• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel traveling wave solutions and stability analysis of perturbed Kaup–Newell Schr¨odinger dynamical model and its applications?

    2021-03-11 08:30:58XiaoyongQian錢驍勇DianchenLu盧殿臣MuhammadArshadandKhurremShehzad
    Chinese Physics B 2021年2期

    Xiaoyong Qian(錢驍勇), Dianchen Lu(盧殿臣), Muhammad Arshad,?, and Khurrem Shehzad

    1Faculty of Science,Jiangsu University,Zhenjiang 212013,China

    2Department of Mathematics and Statistics,University of Agriculture Faisalabad,Pakistan

    Keywords: extended F-expansion method, generalized exp(?φ(ξ))-expansion technique, perturbed Kaup–Newell Schr¨odinger equation,traveling wave solutions

    1. Introduction

    Analytical wave results in dissimilar kinds play an important role in realization of nonlinear physical and mathematical phenomena in the fields of hydrodynamics, plasma physics,nonlinear optics, elastic media, problems of biological, engineering and optical fibers.[1–12]The fascinating technology of sub-pico second pulses that propagate through optical fibers is modeled with the Kaup–Newell equation. Several decades ago,this famous model was first proposed by David Kaup and Alen Newell, and is one of the three forms of the derivative nonlinear Schr¨odinger equation(NLSE)that governs the soliton dynamics.The research of soliton solutions has been of appreciable significance for knowing nonlinear phenomena over the recent years. To know the integrability nature in ordinary and partial differential equations,[1,2]the theory of solitons has enhanced in recent decades. The derivative NLSE is

    It is also named as the Kaup–Newell (K–N) model,[3]which has several sensual applications, particularly in nonlinear optics and plasma physics. In several models, the derivative nonlinear Schr¨odinger equation (DNLSE) was studied to exhibit the molecule of soliton propagation throughout an optical fiber. The DNLSE has many forms which are identified,such as the Gerdjikov–Ivanov equation(GIE),the Chen–Lee–Liu equation (CLLE), and the K–N equation. Alternatively, these equations are named as DNLSE-I, DNLSE-II and DNLSE-III. Through the Gauge transformation,[9]these equations can be altered to each other. In scattering problems,the transformations cannot preserve the condition of reduction. However, the transformations cannot conserve the condition of reduction in the scattering model and extremely intricate integral is involved, and it cannot be premeditated explicitly.[10,11,13]Therefore,they merit to be investigated independently. There is an abundance of mathematical techniques that are found to tackle these assortment of nonlinear Schr¨odinger problems.[8,12,14–21]Recently, the perturbed Kaup–Newell(K–N)model[22,23]is introduced from the generalized Kaup–Newell spectral equation with linear perturbations as follows:

    where the function u(x,t)indicates the wave function of complex valued. The variables x and t represent the spatial and temporal coordinates, respectively. The first term on the lefthand side of Eq.(2)indicates the temporal evaluation,and the second term indicates the group velocity dispersion having coefficient α1. The third term together with coefficient α2provides nonlinear effect. On the right-hand side of Eq.(2),coefficient β indicates inter-model dispersion,η and δ indicate the self-steepening and nonlinear dispersion effects. Lastly, the parameter for full nonlinearity is m.To date,researchers[22–25]have been successfully shown the mathematical engineering of Eq.(2).

    This article will study the exact solution of the K–N equation with some hamiltonian sort perturbation terms. Fexpansion and exp(?φ(ξ))-expansion schemes executed to construct soliton solution to the current K–N equation. The achieved solutions are novel. The stability of achieved solutions are also examined via utilizing modulation instability(MI)analysis. After brief introduction,the K–N equation details are given in the rest of the paper.

    2. Depiction of proposed techniques

    In this section, we elucidate the algorithm of projected methods, namely, the modified F-expantion method and the generalized exp(?φ(ξ))-expantion technique for finding the exact solutions of the K–N model. A general non-linear evolution equation has the form of

    where the function w(x,t)is unknown,and polynomial Q has some specified functions or variables,which also contains both linear and non-linear derivative terms of the w(x,t). Considering the transformation for switching independent variables into one variable yields

    where k and ν are wave length and frequency. Utilizing Eq. (4), equation (3) is diminished into the ordinary differential equation

    where ψ′= dψ/dξ.

