗大的猛进出69影院| 国产精华一区二区三区| 国产在线精品亚洲第一网站| 免费在线观看影片大全网站| 国产精品爽爽va在线观看网站 | 亚洲男人天堂网一区| 久久久久久久午夜电影 | 搡老乐熟女国产| 两个人看的免费小视频| 亚洲va日本ⅴa欧美va伊人久久| 老司机靠b影院| 日韩欧美一区二区三区在线观看| 国产色视频综合| 最新美女视频免费是黄的| 少妇 在线观看| 久久精品aⅴ一区二区三区四区| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 激情在线观看视频在线高清| 免费av毛片视频| 1024视频免费在线观看| 淫妇啪啪啪对白视频| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产 | 久久久久亚洲av毛片大全| 国产精品二区激情视频| 免费在线观看黄色视频的| 精品国内亚洲2022精品成人| 女人高潮潮喷娇喘18禁视频| av在线天堂中文字幕 | 女人被躁到高潮嗷嗷叫费观| 久久久国产精品麻豆| 国产精品秋霞免费鲁丝片| 热re99久久国产66热| 亚洲中文字幕日韩| 国产黄a三级三级三级人| 操出白浆在线播放| 黑人操中国人逼视频| 99国产极品粉嫩在线观看| 露出奶头的视频| 久久这里只有精品19| 色综合婷婷激情| 新久久久久国产一级毛片| 天天添夜夜摸| 精品久久久久久成人av| 亚洲精品在线美女| 在线天堂中文资源库| 热99re8久久精品国产| 中文字幕高清在线视频| 国产又爽黄色视频| 午夜免费激情av| 久久热在线av| 热re99久久精品国产66热6| 男女床上黄色一级片免费看| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 国产成人精品无人区| 欧洲精品卡2卡3卡4卡5卡区| 国产99白浆流出| 长腿黑丝高跟| 亚洲成a人片在线一区二区| 午夜福利影视在线免费观看| 精品一区二区三卡| 波多野结衣一区麻豆| 亚洲精品av麻豆狂野| 欧美+亚洲+日韩+国产| 国产一区二区三区在线臀色熟女 | 欧美黑人精品巨大| 成人黄色视频免费在线看| 99国产精品99久久久久| 久久人人精品亚洲av| 一夜夜www| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费 | 久久亚洲精品不卡| 黄片大片在线免费观看| 一区二区三区国产精品乱码| 啦啦啦免费观看视频1| av网站免费在线观看视频| 欧美中文综合在线视频| 女人爽到高潮嗷嗷叫在线视频| 国内久久婷婷六月综合欲色啪| 一级片免费观看大全| 欧美在线一区亚洲| 日韩大码丰满熟妇| 午夜精品久久久久久毛片777| 免费av中文字幕在线| 欧美成人午夜精品| 国产亚洲欧美在线一区二区| 亚洲欧美精品综合久久99| 欧美日韩av久久| 欧美午夜高清在线| 国产av又大| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| 超色免费av| 免费在线观看日本一区| 国产精品久久久av美女十八| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 黄色女人牲交| 午夜老司机福利片| av免费在线观看网站| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 另类亚洲欧美激情| 亚洲成a人片在线一区二区| 欧美日韩av久久| www.999成人在线观看| 热99re8久久精品国产| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 国产精品亚洲av一区麻豆| 成年版毛片免费区| 国产免费现黄频在线看| 国产片内射在线| 国产成人欧美| 欧美在线一区亚洲| 亚洲国产欧美网| 国产一区在线观看成人免费| 一区在线观看完整版| 黑人操中国人逼视频| 欧美黑人精品巨大| 日本vs欧美在线观看视频| 精品福利观看| 十八禁网站免费在线| 日本vs欧美在线观看视频| 国产精品99久久99久久久不卡| 亚洲久久久国产精品| 老司机午夜十八禁免费视频| 侵犯人妻中文字幕一二三四区| 免费高清视频大片| 老司机福利观看| 夜夜看夜夜爽夜夜摸 | 免费不卡黄色视频| 亚洲熟女毛片儿| 淫秽高清视频在线观看| av天堂久久9| 成人特级黄色片久久久久久久| 在线观看一区二区三区激情| 午夜福利影视在线免费观看| 99精品在免费线老司机午夜| 每晚都被弄得嗷嗷叫到高潮| 巨乳人妻的诱惑在线观看| 亚洲少妇的诱惑av| 最新在线观看一区二区三区| 91精品国产国语对白视频| 欧美乱色亚洲激情| 亚洲一区二区三区色噜噜 | 国产成人一区二区三区免费视频网站| av免费在线观看网站| 久久香蕉国产精品| 