    2.1. Modified F-expantion method

    The major stages of this scheme are stated in the following.

    First stepConsider the solution to ODE(5)has the form of

    where the constants aiand n are real.F(ξ)ensures the following new ansatz equation:

    where d0,d1,d2and d3are real constants.

    Second stepN is a positive integer and it is generally found via utilizing homogeneous balance principle on Eq.(5),and the coefficients series a?N,a?N+1,...,a0,a1,...,aN,ν,k,n are obtained.

    Fourth stepThe solutions to Eq.(5)can be achieved by deputing the values achieving in the third step into Eq.(6).

    2.2. Generalized exp(?φ(ξ))-expansion technique

    The major stages of this scheme are given in the following.

    First stepConsider the solution to ODE(5)has the form of

    where bi(0 ≤i ≤N)represents constants we have to calculate, such that bN/=0 and φ =φ(ξ) satisfies the following auxiliary ODE:

    where r, p and q are constants.

    Second stepPositive integer N can be calculated by using homogeneous balance principle between nonlinear terms occurring and derivative terms of highest order in Eq.(5).

    Third stepSubstituting Eqs. (8) and (9) into Eq. (5)yields a polynomial in e(?φ(ξ)). Putting different powers of(e(?φ(ξ)))ito zero,we can reach algebraic equations. Solving this system and back substitutions, we attain a set verity of exact solutions to Eq.(3).

    3. Application of proposed methods to the perturbed K–N Schro¨dinger equation

    In this section, we construct the soliton solutions to the perturbed K–N equation by utilizing two mathematical techniques.

    3.1. The modified F-expansion method

    As Eq.(2)is complex,so our hypothesis of the wave solution to Eq.(2)is in the form of

    where ψ(ξ) is given in Eq. (6); k, ν, γ, ω, and ε are arbitrary constants; ψ(ξ) is the amplitude component of the wave profiles; P is the phase factor; γ, ω, and ε show the frequency, wave number, and phase constant, respectively.Putting Eq. (10) into Eq. (2) and making separate into parts yield

    Substituting ψ2mfrom Eq.(11)into Eq.(12)yields

    Apply balance principle of homogeneity on Eq.(13)and consider the solution to Eq.(13)to be

    Family 1In this family,we consider d0=d3=0,

    Set 1:

    Set 2

    We can achieve the soliton solutions to Eq.(2)from set 1 in the form as follows:

    We also achieve more soliton solutions to Eq.(2)from set 2 as

    Family 2In this family,we consider d1=d3=0,

    Set 1

    Set 2

    The wave solutions to Eq.(2)are achieved from solution set 1 as follows:

    We attain more exact solutions to Eq.(2)from solution set 2 as

    Fig.1. The structure of solutions (17) and (18): (a) bright solitary wave and its two-dimensional profile (b), and (c) dark soliton and its two-dimensional profile(d),providing suitable values to the parameters.

    Family 3In this family,we consider d3=0,

    Set 1

    Set 2

    The wave solutions to Eq.(2)from sets 1 and 2 are constructed as follows:

    where ξ0is constant and P=γx+ωt+ε.

    Fig.2. The structure of solutions(26)and(27): (a)periodic solitary waves and the two-dimensional profile(b),and(c)combined bright-dark solitary wave and its two-dimensional profile(d),providing suitable values to the parameters.

    Fig.3. The structure of solutions (29) and (34): (a) periodic waves and the two-dimensional profile (b), and (c) dark soliton and its twodimensional profile(d),providing suitable values to the parameters.

    Family 4In this family,we consider d0=d2=0,

    Set 1

    Set 2

    The following soliton solutions to Eq.(2)from set 1 are attained as follows:

    Similarly,one can construct more soliton solutions to Eq.(2)from set 2.

    3.2. Generalized exp(?φ(ξ))-expansion technique

    As Eq. (2) is complex, our hypothesis of the wave solution to Eq.(2)is in the form of

    where ψ(ξ)is given in Eq.(8). Putting Eq.(35)into Eq.(2)and making separate into parts yield

    Substituting ψ2mfrom Eq.(36)into Eq.(37)yields

    The homogeneous balance principle is applied on Eq. (38),and we consider the solution to Eq.(13)as follows:

    Family 1

    From family 1,the following kinds of soliton solutions to Eq.(2)are constructed.

    Type IFor r=1, p/=0,q2?4p>0,

    Type IIFor r=1, p/=0,q2?4p <0,

    Type IIIFor r=1, p=0,q/=0,q2?4p>0,

    Type IVFor r=1, p/=0,q/=0,q2?4p=0,

    Type VFor q=0,r>0, p>0,

    Type VIFor q=0,r <0, p <0,

    Type VIIFor q=0,r>0, p <0,

    Type VIIIFor q=0, r <0, p>0,

    Type IXFor p=0, q=0,

    Family 2

    Similarly,one can construct more general soliton solutions to Eq.(2)from family 2.

    Fig.4. The structure of solutions (41) and (42): (a combined bright-dark solitary wave and its two-dimensional profile (b), and (c) periodic traveling wave and its two-dimensional profile(d),providing suitable values to the parameters.

    Fig.5. The structure of solutions(43)and(44): (a)bright-dark solitary wave and its two-dimensional profile(b),and(c)traveling wave and its two-dimensional profile(d),providing suitable values to the parameters.

    4. Modulation instability

    Numerous higher order nonlinear evolution equations depicting an instability that directs to investigate the steady state modulation as an consequence of the interaction among nonlinear and dispersive effects. To examine the MI of perturbed Kaup–Newell Schr¨oodinger Eq. (2) with using the analysis of standard linear stability[8,26–29]to scrutinize how weak and time dependent perturbations construct along the propagation distance. The steady state solution to the perturbed Kaup–Newell Schr¨oodinger equation reads

    where P is normalized optical power. The perturbation φ(x,t)is studied by employing linear stability analysis. Substituting Eq.(51)into Eq.(2)and linearizing,we obtain

    where ?denotes complex conjugate. Assume the solution to Eq.(52)as follows:

    where k and τ are normalized wave number and frequency of φ(x,t). Substituting Eq.(53)into Eq.(52), we attain the dispersion relation(DR)

    Fig.6. The graph of dispersion relation τ =τ(k).

    5. Results and discussion

    The achieved solutions are dissimilar from the attained results of numerous researchers by other prior techniques due to fact that the supposed result(14)of the proposed technique is changed from the previous technique. Equation (7) gives a few distinct type of solutions by providing dissimilar value of parameters. The authors of Ref. [23] constructed the solitons to Eq. (2) using the G′/G2-expansion and exp(??(ζ))-expansion methods. The obtained solutions (41), (42), (44),and(35)are similar to the solutions(23),(24),(26)and(27),respectively,which were obtained by authors of Ref.[23].The authors of Ref.[30]investigated the conservation laws of this dynamical model. Therefore, we have achieved several innovative results that have not been stated before.

    Figures 1–3 signify the solitary waves in different shapes depicted. Figures 1(a)–1(d) depict the bright solitary wave and dark soliton in three and two-dimensional form of solutions (17) and (18) at α1=0.5, α2=1, β =0.25, γ =0.5,d1=0.5, d2=0.75, δ =1, η =0.5, k =1, m=1, n=1,ω = 1, ε = 1 and α1= 0.5, α2= 1, β = 0.25, γ = 0.5,d1=?0.5, d2=0.75, δ =1, η =0.5, k=1, m=1, n=1,ω =1, ε =1, respectively. Figures 2(a)–2(d) depict the periodic and combined bright-dark solitary waves in three- and two-dimensional forms of solutions(29)and(34)at α1=0.5,α2= 0.25, β = 0.4, γ = 0.5, d0= 0.5, d2= 1.5, δ = 1,η=0.25,k=0.5,ν=0.5,m=1,n=1,ξ0=1,ε=?1.5 and α1=0.5,α2=?1.3,β =?0.3,γ =1,d0=0.5,d2=?1.5,δ =?1.6,η=?0.05,ξ0=1,k=0.5,ν=0.5,m=1,n=1,ε =?0.5 respectively. Figures 3(a)–3(d) depict the periodic and dark solitary waves in three- and two-dimensional forms of solutions(29)and(34)at α1=0.5,α2=?1.3,β =?0.3,γ = 0.75, d0= 0.5, d1= 0.5, d2= ?1, δ = 1.6, η = 1,ξ0=?1,k=1,m=1,n=1,ω=0.5,ε=?0.5 and α1=0.5,α2=?1.3,β =?0.3,γ=0.75,d1=?0.5,d3=1,δ =?1.6,η =1, ξ0=0, k=1, m=1, n=1, ω =0.5, ε =?0.5, respectively.