精品久久久久久成人av| 伊人久久大香线蕉亚洲五| 精品免费久久久久久久清纯| 人人妻人人添人人爽欧美一区卜| 午夜a级毛片| 久久久国产成人免费| 欧美乱色亚洲激情| 成人免费观看视频高清| 欧美久久黑人一区二区| 美女午夜性视频免费| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 免费av毛片视频| 99久久久亚洲精品蜜臀av| 免费少妇av软件| 久久伊人香网站| 亚洲全国av大片| 国产免费现黄频在线看| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| av福利片在线| 一区二区三区激情视频| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 国产真人三级小视频在线观看| 欧美乱妇无乱码| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 高清在线国产一区| 久久久国产欧美日韩av| 久99久视频精品免费| www日本在线高清视频| 日韩三级视频一区二区三区| 国产高清videossex| 国产男靠女视频免费网站| 国产黄色免费在线视频| 国产精品乱码一区二三区的特点 | 男人的好看免费观看在线视频 | 久久精品91无色码中文字幕| 国产精品乱码一区二三区的特点 | 女警被强在线播放| 久久精品91蜜桃| 中文字幕人妻丝袜制服| 真人做人爱边吃奶动态| 国产精品一区二区三区四区久久 | 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| av欧美777| 精品国产一区二区久久| 久久久久久免费高清国产稀缺| 狠狠狠狠99中文字幕| 精品国产乱子伦一区二区三区| 男人舔女人下体高潮全视频| 免费不卡黄色视频| 好男人电影高清在线观看| 一边摸一边抽搐一进一小说| 欧美精品啪啪一区二区三区| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频 | 亚洲人成电影观看| 午夜激情av网站| 午夜福利免费观看在线| av国产精品久久久久影院| 男女做爰动态图高潮gif福利片 | 最近最新中文字幕大全电影3 | 亚洲va日本ⅴa欧美va伊人久久| 在线天堂中文资源库| 国产精品永久免费网站| 国产又爽黄色视频| 在线av久久热| 纯流量卡能插随身wifi吗| 一级片免费观看大全| 午夜福利影视在线免费观看| 亚洲精品美女久久av网站| 亚洲男人的天堂狠狠| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 黑丝袜美女国产一区| 夜夜躁狠狠躁天天躁| 亚洲精品久久成人aⅴ小说| 亚洲人成伊人成综合网2020| 91字幕亚洲| 丝袜人妻中文字幕| 国产精品久久久久成人av| 亚洲熟妇熟女久久| 成人影院久久| 一区二区日韩欧美中文字幕| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 免费在线观看亚洲国产| 身体一侧抽搐| 午夜精品在线福利| 久久香蕉精品热| 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 亚洲激情在线av| 老司机午夜福利在线观看视频| 伊人久久大香线蕉亚洲五| 欧美精品一区二区免费开放| 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 黄色丝袜av网址大全| 亚洲国产毛片av蜜桃av| aaaaa片日本免费| 悠悠久久av| a级毛片在线看网站| 久久精品亚洲熟妇少妇任你| 18禁美女被吸乳视频| 国产成人免费无遮挡视频| 人人妻人人爽人人添夜夜欢视频| 国产精品久久电影中文字幕| 啦啦啦免费观看视频1| 国产亚洲欧美98| 国产无遮挡羞羞视频在线观看| 69av精品久久久久久| netflix在线观看网站| 亚洲熟妇熟女久久| 国产激情欧美一区二区| 在线天堂中文资源库| 精品第一国产精品| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 精品乱码久久久久久99久播| 国产高清国产精品国产三级| 丰满的人妻完整版| 国产精品永久免费网站| 精品国产美女av久久久久小说| 桃红色精品国产亚洲av| 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 在线永久观看黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品一区二区三区四区久久 | 久久九九热精品免费| 欧美人与性动交α欧美软件| 极品教师在线免费播放| av电影中文网址| 