    Figures 4 and 5 describe the soliton and solitary waves in different forms depicted. Figures 4(a)–4(d)depict the combined bright-dark and periodic traveling waves in three- and two-dimensional forms of solutions(41)and(42)at β =0.5,p=0.5,q=1.5,r=1,α1=0.5,α2=?1.3,γ=0.5,ω=0.5,ε =?1.5, k =1, m=1, η =?0.05, ξ0=1 and β =0.5,p=1,q=1.5,r=1,α1=0.5,α2=?1.3,γ =0.5,ω =0.5,ε=?1.5,k=1,m=1,η=?0.05,ξ0=1,respectively. Figures 5(a)–5(d) depict the bright-dark and traveling waves in three-and two-dimensional forms of solutions(43)and(44)at β =0.5, p=0,q=1.5,r=1,α1=0.5,α2=?1.3,γ =0.5,ω =0.5, ε =?1.5, k =1, m=1, η =?0.05, ξ0=1 and β =0.5, p=1, q=2, r=1, α1=0.5, α2=?1.3, γ =0.5,ω =0.5,ε =?1.5,k=1,m=1,η =?0.05,ξ0=1,respectively. The dispersion relation τ =τ(k) between k and τ of perturbation is given in Fig.6.

    6. Conclusion

    We have employed the extended F-expansion and generalized exp(?φ(ξ))-expansion methods on the perturbed K–N equation, where the perturbation terms appear with full nonlinearity and traveling wave solutions in dissimilar forms such as bright and dark solitons, combined dark-bright solitons,solitary waves, periodic and other wave solutions attained.These obtained results are very helpful in governing soliton dynamics. This dynamical model describes plus propagation in optical fibers and can be observed as a special case of the generalized higher order NLSE.These achieved solutions are novel and may be useful for physicians, mathematician and engineers to understand more complex physical phenomena.These achieved soliton solutions have key applications such as optical fibers and ultra short light pulses.[5,31,32]The stability of model is discussed by utilizing modulation instability analysis, which confirms that all exact solutions are stable. The moments of a few results are revealed graphically by granting suitable values to parameters.In future to extend the result,we can solve the generalized higher order NLSE in the presence of non-local perturbation terms. The computation work endorses the simplicity,effectiveness and impact of current techniques.