国产精品爽爽va在线观看网站 | 国产麻豆69| 老汉色∧v一级毛片| 国产成人影院久久av| 一级a爱视频在线免费观看| 亚洲精品中文字幕一二三四区| 国产亚洲精品一区二区www| 国产精品九九99| 国产在线精品亚洲第一网站| 99国产精品免费福利视频| 9色porny在线观看| 99热只有精品国产| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 亚洲第一青青草原| 亚洲欧美日韩高清在线视频| 久久久水蜜桃国产精品网| 9色porny在线观看| 亚洲av成人av| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| xxx96com| 亚洲成人免费av在线播放| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 亚洲狠狠婷婷综合久久图片| 久久久久精品国产欧美久久久| 涩涩av久久男人的天堂| 男人操女人黄网站| 美女国产高潮福利片在线看| 国产一区二区激情短视频| 亚洲欧洲精品一区二区精品久久久| 日韩精品青青久久久久久| 久久久久国内视频| 午夜两性在线视频| 99在线视频只有这里精品首页| 激情视频va一区二区三区| 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全电影3 | 中文亚洲av片在线观看爽| a在线观看视频网站| 一级黄色大片毛片| 成年人黄色毛片网站| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 自线自在国产av| 很黄的视频免费| 99久久人妻综合| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 日本三级黄在线观看| 亚洲精品久久成人aⅴ小说| 日本三级黄在线观看| 国产精品久久久人人做人人爽| 欧洲精品卡2卡3卡4卡5卡区| 免费av毛片视频| 精品第一国产精品| 国产黄a三级三级三级人| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 在线观看舔阴道视频| 久久久精品欧美日韩精品| 麻豆一二三区av精品| 女性生殖器流出的白浆| 亚洲av成人一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 亚洲人成电影观看| 老熟妇仑乱视频hdxx| 久久久精品国产亚洲av高清涩受| 最好的美女福利视频网| 高清av免费在线| 午夜a级毛片| 亚洲欧洲精品一区二区精品久久久| 亚洲第一青青草原| 免费一级毛片在线播放高清视频 | 国产区一区二久久| 午夜a级毛片| 正在播放国产对白刺激| 日本黄色日本黄色录像| 久久精品国产综合久久久| 亚洲九九香蕉| 亚洲自偷自拍图片 自拍| 亚洲aⅴ乱码一区二区在线播放 | 日本wwww免费看| 91成人精品电影| 可以免费在线观看a视频的电影网站| 国产不卡一卡二| 国产成人啪精品午夜网站| 亚洲激情在线av| 人妻丰满熟妇av一区二区三区| 国产精品日韩av在线免费观看 | 最好的美女福利视频网| 免费久久久久久久精品成人欧美视频| 精品乱码久久久久久99久播| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 久久久久国产精品人妻aⅴ院| 亚洲黑人精品在线| 久久久久久免费高清国产稀缺| 久99久视频精品免费| 国产av在哪里看| 大码成人一级视频| 宅男免费午夜| 热re99久久国产66热| 久久人妻熟女aⅴ| 一边摸一边抽搐一进一出视频| a级毛片在线看网站| 久久久久久免费高清国产稀缺| 亚洲人成电影免费在线| 亚洲国产毛片av蜜桃av| 国产精品 欧美亚洲| 99精品欧美一区二区三区四区| 欧美最黄视频在线播放免费 | 精品国产乱码久久久久久男人| 亚洲av成人一区二区三| 99国产精品一区二区蜜桃av| 久久精品91蜜桃| 国产欧美日韩综合在线一区二区| 亚洲美女黄片视频| 国产精品久久电影中文字幕| www.999成人在线观看| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| 极品人妻少妇av视频| 国产真人三级小视频在线观看| 国产高清国产精品国产三级| 欧美日韩中文字幕国产精品一区二区三区 | 国产高清videossex| 老汉色av国产亚洲站长工具| 国产亚洲精品综合一区在线观看 | 激情视频va一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲国产精品999在线| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 