    啦啦啦观看免费观看视频高清| 国产精品 欧美亚洲| 日韩欧美在线二视频| 久久精品亚洲精品国产色婷小说| 久久久久亚洲av毛片大全| 国产成年人精品一区二区| 国模一区二区三区四区视频 | 亚洲人与动物交配视频| 成人欧美大片| 精品电影一区二区在线| 亚洲18禁久久av| 免费看十八禁软件| 最新美女视频免费是黄的| 曰老女人黄片| 国产av一区二区精品久久| 一个人免费在线观看电影 | 欧美高清成人免费视频www| 精品国产亚洲在线| 十八禁网站免费在线| 久久久久国内视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久国产精品人妻aⅴ院| 天天躁夜夜躁狠狠躁躁| 嫩草影院精品99| 可以在线观看的亚洲视频| 精品久久久久久久久久久久久| 亚洲午夜精品一区,二区,三区| 在线视频色国产色| 啪啪无遮挡十八禁网站| 国产高清videossex| 成年版毛片免费区| 久久天堂一区二区三区四区| 午夜免费激情av| 在线播放国产精品三级| 国产视频一区二区在线看| 国内揄拍国产精品人妻在线| 一本久久中文字幕| 日日爽夜夜爽网站| 国产av在哪里看| 九九热线精品视视频播放| 一进一出抽搐动态| 国产熟女xx| 精品人妻1区二区| 91成年电影在线观看| 可以在线观看的亚洲视频| 亚洲精品av麻豆狂野| 12—13女人毛片做爰片一| 亚洲国产欧洲综合997久久,| 国产成人aa在线观看| 50天的宝宝边吃奶边哭怎么回事| 午夜视频精品福利| 亚洲性夜色夜夜综合| 1024视频免费在线观看| 床上黄色一级片| 国产视频一区二区在线看| 午夜视频精品福利| 91麻豆精品激情在线观看国产| 免费av毛片视频| 日本精品一区二区三区蜜桃| 国产精品免费一区二区三区在线| 丰满人妻一区二区三区视频av | 亚洲色图 男人天堂 中文字幕| 欧美3d第一页| 中文字幕久久专区| 欧美不卡视频在线免费观看 | 欧美精品亚洲一区二区| 九色国产91popny在线| 最近最新中文字幕大全电影3| 日本撒尿小便嘘嘘汇集6| 国产麻豆成人av免费视频| 久久久久国内视频| netflix在线观看网站| 一本综合久久免费| 国产精品国产高清国产av| 色哟哟哟哟哟哟| 亚洲 国产 在线| 无遮挡黄片免费观看| 男人舔女人下体高潮全视频| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 女人被狂操c到高潮| 亚洲av片天天在线观看| 大型黄色视频在线免费观看| 岛国视频午夜一区免费看| 亚洲无线在线观看| 国产高清有码在线观看视频 | 国产熟女午夜一区二区三区| 精品国内亚洲2022精品成人| 脱女人内裤的视频| 高清在线国产一区| 成年人黄色毛片网站| 国产av不卡久久| 日韩大码丰满熟妇| 麻豆成人午夜福利视频| 亚洲第一电影网av| 国产激情偷乱视频一区二区| 在线观看免费视频日本深夜| 在线观看一区二区三区| 亚洲av成人av| 母亲3免费完整高清在线观看| 操出白浆在线播放| 精品久久久久久久久久久久久| 一本大道久久a久久精品| 亚洲成人久久性| 国产免费av片在线观看野外av| 91av网站免费观看| 国产精品美女特级片免费视频播放器 | 琪琪午夜伦伦电影理论片6080| 国模一区二区三区四区视频 | xxx96com| 激情在线观看视频在线高清| 村上凉子中文字幕在线| 国产一区二区激情短视频| 男女视频在线观看网站免费 | 搡老岳熟女国产| 波多野结衣高清作品| 亚洲国产欧美一区二区综合| 国产成人aa在线观看| 国产精品野战在线观看| 国产精品一区二区精品视频观看| 亚洲精品一区av在线观看| 亚洲美女视频黄频| 亚洲熟妇熟女久久| 久久午夜亚洲精品久久| 亚洲欧美激情综合另类| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| ponron亚洲| 国产精品久久久久久精品电影| 久久久久久大精品| 久久精品成人免费网站| 老司机午夜十八禁免费视频| 欧美一级a爱片免费观看看 | 欧美乱妇无乱码| 成人国语在线视频| 精品久久久久久久久久免费视频| 亚洲一区中文字幕在线| 看片在线看免费视频| 搡老熟女国产l中国老女人| 欧美日韩黄片免| 国产高清激情床上av| 精品国产乱码久久久久久男人| 精品无人区乱码1区二区| 脱女人内裤的视频| 全区人妻精品视频| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| 两个人的视频大全免费| 久久久久久久精品吃奶| 黄色毛片三级朝国网站| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 一区二区三区国产精品乱码| 亚洲全国av大片| 视频区欧美日本亚洲| 琪琪午夜伦伦电影理论片6080| av在线播放免费不卡| 精品国产乱子伦一区二区三区| 久久久精品大字幕| 