99久久99久久久精品蜜桃| 69av精品久久久久久| 精品国产超薄肉色丝袜足j| 女警被强在线播放| 国产又色又爽无遮挡免费看| 亚洲欧美日韩高清在线视频| 精品国产乱码久久久久久男人| 亚洲精品一卡2卡三卡4卡5卡| 欧美色视频一区免费| 国产男靠女视频免费网站| 欧美中文综合在线视频| 免费高清视频大片| 高清欧美精品videossex| av超薄肉色丝袜交足视频| 黄色 视频免费看| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| 久久人妻av系列| av有码第一页| 亚洲av五月六月丁香网| 亚洲色图 男人天堂 中文字幕| 涩涩av久久男人的天堂| 国产人伦9x9x在线观看| 91精品三级在线观看| 99精品在免费线老司机午夜| av在线播放免费不卡| 99热只有精品国产| 精品午夜福利视频在线观看一区| 91成人精品电影| 免费在线观看亚洲国产| 少妇粗大呻吟视频| 女警被强在线播放| 国产精品综合久久久久久久免费 | 丁香欧美五月| 中文字幕最新亚洲高清| 亚洲av电影在线进入| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女 | 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 国产成人av激情在线播放| 国产午夜精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 视频在线观看一区二区三区| 久久久久亚洲av毛片大全| 色尼玛亚洲综合影院| 日韩三级视频一区二区三区| 757午夜福利合集在线观看| 亚洲色图 男人天堂 中文字幕| 日韩成人在线观看一区二区三区| 欧美大码av| 久久久久久大精品| 久久国产精品影院| aaaaa片日本免费| 男人舔女人下体高潮全视频| 制服人妻中文乱码| 老汉色av国产亚洲站长工具| 50天的宝宝边吃奶边哭怎么回事| 精品乱码久久久久久99久播| 夜夜躁狠狠躁天天躁| www.999成人在线观看| 在线观看免费高清a一片| 亚洲七黄色美女视频| 国产无遮挡羞羞视频在线观看| 国产单亲对白刺激| 日韩精品免费视频一区二区三区| 成人亚洲精品av一区二区 | 国产亚洲av高清不卡| 母亲3免费完整高清在线观看| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| 免费在线观看视频国产中文字幕亚洲| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲| 青草久久国产| 天天躁狠狠躁夜夜躁狠狠躁| 怎么达到女性高潮| 日韩av在线大香蕉| 97碰自拍视频| 成人影院久久| 少妇裸体淫交视频免费看高清 | 少妇裸体淫交视频免费看高清 | 黄色女人牲交| 高清av免费在线| 日本欧美视频一区| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 久久午夜综合久久蜜桃| 国产精品九九99| 午夜福利影视在线免费观看| 男女下面插进去视频免费观看| 亚洲专区国产一区二区| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 久久国产亚洲av麻豆专区| 久久中文字幕人妻熟女| 欧美国产精品va在线观看不卡| 中国美女看黄片| 午夜精品国产一区二区电影| 亚洲成国产人片在线观看| 在线观看免费视频网站a站| 丰满迷人的少妇在线观看| 欧美日本中文国产一区发布| 精品国产国语对白av| 一个人观看的视频www高清免费观看 | 亚洲自拍偷在线| 免费av中文字幕在线| 日韩三级视频一区二区三区| 国产熟女xx| 最近最新免费中文字幕在线| 身体一侧抽搐| 99久久精品国产亚洲精品| 国产又色又爽无遮挡免费看| 91老司机精品| videosex国产| 超碰成人久久| 亚洲人成电影观看| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | 自拍欧美九色日韩亚洲蝌蚪91| 免费av毛片视频| 国产成人免费无遮挡视频| 国产伦人伦偷精品视频| 一边摸一边做爽爽视频免费| 久久这里只有精品19| 亚洲国产看品久久| 搡老乐熟女国产| 国产免费现黄频在线看| 在线十欧美十亚洲十日本专区| 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 91国产中文字幕| 亚洲国产欧美日韩在线播放| 黄色片一级片一级黄色片| 国产三级在线视频| 黑人猛操日本美女一级片| 欧美激情极品国产一区二区三区| 亚洲欧美日韩另类电影网站| 久久久久国产一级毛片高清牌| 成人亚洲精品一区在线观看| 热re99久久精品国产66热6|