成人永久免费在线观看视频| 亚洲精品中文字幕在线视频| 97人妻精品一区二区三区麻豆| 麻豆国产97在线/欧美 | 99热这里只有精品一区 | 夜夜躁狠狠躁天天躁| 国产伦在线观看视频一区| 午夜老司机福利片| 黄色a级毛片大全视频| 在线观看舔阴道视频| 人人妻人人澡欧美一区二区| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看| 久久这里只有精品19| 久久伊人香网站| 好看av亚洲va欧美ⅴa在| 午夜福利高清视频| 国产欧美日韩一区二区三| 亚洲国产精品成人综合色| 国产69精品久久久久777片 | 国产成人av激情在线播放| 国产精品亚洲美女久久久| 午夜福利高清视频| 在线永久观看黄色视频| 男女之事视频高清在线观看| 在线观看免费日韩欧美大片| 成人国语在线视频| 天堂影院成人在线观看| 精品福利观看| 午夜福利在线在线| 国产在线观看jvid| 亚洲中文日韩欧美视频| 一级毛片高清免费大全| 老熟妇乱子伦视频在线观看| 一区二区三区激情视频| 亚洲 国产 在线| 国产91精品成人一区二区三区| 搡老妇女老女人老熟妇| 精品无人区乱码1区二区| 精品第一国产精品| 国产免费男女视频| 大型黄色视频在线免费观看| 国产欧美日韩一区二区三| 亚洲一码二码三码区别大吗| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 国产99白浆流出| 国产一区二区在线观看日韩 | 国产精品电影一区二区三区| 午夜影院日韩av| 国产精品 国内视频| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| bbb黄色大片| 国内精品一区二区在线观看| 国产午夜精品久久久久久| 亚洲第一欧美日韩一区二区三区| www.自偷自拍.com| 1024手机看黄色片| 一二三四在线观看免费中文在| 九九热线精品视视频播放| 丰满人妻熟妇乱又伦精品不卡| 国产三级中文精品| 久久久久九九精品影院| www日本在线高清视频| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 变态另类成人亚洲欧美熟女| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频 | 国产野战对白在线观看| 久9热在线精品视频| 欧美日韩瑟瑟在线播放| 午夜福利免费观看在线| 免费在线观看黄色视频的| 日本在线视频免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区三| 这个男人来自地球电影免费观看| 日本在线视频免费播放| 久久香蕉精品热| 变态另类丝袜制服| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区| 在线永久观看黄色视频| 后天国语完整版免费观看| 99久久99久久久精品蜜桃| 亚洲中文字幕日韩| 国产野战对白在线观看| 国产三级黄色录像| 可以在线观看的亚洲视频| 可以在线观看毛片的网站| 亚洲电影在线观看av| 黄片小视频在线播放| 母亲3免费完整高清在线观看| 欧美极品一区二区三区四区| aaaaa片日本免费| www.熟女人妻精品国产| 国产一级毛片七仙女欲春2| 婷婷六月久久综合丁香| 岛国在线免费视频观看| 国产激情久久老熟女| 天天一区二区日本电影三级| 一区福利在线观看| 午夜福利在线观看吧| 精品午夜福利视频在线观看一区| 日本五十路高清| 成年人黄色毛片网站| 精品福利观看| 中文字幕熟女人妻在线| 九色国产91popny在线| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 欧美日本视频| av在线播放免费不卡| 一个人免费在线观看的高清视频| 三级男女做爰猛烈吃奶摸视频| 一级a爱片免费观看的视频| 免费观看人在逋| 美女扒开内裤让男人捅视频| 国产精品久久久久久久电影 | 看黄色毛片网站| 在线视频色国产色| 免费看十八禁软件| 一级毛片精品| 美女免费视频网站| 午夜福利视频1000在线观看| 成人精品一区二区免费| 欧美一区二区精品小视频在线| 香蕉丝袜av| svipshipincom国产片| 国产爱豆传媒在线观看 | 老熟妇乱子伦视频在线观看| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 丰满人妻一区二区三区视频av | 亚洲国产精品sss在线观看| 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 欧美日韩国产亚洲二区| 日韩精品免费视频一区二区三区| 两性夫妻黄色片| 香蕉av资源在线| 久久久久久国产a免费观看| 桃红色精品国产亚洲av| 黄色毛片三级朝国网站| 亚洲欧美日韩无卡精品| 日韩高清综合在线| 脱女人内裤的视频| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆 | 日本三级黄在线观看| 亚洲成人久久性| 亚洲av第一区精品v没综合| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 日韩欧美 国产精品| 成人手机av| 久久香蕉精品热| 久久精品91无色码中文字幕| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 欧美成人午夜精品| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看 | 99国产精品一区二区蜜桃av| 激情在线观看视频在线高清| 亚洲五月天丁香| 成年版毛片免费区| 精品久久久久久久末码| 国产精品免费视频内射| www.www免费av| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 三级男女做爰猛烈吃奶摸视频| 欧美黑人巨大hd| 亚洲av五月六月丁香网| 1024视频免费在线观看| 成人特级黄色片久久久久久久| 精品久久久久久久末码| 久久香蕉精品热| 亚洲精品久久国产高清桃花| 亚洲电影在线观看av| 黄片大片在线免费观看| 身体一侧抽搐| 在线观看日韩欧美| 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 999久久久国产精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色 视频免费看| 国产熟女午夜一区二区三区| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 三级毛片av免费| 国产三级中文精品| 成人国语在线视频| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 国产蜜桃级精品一区二区三区| 国内久久婷婷六月综合欲色啪| 久久亚洲精品不卡| 日韩欧美国产在线观看| 国产成年人精品一区二区| 国产成人av激情在线播放| 十八禁网站免费在线| 99精品在免费线老司机午夜| 亚洲av电影在线进入| netflix在线观看网站| 天天添夜夜摸| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 亚洲精品久久国产高清桃花| 亚洲一区二区三区色噜噜| 欧美成狂野欧美在线观看| 黄色 视频免费看| 操出白浆在线播放| 亚洲乱码一区二区免费版| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品久久久av美女十八| 亚洲欧美精品综合久久99| av在线播放免费不卡| 午夜成年电影在线免费观看| 99热只有精品国产| 天堂av国产一区二区熟女人妻 | 亚洲 欧美一区二区三区| 亚洲精品国产精品久久久不卡| 天堂av国产一区二区熟女人妻 | 可以在线观看毛片的网站| 久久精品综合一区二区三区| 香蕉久久夜色| 啪啪无遮挡十八禁网站| 日韩中文字幕欧美一区二区| 操出白浆在线播放| 久久久国产欧美日韩av| 午夜福利成人在线免费观看| 宅男免费午夜| 啦啦啦韩国在线观看视频| 视频区欧美日本亚洲| 国产午夜精品论理片| 最近最新中文字幕大全免费视频| 精品少妇一区二区三区视频日本电影| 最近在线观看免费完整版| 亚洲专区中文字幕在线| 国产日本99.免费观看| 美女大奶头视频| 国产激情久久老熟女| 香蕉av资源在线| 夜夜躁狠狠躁天天躁| 国产亚洲欧美在线一区二区| 欧美日韩国产亚洲二区| 国产精品 国内视频| 国产精品久久久久久久电影 | 日本三级黄在线观看| 国产91精品成人一区二区三区| 高潮久久久久久久久久久不卡| 国产黄a三级三级三级人| 在线国产一区二区在线| 国产高清有码在线观看视频 | 国产高清有码在线观看视频 | 国产成人精品无人区| av福利片在线观看| 亚洲欧美日韩高清专用| 女人高潮潮喷娇喘18禁视频| 美女扒开内裤让男人捅视频| 深夜精品福利| 亚洲午夜理论影院| 午夜亚洲福利在线播放| 日本成人三级电影网站| 午夜精品久久久久久毛片777| 久久久久亚洲av毛片大全| 少妇的丰满在线观看| 婷婷六月久久综合丁香| 国产探花在线观看一区二区| 国产精品自产拍在线观看55亚洲| 白带黄色成豆腐渣| 国产欧美日韩一区二区精品| 午夜影院日韩av| 草草在线视频免费看| 亚洲电影在线观看av| cao死你这个sao货| 国产成+人综合+亚洲专区| 欧美一区二区国产精品久久精品 | 亚洲va日本ⅴa欧美va伊人久久| 舔av片在线| 精品久久久久久久人妻蜜臀av| 国产成年人精品一区二区| 99热这里只有是精品50| 天天添夜夜摸| 国产精品1区2区在线观看.| 亚洲成av人片免费观看| 国产三级中文精品| 亚洲男人的天堂狠狠| 国产成年人精品一区二区| 色综合婷婷激情| 狠狠狠狠99中文字幕| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| ponron亚洲| 狂野欧美激情性xxxx| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩高清在线视频| 国内毛片毛片毛片毛片毛片| 熟妇人妻久久中文字幕3abv| 亚洲性夜色夜夜综合| 日韩欧美在线二视频| 国产精品电影一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| tocl精华| 精品国产超薄肉色丝袜足j| 国产亚洲av嫩草精品影院| 久久香蕉精品热| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 99国产精品一区二区蜜桃av| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 国产免费男女视频| 18禁美女被吸乳视频| 超碰成人久久| 18禁美女被吸乳视频| 熟女电影av网| 亚洲欧美激情综合另类| 色综合亚洲欧美另类图片| 国产激情偷乱视频一区二区| 日本a在线网址| 中文亚洲av片在线观看爽| 精品一区二区三区四区五区乱码| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 啪啪无遮挡十八禁网站| 日本免费一区二区三区高清不卡| 熟女少妇亚洲综合色aaa.| 亚洲av成人av| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| av国产免费在线观看| 久久久精品大字幕| 亚洲欧美一区二区三区黑人| 精品国产超薄肉色丝袜足j| 成年免费大片在线观看| 黄片小视频在线播放| 黑人操中国人逼视频| av超薄肉色丝袜交足视频| 999久久久国产精品视频| 熟女少妇亚洲综合色aaa.| 九色成人免费人妻av| 岛国在线观看网站| 亚洲人成电影免费在线| 日本 av在线| 天堂av国产一区二区熟女人妻 | 日韩欧美国产在线观看| 90打野战视频偷拍视频| 日本成人三级电影网站| 97超级碰碰碰精品色视频在线观看| 精品国产美女av久久久久小说| 亚洲av成人一区二区三| 亚洲精品久久国产高清桃花| 最好的美女福利视频网| 日本一本二区三区精品| 午夜亚洲福利在线播放| 老汉色∧v一级毛片| www国产在线视频色| 亚洲男人天堂网一区| 女人爽到高潮嗷嗷叫在线视频| 一本久久中文字幕| 少妇人妻一区二区三区视频| 50天的宝宝边吃奶边哭怎么回事| 最近最新中文字幕大全免费视频| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 九九热线精品视视频播放| 一级黄色大片毛片| 久久久久久亚洲精品国产蜜桃av| 岛国视频午夜一区免费看| 搞女人的毛片| 久久香蕉激情| 久久精品国产亚洲av香蕉五月| 日韩欧美在线乱码| 日本一二三区视频观看| 欧美av亚洲av综合av国产av| 精品国产乱子伦一区二区三区| 岛国在线免费视频观看| 大型黄色视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 国产精品自产拍在线观看55亚洲| 欧美三级亚洲精品| 色综合欧美亚洲国产小说| 国产三级黄色录像| 女同久久另类99精品国产91| 久久久国产成人精品二区| 男女床上黄色一级片免费看| 又黄又爽又免费观看的视频| 午夜老司机福利片| 日韩欧美三级三区| 国内精品一区二区在线观看| 狂野欧美白嫩少妇大欣赏| 欧美午夜高清在线| 免费在线观看视频国产中文字幕亚洲| 成人av在线播放网站| 少妇被粗大的猛进出69影院| 国产精品亚洲美女久久久| 欧美色视频一区免费| 欧美黑人精品巨大| 女人爽到高潮嗷嗷叫在线视频| 亚洲色图 男人天堂 中文字幕| 国内揄拍国产精品人妻在线| 亚洲国产日韩欧美精品在线观看 | 最近最新免费中文字幕在线| 最好的美女福利视频网| 怎么达到女性高潮| 最近最新免费中文字幕在线| 亚洲成人精品中文字幕电影| 国产激情欧美一区二区| 久久精品91无色码中文字幕| 精品久久久久久,| 看免费av毛片| 免费看十八禁软件| 97人妻精品一区二区三区麻豆| 国产激情偷乱视频一区二区| 十八禁人妻一区二区| 五月伊人婷婷丁香| 色综合婷婷激情| 亚洲成av人片免费观看| 久久亚洲精品不卡| 国产午夜精品论理片| 成人av在线播放网站| 欧美午夜高清在线| 在线十欧美十亚洲十日本专区| 午夜老司机福利片| 天堂动漫精品| 欧美精品亚洲一区二区| 又爽又黄无遮挡网站| 久久精品综合一区二区三区| 一区二区三区激情视频| 亚洲精品国产一区二区精华液| 99国产综合亚洲精品| 国产高清视频在线播放一区| 亚洲天堂国产精品一区在线| 亚洲av熟女|